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Elastic and depolarizing collisions between excited ytterbium atoms (6s6p Pl level) and noble

gases (He, Ne, and Xe) are investigated using a stimulated-photon-echo technique. The method is
sensitive to collisional velocity changes concerning both the total population p and the alignment p
of the level. More specifically, it enables us to compare precisely the velocity changes associated
with elastic scattering and with alignment-preserving scattering. This represents an improvement
with regard to previous works. A detailed theoretical discussion of depolarizing collisions in laser

- spectroscopy is presented. A simplified density-matrix equation is derived under appropriate ap-
proximations. Stimulated photon-echo data for elastic scattering are interpreted within the limits of
small-angle scattering in a long-range van der Waals potential; total elastic scattering cross sections

0
are derived from comparison between experiment and calculation: o H,

——220(20) A,
oN, ——320(20) A, O.x,——1240(60) A . Total rates for destruction of alignment are measured in an

0

auxiliary standard photon-echo experiment; the corresponding cross sections are o.H,
' ——94(3) A,

0 0
o.Ne' ——123(7) A, o.x,' ——300(20) A . Stimulated photon-echo data for depolarizing collisions are suc-
cessfully compared with a calculation that we develop starting from a long-range anisotropic model
potential.

I. INTRODUCTION

Detailed aspects of atomic and molecular collisions are
revealed only through angular analysis of scattering pro-
cesses and determination of differential cross sections.
Crossed-beam experiments provide one with the most re-
fined data. Among these, few experiments are concerned
with inelastic collisions between neutrals and allow for the
study of correlation between the center-of-mass motion
and the change in internal state. Mention should be made
of the crossed-beam determination of differential cross
sections for collisional transfer between rotational levels in
Na2, ' between Zeeman sublevels in metastable Ne( Pz),
and between fine-structure levels in Na(3 P). Such in-
vestigations require highly sophisticated techniques and
generally concern ground states or long-lived metastable
states of atoms and molecules. There have been some at-
tempts to derive angular information on collisional pro-
cesses through other methods such as nonlinear laser spec-
troscopy. Collision analysis as a function of the impact
parameter has been attempted with promising results by
studying collisional redistribution of light. Depolarizing
collisions (transfer between magnetic sublevels) may be re-
garded as the most elementary inelastic process on which
nonconventional methods should be tested.

Depolarizing collisions have been mainly studied
through measurements of the total decay rate y for the k
multipole. ' Most of the works have been devoted to
alkali-metal atoms and to group-IIb elements (Zn, 'Cd,
and Hg) perturbed by noble gases. In the latter case the
cross sections can be calculated with simple models for

-which the long-range van der Waals interaction dom-
inates. Agreement with measured decay rates is generally
good. Some experimental information on the differential

depolarizing cross sections should permit a further check
of the validity of these models.

Nonlinear Doppler-free spectroscopic techniques are
available in both the frequency and time domains. In the
frequency domain, saturation spectroscopy, ' polarization
spectroscopy, ' and optical double resonance" ' experi-
ments have been set up in order to obtain some angular in-
formation in collisional studies. Through the determina-
tion of the collisional velocity change along the laser-
beam direction, access is given to some average of the dif-
ferential cross section among undetected degrees of free-
dom. The collisional inelastic processes which have been
investigated through this method are the transfers be-
tween Zeeman sublevels (I-changing collisions, depolar-
izing collisions) ' and between rotational levels. '3'
Depolarizing-collision studies have led only to some quali-
tative indications for the existence of velocity changes
during multipole-preserving collisions or to some rough
estimate of the smallness- of such velocity changes. '
Successful determination of velocity changes in inelastic
processes has only been achieved in the case of rotational
transfer in CO&—foreign-gas collisions. '

More recently, nonlinear spectroscopic techniques in
the time domain have proved adequate for studying col-
lisional velocity changes. Various aspects of elastic col-
lisions have been examined in photon-echo experiments.
The two-pulse echo builds up from those optical coher-
ences which have survived during a time interval which is
twice the delay between the two laser pulses. Both inter-
nal phase memory and spatial phase memory are required
for coherence preservation. ' Thus the signal is sensitive
to spatial phase destruction due to collisional velocity
changes. The point is that collisions are undergone now
by atomic coherence instead of level population. In other
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words, one detects collisions which occur in a superposi-
tion state. Corresponding velocity changes have been
measured in Li, ' Na, ' and Yb. ' They have been shown
to occur in the small-angle diffractive scattering region. '

The three-pulse echo (stimulated photon echo) involves a
periodic modulation inside the velocity distribution of an
atomic level ' collisional velocity changes destroy this
structure and thus contribute to signal relaxation. From
signal-decay-rate measurements one has determined the
collisional velocity changes due to diffractive or to classi-
cal scattering in a ground or an excited level. '

Thus far restricted to elastic scattering studies, the
stimulated-photon-echo technique should be extended to
the study of resonant (or quasiresonant) inelastic process-
es. Indeed, one may detect the collisional transfer of the
velocity modulation from the initially perturbed level to
an initially unperturbed one. In the present paper we il-
lustrate this feature in the case of collisional transfer be-
tween degenerate Zeeman sublevels. Our experiment is
performed in ytterbium vapor and allows for a detailed in-
vestigation of the classical elastic scattering and of depo-
larizing collisions in the 65 6p P~ excited state. Velocity
changes are measured for both processes. Information
that we derive on differential cross sections for depolariz-
ing collisions is used to check the standard calculations of
the previously mentioned y rates.

