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Multiple resonances in non-Franck-Condon transitions due to nonlocal effects
in laser-induced associative ionization
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The laser-induced associative ionization process A +B+Aco~AB++e is irivesti0;ated using a
nonlocal scattering potential. It is found that for each vibrational level of the ion complex AB+
multiple resonances for association can occur as the laser frequency is varied, provided the laser in-

tensity is beyond a certain critical value, estimated to be on the order of 10 W/cm for alkali dia-
tomic systems. The locations of the resonances also depend crucially on the laser intensity. These
results are contrary to the Franck-Condon assumption of localized electronic transitions, which
predicts a single resonance for each vibrational level.

I. INTRODUCTION

Recent experiments' have demonstrated the feasibili-
ty of laser-controlled associative ionization processes of
the type

A*+B+ficu~AB++e
%'hile such experiments have generated exciting new re-
sults which contribute to the understanding of laser-
induced molecular dynamics, much uncertainty remains
as to the exact nature of the electronic transitions involved
and the interpretation of the ionic or emitted-electron
spectrum, especially in experiments where the laser is de-
tuned from the atomic resonances of either collision
partner. ' This is in large part due to the fact that, under
these circumstances, the photon absorption and the molec-
ular collision cannot be treated as distinct processes.
However, apart from the complications introduced by
photon absorption, the collision dynamics involved in (1)
is distinctly different from other electronically nonadia-
batic processes characterized only by transitions between
discrete electronic states. In any collisional ionization
process, a bound-continuum transition is always involved,
because the exit channel of the collision system includes
an electronic continuum (due to the presence of the free
electron). Such bound-continuum collision processes
necessarily entail, at least in principle, a nonlocal scatter-
ing potential.

For the related process of Penning ionization, we have
shown previously that the nonlocal potential can be ap-
proximated by a local complex one under conditions of
high-collision energy. This approximation has enjoyed
wide application and often produced excellent agreement
between theory and experiment. ' ' There is, however,
one important class of experimental results which cannot
be readily explained on the basis of the local theory: the
presence of non-Franck-Condon distributions in the emis-
sion spectra of Penning-ionization optical spectroscopy

(PIOS) studies. ' ' Although the explanation of these ex-
perimental results remains controversial, ' it appears that
a possible cause for non-Franck-Condon behavior in elec-
tronic transitions is due to the presence of a nonlocal po-
tential. This has been corroborated theoretically by a nu-
merical study of associative detachment by Bieniek, and
more recently, by our model study of Penning ionization
based on a semiclassical approach. '

While the local potential is at best an approximation in
the treatment of Penning ionization, the nonlocal poten-
tial plays a dominant role in associative ionization. It is
thus expected that non-Franck-Condon effects will be
even more pronounced in associative ionization, and these
effects should in principle be increasingly more observable
as the collision energy is reduced. Rather than varying
the collision energy with respect to fixed potential curves
on the energy scale, one can fine-tune the laser frequency
and change the relative positions of the potential curves
instead and thus the effective collision energy on the en-
trance channel. This is most easily seen by using the elec-
tronic field representation for the field-dressed electronic
states of the collision system. The laser can in this way
be used to "energy-select" the collision partners and probe
the nonlocal properties of the potential. In particular, it
can be used to "pick out" an arbitrary number of vibra-
tional levels supported by the ionization-threshold poten-
tial curve which contribute significantly towards associa-
tive ionization.

In this paper, we shall make use of a nonlocal-potential
formalism developed in our previous work to analyze the
effects of nonlocality in laser-induced associative ioniza-
tion within the context of a simple model system. The
following qualitative predictions are made. Even in the
simplest dynamical situation, when only one vibrational
level contributes to ionization, there is a critical laser in-
tensity above which moltiple resonances for AB+ can
occur when the laser frequency is varied. Moreover, the
exact locations of these resonances depend on the strength
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of the laser intensity. As will be apparent from Sec. V,
this is in direct contradiction to conclusions drawn on the
basis of the Franck-Condon sudden localized electronic
transitions.

Section II specifies our model and establishes the nonlo-
cal Schrodinger equation [Eq. (2)] required for its descrip-
tion. It also presents a physical interpretation for the
nonlocal potential appearing in that equation. Section III
details the mathematics of the solution for a simplified
version of the nonlocal equation, and in Sec. IV the quali-
tative predictions mentioned in the previous paragraph are
made as direct consequences to the solution. Section V
closes this work with a discussion of the physical meaning
of these predictions and a review of the assumptions and
approximations that have been used.

E
C

W +5~d

II. THE NONLOCAL SCHRODINGER EQUATION
FOR ASSOCIATIVE IONIZATION

Throughout this paper we will use the two-state model
for the collision dynamics as shown in Fig. 1. The en-
trance channel is specified by the potential curve Wd(R)
with collision energy E„and the exit one by W+(R),
with Wd(oo) taken to be the zero of the energy scale.
Wz(R) results from the electronic configuration of the
A*+8 complex and is assumed not to support any vibra-
tional levels, while W+(R) results from that of the ion-
core complex A+8+ or AB+. We assume there is a
wide energy gap between the bottom of the potential well
in W+ and the flat region in W~, so that field-free ioniza-
tion will not take place. The introduction of a laser field
with frequency co such that Ace &E, may then induce the
formation of the bound-ion complex AB+ and the libera-
tion of an electron. The requirement of Ace &E, is purely
dictated by the energetics of the present model: In the
presence of the laser, the entrance channel becomes
Wd(R)+fico with. collision energy E,—fuu [see Fig. 1 and
Eq. (3) below]. Such a scheme may be of relevance, for
example, in the diatomic collision process

Na*(3p)+ Na(3s) +fico~Naz++e

which has been suggested as an important mechanism for
the formation of sodium-dimer ions when sodium vapor is

I

R
r

R

FIG. 1. Schematic diagram of the potential curves for the
model of laser-induced associative ionization used in the present
study. The zero of energy is taken to be 8 d( ao ). E, is the col-
lision energy in the entrance channel, 8'd(R), and co is the laser
frequency. The dashed line represents the ground vibrational
level supported by W+, and Ro is the equilibrium position of
the 8'+ well.

subjected to intense nonresonant optical radiation.
Another possible mechanism is multiphoton ionization of
the neutral sodium dimer. ' This latter mechanism,
however, is not directly related to the present work.

The dynamical configuration in Fig. 1 can be well
described by the low-energy-limit formalism developed in
our previous work. It was shown there that, using the
Feshbach projection-operator method, the partial-wave
Schrodinger equation in the present context can be written
as

2

d A' J(J+1) 1 J' J
+ Wd(R)+fKO+ 2 Eg XJ(EgyR)=t~ Q (2J'+ 1 ) () () () [P &0(R)]"Fz(EJ'pR)

2p dR 2p R IJ U

dR' W(p R' I'J EJ',R' gJ+ E„R'
0

(3)

where Xq (E„R) is the outgoing radial wave function for
the Jth partial wave of the diatomic collision system' and
FJ(Ez,R ) is the radial wave function for the ( J,v)
rotational-vibrational state supported by the potential
curve W+(R). P"~p(R) is the radial part .of the bound-
continuum coupling calculated with an outgoing continu-
um 1th-partial-wave electron wave function corresponding
to the emitted electron. (The z component of the angular
momentum for this electron has been set equal to zero for

simplicity. ) This coupling in the present case is radiative-
ly induced by the laser and is proportional to the laser
field strength. It is also assumed to be independent of the
emitted-electron energy.

A few points are to be noted about this equation. First,
if the right-hand side were set equal to zero, it reduces to
the Jth-partial-wave equation for the potential-scattering
problem specified by the potential Wd(R)+%co. Hence,
the right-hand side represents the entire effect of the
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bound-continuum coupling leading to associative ioniza-
tion. Second, the allowed J' values of the partial waves
for the exit channel are related to J and l by the triangle
inequality, a consequence of the conservation of electronic
angular momentum expressed through the presence of the
3-j symbol. Third, the summation over U only includes
those vibrational states such that EJ &E, . Thus the in-
teraction potential is energy dependent. Finally, this po-
tential is also nonlocal, with the kernel equal to a sum of
separable kernels.