This paper is organized as follows. Section II is devot-
ed to a general discussion of depolarizing collisions in
laser spectroscopy and to derivation of a simplified
density-matrix equation under appropriate approxima-
tions. The stimulated-photon-echo experiment is present-
ed in Sec. III. The results for elastic and depolarizing col-
lisions are discussed in Sec. IV. Section II may be read in-
dependently of Secs. III and IV and reference to results
which are derived in Sec. II is clearly indicated when
needed in Secs. III and IV.

II. DEPOLARIZING COLLISIONS IN LASER-
SPECTROSCOPY

A. Scattering amplitude

This subsection presents the main features of the semi-
classical scattering amplitude which underlies our analysis
of atomic-density-matrix relaxation in depolarizing col-
lisions. Some characteristics of this picture already have
been examined in a previous paper.

An elastic collision scatters a plane wave with wave
vector K in direction r(0, $), with an amplitude f(0,$).
In a depolarizing process the translational motion is still
represented by the scattering of a plane wave. In addition,
a change in the internal angular momentum must be

~ described. Initial and final angular momenta are con-
veniently measured along initial and final relative-velocity
directions, respectively. This is known as the helicity rep-
resentation. Thus the initial and final quantization axes
are directed along the initial wave vector K and along the
final internuclear vector r, respectively. Helicity and
body-fixed representations coincide in the final state.
Connection between them is easily obtained in the initial
state, since then —r is directed along the relative-velocity

where S~M is an S-matrix element, DIM ($,0,$) is the
rotation matrix of rank J, and (p, 0,g) are the Euler an-
gles of r with respect to K. The internal angular momen-
tum j and the relative orbital momentum 1 have been cou-
pled into the total angular momentum J=l+j and the
summation is over all allowed values of J. The depolari-
zation amplitude exhibits a form which is very similar to
that of the elastic amplitude:

f (0)= '. y (2I +1)(e""'—1}P,(cos0),2' (2)

where q~ is the phase shift of the l-labeled partial wave.
As long as the ratio k/a of the de Broglie wavelength

to the potential dimension is small, a semiclassical picture
holds for both depolarizing and elastic collisions. Then
S-matrix elements may be calculated along classical
paths. In this picture the angular momentum /A, which
is greater than or equal to Eak, is supposed to be much
larger than the momentum unit A. As a consequence,
/-J and the exchange of angular momentum between 1

and j does not affect the classical paths along which S~~
is calculated. However, we shall see that the requisite of
total angular momentum conservation is preserved in the
form of the scattering amplitude.

Although the semiclassical S matrix is valid provided
X «a, this condition is not sufficient to regard the atoms
as wave packets of dimension much smaller than the in-
teraction domain. The more stringent condition
V% « V a is needed in order to do so and its fulfillment
is assumed in the following discussion. Let us denote by
l~ the values of l which contribute efficiently to the sum
in Eqs. (1) and (2). Two scattering-angle domains must be
considered.

1. Iq8&gl, I &&7

In this region asymptotic expressions hold for P&(cos0)
and for dMM (0)=DE (0,0,0):

d~M (0)= . sin (J+ —,'+M)0
mJ sin9

——,(M M')~+ ——
PI(cos0)= . sin (l+ —,)0+—7T

~/ sing 2 (4)

The former expression is obtained by expression dMM (0}
in terms of Jacobi polynomials Pz M

' + '(cos0) (Ref.
26) and then by using asymptotic expansions of these
polynomials. The latter expression results from
P((cos0) =dpp(0) ~ Both expressions exhibit a fast oscilla-
tion as a function of l0 or J0. The fast-varying phase in

axis. The scattering amplitude in the helicity representa-
tion f~~ ($,0,$) may be written as

1 )M —M'

fM'I (4 0 4)= g(2J+1)(SM~ 4—s~)
2iEC
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S~M (respectively e ') combines with J8 (respectively
18). Then the sum over I or Jmay be evaluated using the
stationary-phase approximation which reduces the sum to
the contributions of the stationary-phase regions. The
phase in Eq. (3) differs from its counterpart in Eq. (4) by
an unimportant term (M —M')n. /2 which does not modi-
fy the stationary-phase calculation. In the case of elastic
scattering in a purely repulsive potential, the phase is sta-
tionary at I =le which is unique for a given 8 value and
le/E is equal to the classical impact parameter associated
with classical scattering at 8. In addition

~

f(8)
~

is
equal to the classical elastic scattering diff'erential cross
section. When the potential function is not monotonic,
several l values may contribute to scattering at 0. Then
the ith contribution f'(8) to scattering amplitude arises
from orbital momentum l~. It corresponds to the ith con-
tribution a'(8)=

~

f'(8)
~

of scattering at impact parame-
ter 7g/E to the classical differential cross section. Clear-
ly, interference effects between scattering-amplitude com-
ponents f'(8) are lost in a classical cross section. In the
depolarizing-collision semiclassical picture that we exam-
ined iri a previous paper, we considered the case of a
simple potential V~(r) which is such that

~
V~(r) VM+~(—r)