The nonlocality can quite readily be interpreted physi-
cally as follows, using semiclassical language. A trajecto-
ry of the collision system eventually to be propagated on
the discrete-state potential curve Wd(R)+fico will contain
as part of its "history" a segment that is propagated on
the continuum threshold curve W+(R). If R is the coor-
dinate of the final "upward" transition from W+ back to
8'd +%co, the initial "downward" transition from
8'd+Aco to 8'+ can take place at arbitrary R'. Conse-
quently, one must integrate over this latter coordinate.
The strength of the d~+ transition at R' is given by

I

1 ~q(R'), while that of the +—+d transition at R is given
by [F~o(R)]". Since the energetics dictate that, while on
W+(R), the system can only e'xist as bound states, the
propagation between R' and R on the curve 8'+ is
described by the correlation of the bound-state amplitudes
Fq(EJ",R')FJ (Ez,R). This nonlocal nature of the bound-
continuum transition differs essentially from the vertical
(local) character of the transitions implied by the Frank-
Condon principle.

III. SOLUTION OF THE NONLOCAL
SCHRODINGER EQUATION

The separability of the kernel in Eq. (3) greatly facili-
tates the construction of the solution. We shall, however,
further simplify the equation by examining the simplest
case of the low-energy limit, namely, when the parameters
E, and co are such that only the Xp+(E„R) wave need be
considered, and only the ground vibrational state of
W+(R) with energy Eo contributes towards the nonlocal
potential. In this case, Eq. (3) reduces to

2 2

+ Wd(R) E„Xo+(—E„,R)=i~I (R)Fo(Eo,R) f dR' F (R')Fo(Eo,R')Xo+(E„,R'),
2p dR' 0

where

7 (R) =—P"oo(R)

E =E,—fico

is the effective collision energy.
The first step towards the solution of the integrodifferential equation (4) is to convert it to an integral equation using

an outgoing-wave Green's function G+(E„;R,R') corresponding to the differential operator

d + Wd(R) E-
2p dR2

such that

d
2 + Wd(R) E„G+(E;R—,R') =5(R —R') .

2p dR2

Xp (E R ) then satisfies the integral equation

Xo+(E„,R)=go+(E,R)+i' f dR'G+(E„;R,R't)M(R')Fo(Eo, R') f dR "P (R")Fo(Eo,R")Xo+(E„,R"), (8)

where Po+(E,R) is the outgoing solution for the homo-
geneous part of Eq. (4), i.e.,

I

where

U(R)=P (R)Fo(Eo,R) . (12)
fi d

2 + Wg(R) Ego+(E,R) =0 . —
2p dR2

We now introduce the following linear functional:

W [Xo ]= f dR P (R)Fo(Eo,R)Xo+(E„,R) .

With this quantity, Eq. (8) can be rewritten as

(9) The last definition is consistent with Eq. (8) since the vi-
brational wave function Fp(Ep, R) is always real.
Operating on both sides of Eq. (11) with ~, we obtain

~ [Xo]= ~ [4 o+]+i~~ [Xo+]

)& f dR f dR ' U(R )G+ (E„;R,R ') U*(R ') .

Xo (E„,R) = Po (E,R)+i nw[Xo ]
X f dR'G+(E„;R,R')U'(R'), (ll)

(13)

This equation then allows us to obtain an explicit form
for ~ [Xp+], which can eventually be inserted back into
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the right-hand side of Eq. (11) to yield the solution for
Xo (E„,R).

The double integral in Eq. (13) can be evaluated with
the help of the explicit form for G+(E;R,R'):

G+(E;R,R') = dE'
0 E—E'+i g

(14)

which is valid when the discrete electronic state 8'~(R)
does not support any vibrational levels, as is the case as-
sumed in this work (see Fig. 1). Now making use of the

I

completeness property of the homogeneous solutions

Po (E,R),

f dEpo (E,R)[go (E,R')]*=5(R—R'), (l5)

(16b)

we can introduce the transform pair

Z(E)= f dR Po (E,R)U(R), (16a)

U(R)= f dE[go+(E,R)] Z(E), R &0

where U(R) has been defined in Eq. (12). Using Eqs. (14)
and (16b) in the double integral I in Eq. (13), we thus ob-
tain

I= f dR f dR' f dE[P+(E,R)]'Z(E) f dE' ', .
' f dE"P+(E",R')Z"(E")

I
Z(E}

I

'
Y+(E )

p E~—E+i g
(17)

X,+(E„,R) = P,+(E„,R)+
1 in Y+(E„)— '

X f dR'G+(E 'R R')U*(R'} (20)

Note that when the bound-continuum interaction F (R}
approaches zero, so does U(R) [Eq. (12)], and Xo+(E,R)
approaches Po+(E,R), as expected.

IV. THE RESONANCES
FOR ASSOCIATIVE IONIZATION

As revealed by Eq. (20), the properties of the resonances
for associative ionization are determined by the zeros of
the factor 1 —inY+(E„). Since. , according to Eq. (17),

Y+(E }=af dE ~ ~ —i~~Z(E„) ~'

P(E ) in
~

Z(E„—) ~— (21)

where H denotes the principal value of the integral, we
have the following equation determining the structure of
the resonances:

1 n.
~
Z(E„)

~

i nP(—E„)=0 . — .

where we have made use of the orthonormality property
of the homogeneous solutions,

f dR [Po+(E,R)]*go+(E',R) =5(E E'), — (18)

to perform the integrals over R and R'. Equation (13)
then leads directly to

~ [X+] ~ N+]
1 inY+(E —)

which when substituted into the right-hand side of Eq.
(11) finally yields the desired solution to Eq. (4):

In particular, as P(E„) is real, the locations of the reso-
nances are given by the solutions of the equation

1 n. iZ(E„—)
i

=0, (23)

Po+(E„,R)-
i50

e
sin(kR +5o),

k
(24)

where p is the reduced mass of the A +8 system, 5o is the
s-wave scattering phase shift for the potential Wq(R), and
the wave number k is defined by fi k /2p =E . Next, we
approximate the bound-state wave function Fo(Eo,R) by
a ground-state harmonic oscillator wave function,

Fo(Eo,R)- Pd)p PCtP p 2exp — (R —R o), (25)2'
where cop is the natural frequency of the oscillator, and Rp
is its equilibrium position (see Fig. 1). Finally, we assume
that over the region of R where the overlap between
go+(E„,R) and Fo(Eo,R) is appreciable, 7 (R) is effec-
tively constant. Thus, for the purposes of computing. the
integral in Eq. (16a),

P (R)= V=const .

%'ith the above approximation we have

where Z(E) is defined in Eq. (16a). We now use our
model for the collision process (cf. Fig. 1 and the discus-
sion at the beginning of Sec. II) to give a qualitative calcu-
lation for

~
Z(E„) ~2.

Referring to Fig. 1, we make the following assump-
tions. First, the bound well of JF+ only overlaps appreci-
ably the relatively flat region of &&+fico. Then, since
only the overlap of the wave functions Po+(E„,R) and
Fo(Eo,R) is of importance in the integral of Eq. (16a) [see
also Eq. (12)], we can approximate go+(E„,R) there by its
asymptotic form,
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f ~2(R —Rp )2/2
dRe

0

Z(E„)= f dR go+(E~,R)&(R)Fo(Eo,R)
is

AVe ' 2
3/4

where the dimensionless constant eo is defined by

Ep= 22pcoo(Ro —a)
(36)

where

X sin(kR +5o), (26)

Equation (35) allows the solutions of Eq. (23}, i.e., the lo-
cations of the resonances, to be directly given in terms of
the tunable laser frequency co. The important range of co

is given by

3/4 1/4
670

5/4 (27)

8'+ (Ro ) —S'g( 00 )
(CO +Ec (37)

and

PCOpa —=

Ro ( &0) is assumed to be far enough from zero so that
the lower integration limit in Eq. (26) can be extended to
—co. Using the explicit evaluation of the integral,

In our model calculation, the following numerical
values for the system dependent parameters are chosen:
e, —co;„=1 and eo= 1/4m. . The first choice was adopted
since the harmonic oscillator approximation for the bound
well of W+ implies that the ground vibrational state Eo
and the first excited state Eo are —, and —,

' scaled energy
units above W+(Ro), respectively, and it is assumed that
only the ground state is accessible in the collision, i.e.,

(E0 1 0 (38)

we obtain

Z(E„)-
2MQ) 0

1/4
isp

—k /2ae
sin(5o —kRo) ~ (29}

Equation (37) thus implies that co —co;„falls in the range
between zero and one.