~
is a monotonic, decreasing function

of r. Entering the collision region with a component M
along r, at an impact parameter J/E, the internal spin j
rotates with regard to r until it is locked to r with a com-
ponent M", at an internuclear distance rJ. Then the spa-
tial trajectory may depend on the M" value in which
locking has occurred. Finally, j decouples from r at dis-
tance I.J~ and j rotates again with respect to r. Let us
assume in addition that V~(r) & 0 (purely repulsive poten-
tial). Then, the scattering amplitude at angle 8 combines
contributions from trajectories at different impact param-I" M"eters Js /K but each component fM~ (8) may be decom-
posed as the product of the elastic scattering amplitude
along the M"-labeled trajectory with the internal-state
time-evolution matrix calculated along the classical M"
path. This picture could be presumably extended to
scattering in nonmonotonic potentials with an increasing
number of classical trajectories involved in scattering at
angle 8. This semiclassical picture cannot apply if there is
a sharp potential discontinuity or in an orbiting situation.
Besides, one has to examine carefully trajectory coales-
cence, which occurs, for instance, in glory and rainbow ef-
fects.

The initial condition le8 »1 expresses nothing but the
fulfillment of the uncertainty-principle requirement by the
impact parameter b~ and by the associated final trans-
verse momentum I', -RES:

r',s-e e~&x.

The stationary-phase approximation no longer applies for
calculating the scattering amplitude and all l values such
that l ~0 ' contribute to elastic scattering at 0. The
wave nature of spatial motion appears and elastic scatter-
ing may be thought of as the diffraction of an incident
plane wave, with de Broglie wavelength k=E ', by an
opaque screen sized to the dimension of the total cross
section. The parallel between elastic and depolarizing col-
lisions is not as straightforward as in Sec. II A 1.

While P&(cos8) does not significantly differ from
dM~ (8) when l8 && 1, a marked difference appears when
18& 1 and M&M'. Then,

llm Pg(cos8) = 11m d~M(8) = 1
ie-o Ie 0

A classical mechanical interpretation is feasible when
J&&j. Orbital momentum l components along K and r
equal zero. Thus components of total angu1ar momentum
J and of internal momentum j coincide along K and r.
The angle between K and r is 0~&1. Components of J
along K and r are, respectively, M =J cos( J,K) and
M'= J cos(J, r). Then, elementary geometrical arguments
show that

~

M —M'
~

cannot exceed l8. This means that
lO is the maximum angular momentum which can be
transferred from 1 to j during a small-angle collision.
Quantization of M —M' requires that M —M'=0 or

~

M —M'
~

& 1. Thus depolarization can be effective only
if I8& 1. In other words, collisional depolarization does
not occur in the diffractive region. This picture relies on
the conservation of the tota1 angular momentum during
the collision. It is complemented by the interpretation of

~
d~~ (8)

~

as the probability of finding a projection M'
of J on the r axis, if it is known that the projection of J
on K equals M. It appears that SMM and d~~ (8),
respectively, represent the dynamics and the mechanics of
the collision. The semiclassical scattering amplitude in
the helicity representation may be introduced now into the
density-matrix transport equation.

B. Density-matrix transport equation

In a gas cell the quantum-mechanical state of atoms in
a definite level, with internal momentum j, within a small
domain of position-velocity space around (r, v) is most
conveniently described by the density-matrix elements
p~ (r, v), where m and m' label magnetic sublevels and
are taken along a fixed quantization axis A. The trans-
port equation which determines the collisional evolution
of density-matrix elements of active atoms immersed in a
perturber bath is given by

Indeed, a classical trajectory picture demands that le and
I', be simultaneously measurable. We now examine what
occurs in the region where this condition is not satisfied.

a
~

Pmm'
coll

g I ~ ~ (v)p~ - (r, v, t)

In this region + g I d O'W (v', v)p - (r, v', r),

&t(cos8) =Jo((l + —, )8) .
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where

r "-, "'(v)=N f d'u, W, (v, )
r

X [f - (u, u, A)52'
EP

—f'- (u, u A)5 ~ ]

W ~ (v', v)

where R =($„,0„,0), R'=($„,8„,0) and P„and O„are
the polar angles of u with respect to A.

In traditional optical-pumping experiments in which
depolarizing collisions have been studied, ' neither the
vapor excitation nor the signal detection are velocity selec-
tive. Due to isotropy in the velocity space, the atomic-
density-matrix components in a basis of the rotation-
group irreducible tensorial operators remain uncoupled
during their relaxation in depolarizing collisions. Ex-
pansion on this basis still proves useful when isotropy is
lost. One defines

=N f d u f d'u'5(v' —v —Y)W~(v —u'+Y)

X5(u —u')u 'f - (u', u, A)

Xf'- (u', u, A), (10)

pq(r, v, t) = g ( —1)J
m, m'

j k j
—I g Nl

where u is the relative velocity between active atom and
perturber, Wz(vz) is the perturber equilibrium velocity
distribution, Y=(plm)(u' —u), N is the perturber densi-
ty, and f~ (u', u, A) is the scattering amplitude from
m', u' to m, u, with quantization along the fixed axis A.
This scattering amplitude m'ay be expressed as a function
of the previously defined scattering amplitude in the heli-
city representation:

f~~ (u', u, A) = g [D~JM(R')]*D~ M (R)fMM (u' u»
(1 1)

X(2k+1)'i p (r, v, t) . (12)

r

pq
———g I q «(v)pq (v)

co]1 k', q'

+ f Wq"q"(v', v)pq (v')dv'

where

Substitution of Eq. (11) in Eqs. (8)—(10), and use of. ele-
mentary properties of D matrices, lead to

I'qq(v)=N f d v~ W~(v~) g (2k+1}'~ (2k'+1)'~ (2c+1)
M, c

I r

k'
X[Dg (R)]'( —1) +' ( —1}»

j c 2~g k k' c

ip

helfM'~(u, 0)

and

k k' c—( —1) [fMM(u, 0)]*—q q'

Wqq(v', v)=N f f d u d u'5(v' v Y)Wp(—vp)—5(u —u')u

k k c k k c J k J J k J
—q' q y Q' I' y' M Q——M' M" Q' —M'"

X(2k+1)' (2k'+1)' (2c+1)(—1)q+~+ + [D' (R')]'D" p g(R")

Xf " (u, R")[f"" (u, R")]*, (15)

where R"=R' 'R, R =($,8,1t).
The average of Eq. (13) over active-atom velocity releases coupling between multipoles and leads to the familiar relaxa-

tion equation which occurs in the analysis of traditional optical-pumping experiments. The corresponding k-multipole
decay rate is given by

y = g f d u W(v) I qq(v) —f Wqq"(v, v')d u'
k', q'

=mN g' k j
Q —M'

k j J k J'
, I J k J'

gr Mirr M sr gs M crt M g Mr (2J + 1 )(2J + 1 )

X d u W (u) [5M "M5lw" SM"M(SM"'I) ]— .

3 Q J J'
E
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where W„(u) and W(v) are, respectively, the relative-
velocity distribution and the active-atom velocity distribu-
tion.

In velocity-selective experiments, multipoles are cou-
pled as indicated by Eqs. (14) and (15). However, approxi-
mations which are compatible with our experimental con-
ditions decouple the multipoles and enlighten the connec-
tion between the k-multipole decay rate y and the col-
lision kernel Wq q"(v', v).

'kI," (v)=y"5kk5

where

y"(v) =X f d u u W, (u)o;i(u) .

Finally, Eq. (13) reduces to

pq
— y"(—v)pq+ f W"(v', v)pqd'U' .

collBt q

(23)

(24)

= W (v «v)5kk 5qq (17)

l. Isotropic relative-velocity distribution

This approximation requires that mz &&m. When this
condition is fulfilled, W~(v~) may be replaced by the
relative-velocity distribution function W„(u') in
Wqq(v', v). Integration variables are changed from u, u'

to Y,u'. Integration over 0„ leads to

Wq"q"(v', v)=X f d I'd u'5(v' —v —Y)W„(u')

x 5( u —u ')u '5kk 5qq (d a /d & )

An analogy with the elastic scattering Boltzmann trans-
port equation suggests that do."/dQ, be regarded as the
k-multipole-preserving differential scattering cross sec-
tion.

2. Isotropic small-angle scattering

Let us assume that short-range interaction does not
contribute to forward scattering and that in the long-
range region

~
VM(b) VM (b)—

( &&Au Ib for impact-
parameter values which correspond to small-angle scatter-
ing. In this region no depolarization occurs and

where

j k j j k

g —M' M" g

fMM (u, R")=f(u, B„„)5MM with 0„„«I .

Substitution of Eq. (25) in Eqs. (14) and (15) leads to

I q'q(v)=5kk'5qq'y (v) «

Wq q"(v', v) =5kk 5qq W'"(v', v)

(25)

(26)

X ( —1) [Dg,g(R")]*

XfM M (u, R ")[fM" M (u, R ")]*. (18)
where

with
~

v' —v
~

&&1, (27)
p

+n analogous p«cedure for I q q(v) leads tok'k y"(v)=cV f d u W (u —v) Imf(u, 0)P (28)

I ~ (v)=5kk5 X d u W„(u)
k'k 1 4m

(2j+1) p
and

Wk(v', v)=% f d'u d'u'5(v' —v —Y) W~(u' —v')

X g lmfM'M (u, o) .

The elastic scattering cross section in a degenerate level is

1

(»+ I) M M
(20)

do-'"
dQ

del
dA

and, according to the optical theorem, Eq (19) redu. ces to

where trMM is the scattering cross section for collisional
transition from M to M'. Equation (18) leads to

X5(u —u')u '
i f (u, R")

j

' . (29)

W"(v', v) is indeed k independent and the k label is only
used here for notational consistency.

3. Common trajectory for different M sublevels

We assume that the difference between the scattering
potentials for different magnetic substates is small enough
that the spatial trajectories do not depend on the previous-
ly defined M" momentum which characterizes the inter-
nal state when j is locked to r (cf Sec. IIA. and Ref. 22).
In the classical scattering region (i.e., when leo»1) the
dynamical factor in Eg. (16) can be written as2~

5M"'M'5M "M (~M"'M' M "M

5M"'M'5M"M [U M"'M ( —ce «+ ce )] U M-M( —~, + &z& )exp—J

X f dt [ V—M"'(rJ(t))+ VM'(rJ(t)) V—M" (rJ(t)) VM(rJ(t))]exp[ t (I J)6] (30)
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where U M M( —ao, + 0() ) is the time-evolution operator
of internal state which is evaluated along trajectory rJ(t)
at impact parameter JA'/)(tu. Then we replace two 3-j
symbols in Eq. (16) by their asymptotic expressions for
large J values:

J J' k J J' k

J
g (2J'+ 1)
Jl

J' k
—M'" Q'

Using this identity and combining exp[ —t'(J —J)8) in
Eq. (30) with Eq. (31) we obtain