Figure 2 shows the graphical solutions co~ for Eq. (35)

2pE
sin 60—Ro

E1/4

1/2

—E /Scope (30)
0.4-

—2
Vc 0'52

To simplify the formula, we scale all energies in terms of
Sicko and introduce the following dimensionless parame-
ters:

(31)

0

co =co/coo,

V —= V /Aa)o .

(32)

(33)

(34)

0.2—

V =&.o

It is noted that V has dimensions of the square root of en-
ergy, so that V is a dimensionless "coupling strength"
for the radiatively induced bound-continuum coupling
and is thus proportional to the intensity of the laser field.
We further assume a low effective collision energy
(E k ~0) so tllat 5o~ka, where a is the effective range
of the potential IVd(R). The final result is that Eq. (23) is
equivalent to

3.0 3.2

—2
Vc = 2.5

3.4 3,6 3.8

3/2
1

V2 V(~, —ai)

)& sin

1/2
(e, —co)

&0
f(oT), —(35)

FIG. 2. Graphical solutions for Eq. (35). The curve
represents the right-hand side of this equation as a function of
co, and the indicated values for V (proportional to the laser in-
tensity) correspond to the positions of the horizontal lines as
given by the left-hand side of the same equation. V, =0.52 is
the critical value for the coupling strength at which multiple
resonances begin to occur.
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with the above numerical choice of the system parameters
and a few typical values for the coupling strength V .
The ground vibrational level coincides with
a=up=—~,„+0.5. It is thus seen that only for one criti-
cal value of the coupling strength V= V„will resonance
occur exactly at this vibrational level: co+] ——Gp. For this
value of the coupling, there is in addition a second reso-
nance co~2&cop. For V& V„ there is only one resonance
coq & coq, while for V, & V & ao, three resonances are possi-
ble: co+&&coo and co+3&co„2~coo. The threshold for
multiple-resonance formation is thus V, . From Fig. 2,
V, =0.52. If we assume that the bound-continuum cou-
pling V is due to electric dipole coupling such that
V-p0$'/~e, -poS'/+Rcoo, where po is the electric di-
pole moment of the A +8 system, 8' is the electric field
strength of the laser, and e, is the energy of the liberated
electron, we can estimate the critical laser power for
multiple-resonance formation to be on the order of
I, -5&&10 W/cm, where the values po-10 a.u. and
cop-120 cm ' have been used. This level of laser intensi-
ty is well within the range of that employed in many ex-
perimental studies of associative ionization. '

2 shows that there is only one such Franck-Condon reso-
nance in our model, and it occurs, as expected, when
co=coo, i.e., when W&(oo)+Pm coincides with the vibra-
tional energy Eo (see Fig. 1). The width associated with
this resonance is then simply given by V . On the other
hand, as a consequence of Eq. (22) derived from the
present nonlocal theory, the number of resonances may be
larger than one and the widths at the energies E are pro-
portional to the principal-value integral P(E ) [Eq. (21)],
instead of to V .