Q' M —M'

1
)M'" —M'

(&' —J)Q'
2

(J' —J)Q (31)

J J' k —i (J' —J)B
M —M' Q

1)M"'—M' in—(Q' —Q)/2d (g) (33)
In rotations
respectively,
eigenvectors
respectively,

of angle n and (0 around axis Oy and Oz,
the rotation operators which act on the

~

IM) of operators I and I, are denoted,—iI a —iI Pe ~ and e ' . One can verify that

Thus y takes the form

y"=re g (2J+1)f 8'„(u)P"(J,u),
J E (34)

im.I /2 —iI 8 i@I /2 —im.I /2 iI 8 i@I /2
e ' e ~e ' =e ' e 'e (32) where

P"(J,u) =
M, M'

M" M"'
7

J k
'

kJ J M "'—M' —in ( Q' —Q) /2
M Q —M' M" Q' —M"'

J J E

~MM"bM'M"' [U —M"'M'( ~ + ~ )] U —M"M( ~ + 0() )exp
I

oo
k«[ V M- (ri(t))+ VM (rJ(t)) —V M-(rJ(t» —VM(rJ(t))]dg g(0)0

Changing the summation over J into an integral over b we obtain

y =X f 2~bdb f d'u W„(u)P"(ICb, u) . (36)

Thus P"(Kb,u) appears to be the destruction probability of multipole k along the c1assical trajectory which corresponds
to impact parameter b and scattering angle 9. It should be noticed that different trajectories scattering into the same
scattering angle 0 cannot interfere since J and J' in Eq. (16) differ at most by k.

4. Single trajectory at scattering angle 8

We assume that a single angular momentum JB can contribute to scattering at angle 0. As already mentioned in Sec.
II A this assumption corresponds to a monotonic potential curve In the. frame of this approximation the product
[fM- M (R")]"fM'M(R") in Eq. (18) is given by

[fM" M (R")]*fM"M(R")

JB Jg Jg[U M M ( —oo, +ca)]*U M M( —0(), +go)
K using

dO

dJB

E
oo

~ t 7TXexp — dt[V M-(rz (t))—V M (rJ (t))+VM(rJ (t))—VM(rJ (t))]exp i(Q' —Q)——
0 8 8 8 2

Substitution in Eq. (18) and comparison with Eq (35).
leads to

along the corresponding classical trajectory. Thus we fi-
nally obtain

do d
[1—P"(Kb,u )] (38)

W (v', v)=W' '(v', v) —X f d Pd u'5(v' —v —Y)

X W'„(u')5(u —u')u
which expresses the differential cross section for any mul-
tipole in terms of the elastic scattering cross section
do' '/dQ and of the multipole destruction probability

d~(o)
X P"(Je,u) .

(39)
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When the single-trajectory approximation breaks down,
i.e., when several trajectories contribute to scattering at
angle 8, interference terms appear in the product of
scattering amplitudes and Eq. (38) is no longer valid.
However, the interference pattern is velocity dependent
and we guess that interference features are washed out by
velocity averaging in W"(v, v) which is the quantity of
experimental interest. Then the product ( d 0' '/
d A)P "(J8,u ) in Eq. (39) should be replaced by a sum over
the contributions from different impact parameters Je/K
which contribute to scattering at angle 0. Velocity
averaging is also expected to enable us to ignore singulari-
ties which may occur when trajectories coalesce. '

Generally, velocity-selective laser techniques only select
the velocity component which lies along the laser-beam
direction. In the following we assume that transverse
motion is not affected by the perturbation which is pro-
duced by the laser within the axial (or longitudinal) veloci-
ty distribution. This separation enables us to write

b ir
i4

(b)

423

P bb

(a)

(d)
1P

(dp

f' bc

~x nb(~ )

(c)

p"(v) =p"(u, ) W(vi) (4O)
FIR. 1. (a) Light pulse sequence and (b) level scheme in a

SPE experiment. (c) Modulation in the velocity distribution of
level b after the first two pulses.

r

I q'q(vz)Pq'(vz)
coll k', q'

8' ~ u,', u, p u,
'

du,', 4l

where

1 qq(u, )= f Iqq(v)W(vt)dvt

and

Wq"q(v,', u, )= f Wqkq"(v', v)W(vt )dvtdvt . (43)

III. STIMULATED PHOTON ECHO
IN YTTERBIUM VAPOR

A. Formation and relaxation of the echo

Stimulated photon echo (SPE) is produced by a three-
pulse excitation sequence as illustrated in Fig. 1. In our
case the laser pulses and the echo are copropagating.
Concerning other geometries for phase matching as well
as detailed calculations of the SPE signal we refer to pa-
pers by Hartmann and co-workers. ' The first two
pulses are resonant with the a- b transition and are
'separated by a time interval t&2. The third pulse is
resonant with the b-c transition and is applied at a delay
t23 after the second pulse. Interaction between the atomic
vapor and the first two pulses produces a sinusoidal
modulation (Fig. 1) in the longitudinal velocity distribu-
tion of level b; the modulation period is 5uz =k, , /t, 2
where A.

&
is the wavelength of the a-b transition. ' *' '

The optical coherence pb, is built up from this modulation
by the third pulse and the dipoles rephase to emit the echo
at a time t, =(tu1/to2)t12 after this pulse. Echo formation
involves three different atomic quantities during the exci-
tation sequence (Fig. 1). The initial excitation memory is

first transmitted by the optical coherence P,b between the
first two pulses, then by the modulation which survives in
level b between the second and the third pulses, and final-
ly by the coherence pb, after the third pulse.

During the time interval t23 relaxation of the echo re-
sults not only from depopulation of level b by spontane-
ous emission and by inelastic (state-changing) collisions
but also from destruction of the modulation in velocity
space by elastic (velocity-changing) collisions. The echo
signal is due to the atoms which have not undergone ve-
locity changes huz larger than the modulation period. Let
21 &(t,2) be the contribution of elastic collisions to the re-
laxation rate of the echo signal during the time interval
t23 The echo signal is proportional to the velocity-
modulated part of the level bpopulation -pbt, at time

t3

Pbb ( k 1 t12 ) f Pbb ( vz )cos( k 1 vz t12 )dvz

Pt,b(k1t12) is just the Fourier component of Pb&(u, ) corre-
sponding to a modulation period 5u, = (k1t12 )

Let us consider the case of transform-limited laser
pulses which coherently excite a velocity domain W'L (u, )
around ut . The corresponding expression for the relaxa-
tion rate I b ( t12 ) is approximately

I „(t,2) = f W, (v, )y'(u, )du,

—f W(u,', u, ) Wt (u, )cos[k1t12(u,' —u, )]

&(duzduz ~ (45)

where Wz( u,', u, ) is the one-dimensional kernel and
y"(u, ) = f W(u„u,' )du,

' is the elastic collision rate.
For sequences of non-transform-limited, mutua11y in-

coherent laser pulses of duration ~1, each spectral element
i with bandwidth -(I/rt ) coherently excites a velocity
domain Au —1/k l~L centered at a particular velocity



32 STIMULATED PHOTON ECHO FOR ANGULAR ANALYSIS OF. . . 1631

UL —(co; —cv&)/k&. Provided that 1/iL is smaller than the
Doppler width AcoD, the observed signal is the incoherent
superposition of elementary signals obtained from these
different velocity domains. The relaxation rate associated
with each domain i is I s(UL, t~q), obtained from Eq. (45)
by taking for WL(v, ) a velocity distribution (distribution
width —1/k&~L) centered at vt . If the spectral distribu-
tion and the spatial distribution of the energy in the laser
pulses are not perfectly known, one cannot precisely deter-
mine Wt(u) and I"(t&2), whether pulses are transform
limited or not, except when I/rL is much larger than the
Doppler width; then WL (u, ) = W(u, ). However, simplifi-
cation occurs when the perturber mass mz is much small-
er than the active-atom mass m. Then the relative-
velocity distribution is nearly independent of the active-
atom axial velocity and (see Appendix 8)

6s 7s S&

A&- &60nm
6s6p p,

A) —556 nrn

2 1Q0

(a)

+l 0

W(u,', u, )-W(O, u, —u,
'

) = W(O, bu, ),
y"(v, )=y"(0)=y" .

(46)

Under this assumption, the relaxation rate 1 s(t ~2) has the
simple expression currently used in SPE works:

I (t, )=y"—f W(O, bu, )cos(k, bu, t, )d(bv, ) .

(47)

When k] ~v, t~& && 1, velocity changes do not participate
in the decay rate I s(tie) since, as cos(kobu, t~2)-1, the
departure term y"= f W(O, b,v, )d(b, u, ) and the restitu-
tion term balance each other. When k&b v, t~2 &~1, contri-
butions to the restitution term average to zero. Except for
an additional constant, I s(t~2) is the Fourier transform of
the collision kernel W(b, u, ). When Eqs. (46) do not hold,
the above expression of the modulation relaxation rate
(elastic collision contribution), I ~(t&2), is not correct; the
correction factor, depending upon P=mz/m, has been es-.
timated in Appendix 8 when the coherent spectral width
of the pulse is much larger than the Doppler width.

Up to now, formation and relaxation of the stimulated
echo signal have been discussed without considering Zee-
man degeneracy of levels and laser-beam polarization, so
that we were concerned with the population in level b
only. In a real situation we create a population p in level
b but, possibly also, orientation p', alignment p, and
higher-order multipoles according to J values and to beam
polarizations.

Our experiment has been performed with Yb atoms us-

ing levels 6s 'So, 6s6p P&, and 6s7s S& as levels a, b,
and c, respectively [Fig. 2(a)]. The laser beams are linear-

ly polarized and the echo is detected in the same linear
polarization as the third laser pulse. Polarization of the
first two pulses is either perpendicular [Fig. 2(b)] or paral-
lel [Fig. 2(c)] to that of the third pulse. In the latter case
(referred to as the parallel-polarization configuration) the
signal only appears when depolarizing (m-state changing)
collisions occur. The previously reported measurements '

had been performed using the crossed-polarization config-
uration [Fig. 2(b)].