The mathematical consequence of nonlocality is that
the resonances cannot be simply determined by the max-
imum overlap of the bound and continuous wave func-
tions. Physically this means that the electronic transition
is no longer localized around the bottom of the bound well
of S"+. Instead, the "most likely" coordinates for the
transition are redistributed around this point, the amount
of redistribution depending on the strength of the bound-
continuum coupling. Indeed, for a given resonance energy
E, one can assign a "most likely" transition coordinate
R, by requiring the local wave numbers of nuclear motion
on the two potential curves 8'+ and 8'~+fichu be equal,

V. DISCUSSION

The possible formation of multiple resonances for asso-
ciative ionization demonstrated in the last section is clear-
ly an effect due to the nonlocality of the scattered poten-
tial in Eq. (3). A local complex potential would at best
lead to a single resonance in our model, with an associated
width. The reason is that when a local potential is used,
the Franck-Condon principle of local vertical transitions
is assumed, and the resonances are obtained from the en-
ergies E leading to the maximum overlap of the wave
functions Po+(E,R) and Fo(EO,R), i.e., the maximum of
the quantity Z(E) [Eqs. (16a) and (12)] in our formula-
tion [W(R ) being assumed to be R independent]. Figure

k =
2 [E —W+(R, )]= IE —[Wg(R, )+%co]I,

(39)

or equivalently, the nuclear kinetic energies be conserved
in the electronic transition. When co& ~cop, this require-
ment can be fulfilled by two transition coordinates,
R, ~ &Rp and R,2(Rp. Figure 3 depicts the relationship
between these coordinates and the relevant potential ener-

gy curves. The same figure also shows, however,
that when co~ ~cop, no R, is possible, because the nuclear
kinetic energy in the entrance channel,
E, —[W~(R)+Rcozz], is always larger than the maximum
vibrational energy in the exit channel, Eo —W+ (Ro).

Ec

Wg+ 0 w„q

P w M W W M M M ~ ~ «g

Wd+ ~~R&

Rtg
I

Ro Rt2,
I

FIG. 3. Schematic diagram illustrating the coordinates R, ~ and R,2, redistributed around the equilibrium position Ro, of the non-

Franck-Condon local electronic transitions in associative ionization for the resonant laser frequency co~ &. These are the coordinates at
which the nuclear kinetic energy, represented by double-pointed arrows, is conserved. For the resonant laser frequency ~&~, the tran-
sitions, besides being non-Franck-Condon, are also truly nonlocal since nuclear kinetic energy cannot be conserved.
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e, = Wd(R)+Picardy —W+(R) . (40)

In fact, we have e, & Wq(R)+fico+ —W+(R) (see Fig. 3).
This state of affairs illustrates most poignantly the effects
of the nonlocal potential. Obviously, these effects will
also have most interesting consequences on the emitted-
electron energy spectrum. However, further investigation
of this problem will require a detailed treatment of the
widths of the resonances and their overlap.

We recapitulate here the main approximations leading
to the present qualitative results. First, the bound-
continuum coupling P (R) has been assumed to be both R
and e, independent. As demonstrated previously, any e,
dependence will alter the nature of the nonlocality of the
scattering potential, while an R dependence will decidedly
infiuence the exact locations of the resonances. Of these
two approximations, the e, independence will merit more
careful consideration in further work, since it is expected
that a radiatively induced bound-continuum coupling is
more likely to be e, dependent. Concerning the available

Hence, nuclear kinetic energy is always depleted in the
electronic transition, and the energy lost must go into the
kinetic energy of the free electron produced by associative
ionization. We have thus arrived at a situation in which
the energy of the emitted electron, e„ is not necessarily re-
lated to the difference in energy between the electronic po-
tential curves as dictated by the Franck-Condon approxi-
mation,

channels for associative ionization, we have only treated
the case of the J=0 wave with a single vibrational level
in the bound well of the ionization-threshold curve. The
situation involving higher waves and more vibrational lev-
els is not fundamentally different, although a detailed
quantitative picture of the resonance spectrum will in-
volve considerably more substantial computational work.
It is expected that higher ( J,U) values may lead to a pro-
fusion of multiple resonances lying in close proximity to
each other, and thus manifesting themselves as continuous
bands. This is due to the fact that the resonance widths,
being proportional to the quantity P(E~) in Eq. (21), are
directly proportional to the laser power, and it is for high
laser powers that multiple resonances become important.
Finally, laser characteristics such as bandwidth, polariza-
tion and pulse duration have been neglected in the present
treatment. Inclusion of these effects is expected to further
complicate the multiple-resonance structure of the associ-
ative ionization spectrum.
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