To give a correct expression for relaxation of the echo
signals Iz (crossed polarizations) and I~

~

(parallel polari-
zations) it is more convenient to choose the polarization of

FIG. 2. (a) Level scheme and [(b)—(d)] beam polarizations for
SPE experiment in ytterbium. Wavy arrows represent collision-
al transfer between Zeeman sublevels.

the third pulse (which is also the direction of the polariza-
tion for detection of the echo) as the quantization axis
[Figs. 2(c) and 2(d)]. Let us define a density matrix p for
level b by

+ Oo

P(k ) t)2 ) = Ps(vg)cos(k ) Ugt)p )dvg (48)

p is just the velocity-modulated part of the level-b density
matrix with a modulation period equal to ( k

& t ~2 )

The echo signal is proportional to
~ pb, (t, )

~
[Fig. 1(a)]

and p&, is proportional to the velocity-modulated part of
the level-b population at time t =t3, i.e., in our particular
case [Figs. 2(c) and 2(d)], I ~

~
p++(t3}+p (t3}

~

. In
the absence of depolarizing collisions we have

p++ ——p &0 in the crossed-polarization configuration
[Fig. 2(d)] while we have p++ ——p =0 in the parallel-
polarization configuration [Fig. 2(c)].

The density matrix p can be expanded upon an irre-
ducible tensor basis T~ (Sec. II, Ref. 30); the correspond-
ing matrix elements p o are related to those in the mm'
basis p~ . The relations of interest in our case are

o V2
Poo =

~3 P o ~3 P o ~

(49)
2 o v'2

P+++P —= ~3Po+ ~ Po

or conversely

Poo+P++ +P =+3Po——
(50)

P+++P Poo= Po . ——

p is a scalar and is proportional to the total population af
the J= 1 level, p' (which is zero in our case) behaves as a
dipole and is referred to as orientation, and p behaves as
a quadrupole and is referred to as alignment.

The velocity-modulated population p and alignment
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Wq q(u'z~uz ) ~kk'~qq'W (u& ~ z) &
(51)

I q'q ( uz ) —5kk'5qq' V ( vz )

provided one of the following two conditions is fulfilled:
(i) isotropic relative-velocity distribution (c.f. Sec. IIB1)
and (ii) isotropic scattering in the

~
v,

' —v,
~

-explored
domain (cf. Sec. II B2). In these expressions, y" is the to-
tal rate of elastic collisions which affect the total popula-
tion of level b; 8' is the collision kernel corresponding to
the restitution of the k multipole in level b. According to
Eqs. (17), (23), (28), (29), (42), and (43), y" is connected to
W' ' by y"(u, )= f W' '(v„u,')du, '. Then Eq. (13)
reduces to

(52)

p are created by the first two pulses and then relax dur-
ing the time interval t23 between the second and the third
pulses. At time t =tz, just after the second pulse, in the
crossed-polarization configuration we get p++ ——p
=No/2 and poo ——0 and thus p o ——No/V 3 and

po ——No/~6. Similarly, in the parallel configuration we

get, at t = t2, pro
——Xo and p++ ——p =0 and thus

p o
—No/V 3 and po —— 2N—o/v'6.
Following the discussion of Sec. II B we may write po(i) PO(rz)exP[ ~b (rlz)« —&z)]

po(t) =po(tz)exp[ —I b '(tiz)(t —tz)1

where

(54)

I b(tiz) =y"(0)—f W"(O, g, )cos(k&g, t, z)dg, . (55)

The total rate for collisional destruction of a k multipole
is y =I b(0); we have I b '(0) =y' '=0. The SPE signal
cannot be obtained for very small t&2 since the existence
of the modulation requires that t~z &(b,cod) ', y" cannot
be measured directly in a SPE experiment.

The echo signals I& and I~I, corresponding, respective-
ly, to perpendicular- and to parallel-polarization settings,
are expressed as

k

= —y"(u, )pq(u, ) + f W (u,', v, )pq(u, ')du, ' .
coII (53)

If we also assume that Eq. (46) holds for population
(k=O) and alignment (k=2), the time evolution (for
tz & t & t3) of the modulated part of the population p and
of the alignment is described by

=exP 1' b + Xb riz e"P[—I b '(ttz)tz3] —,'(2+exp[ —[I b '(t&z) —I b (t&z)]tz&I )exP( —7,«~tz3),
672

1/2

=(2—2exp[ —[I b '(ttz) —I b (t]z)l&23I)/(2+expI —[I b '(&)z) —I b '(r(z)]rz3I) .
Iq

(56)

y;„,~ is the rate for inelastic (quenching) collisions in level
b; y,'b" (y'b', ") is the collisional relaxation rate for the
atomic coherence p, b (pb, ). I~ is the echo signal at zero
perturber pressure.

In our experiment an isotropic I"elative-Uelocity distribu-
tion may be reasonably assumed for collisions between Yb
and light perturbers (He and Ne). The smallness of the
signal ratio II~/Iz in the case of Yb-Xe collisions sup-
ports this assumption of isotropic scattering in the
(v' —u, )-explored domain. Thus Eqs. (55) and (56) may
be used to analyze our data.

B. Experim. entaI setup

The experimental setup is shown in Fig. 3. The light
pulses (A,

~
——556 nm, Az

——680 nm) are delivered by two
dye lasers (pulse duration 5 ns, spectral width 3 GHz)
which are pumped by the same nitrogen laser. Two White
cells, consisting of a large mirror M& and two small
mirrors M2 and Mz with the same 8=60 cm curvature
radius, are used as delay lines. A set of beam splitters
permits us to separate and to recombine the direct and de-
layed laser beams. The three laser pulses copropagate in
the interaction cell, Gian prisms are used to polarize the
beams, and the polarization of the first two pulses can be
rotated by means of a A./2 plate operating at A, =556 nm.

As the vapor cell, we use a stainless-steel tube (diameter
40 mm). Two copper screens, located in the heated part

I

of the tube, confine the vapor within a 40 cm-long
volume. The light beams make their way through 2-mm-
diam holes which are opened in the screens. The same
apertures make the interaction volume communicate with
the foreign-gas tank. This device guarantees working in a
quasi-therm odynamical-equilibrium regime. The oven
temperature is fixed at 0=300'C; this corresponds to an
Yb vapor pressure of 3& 10 torr.

As the laser beams and photon echo are copropagating,
we have to use an electro-optical shutter (Pockels cell)
which blocks laser light and opens at the time the echo is
expected to appear. We use a double-stage shutter, made
each of a Pockels cell (Lasermetrics 1070) between crossed
Gian-prism polarizers, to get a contrast ratio of 10 at
least. The high-voltage electric pulse is delivered to the
Pockels cell at the proper time by means of an avalanche
transistor device triggered by the electronically delayed
signal from a photodiode. The rise time of the shutter is
less than 10 ns. For long delays (long values of t3 t,)—
and very weak signals, an additional Pockels cell (Gsanger
LM7) is inserted to decrease the "tail" of the red laser
pulse, Furthermore, a colored filter is used to eliminate
the very large two-pulse-echo signal at 556 nm produced
by the first two pulses. In a general way, considerable at-
tention is paid to the elimination of any parasitic light.
Each measurement is made with and without the first
laser pulse and the corresponding signal is subtracted.

A 14-stage fast photomultiplier (La Radiotechnique
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from which deduce p2(ti2) =d [I b (~i2)

2254 8) is used to e ecd t t the echo and the corresponding
out ut signal is sen o a1

'
t t a gated iniegrator (Princeton p-

1lied Research 16 +2 165). For t = 13.6 ns the signa12

u to 1 V (50-Q load) with a neutral-density
filter (10 attenuation) placed in front o e p
plier. Such a hig eve oh' h 1 1 f signal enables us to increase t]2
up to 77.6 ns.

r of tterbium but, ow-%'e have used a natural mixture o y er
'

ing to isotope shifts and hyp
'

p
' ', ex-h erfine s littings, we can ex-

cite only the zero-nuclear-sp'
'

pr-s in isotopes ( M = 172, , an
With -metal s ie ing o176) at the center of the hne.

'
@-

the oven for elimination of the earth's magnetic fie, t e
parallel-polarization signal a z p
typica y11 2000 times smaller than the correspon ing
crossed-polarization signal.

The measurement procedure is as follows.
e set I =0 and we measure the quantity

Ii(p)/Ii(0) for different values of the per ur er
gas) pressure. From Eq. (56) we obtain

' 1/2I (
=exp( pIptiz), —

Ii(0)
(57

C01

7ab + abc
C02

6 —1 —1We found, respectively (in un'units of 10 s Torr ),
pi = o pi'=

(b) Then, we set t23&0 (typically t23-
we measure the quantity

I (p) 2 —2 exp( P2pt23—
(58)Ii (p) 2+ exp( pzptz3)—

he results are—I"b '
tiq ]/dp for different values of ti2. The res

discussed in Sec. IV.
r t Oandwec ina y, w( ) F' ll we measure Ii(p)/Ii(0 for 23+ all w

{0) tobtain p&(t i2 ) = (d /dp) [I b (t, z ] rom
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i'IIE

(a)

tal results, to be discussed in Sec. IV, are illustrated in
Figs. 4 and 5.

IV. RESULTS AND DISCUSSION

I
I
L.

A. Elastic scattering in Yb(6s6p P& )—noble-gas
collisions

I

I

~O

I
It)
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Yb +H~
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I I I
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I
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://
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Yb + He.i

/////
I

SO I.„(n~)

I b '{t)z)=Xo,){u,OIz)u„A {0), (61)

Inversion of the Fourier transform in Eq. (47) should
provide us with an "experimental" collision kernel. This
operation requires the knowledge of y", which is the limit
of I I, '(t, z) as t&z tends to infinity. Unfortunately, this
limit is out of reach of our experiment since the SPE sig-
nal decay, due to phase-interrupting collisions, prevents us
from getting data with large enough t&2 values. Thus we
are led to analyze our data through another method. We
calculate I"'b '(tIz) in the frame of a simple interaction-
potential assumption. Then we adjust the potential pa-
rameter through comparison between experimental and
calculated I b '(t, z) values.

The one-dimensional kernel W' '(uz, uz) can be calcu-
lated from the elastic scattering differential cross section
do.,~/dQ by an average over initial perturber velocity and
initial active-atom transverse velocity and by a sum over
final perturber velocity and final active-atom transverse
velocity. According to Eq. (55), I b '(t~z) may be ex-
pressed in terms of 8" '(vz, vz):

I I, '(t
&z ) = f W' '(0, u,

'
)du,

'

—f W' '(O, g, )cos(k, t,zg, )dg, . (60)

As discussed in Ref. 32, and in opposition to previous
SPE experiments (Ref. 19), diffractive scattering does not
contribute to I I,

'( t, z ) in our case. Besides, since the
modulation period is much smaller than the mean relative
velocity, only small-angle scattering contributes to the res-
titution terms in I I, '(t&z). Then, for a long-range C, /r'
potential, a simple expression is available for the differen-
tial cross section do.,~/dQ (Appendix A) and we finally
obtain (Appendix 8)

10 2,0
I

30 40 t. ,&(ns)

Ig(p) = —', exp( ptpt&z)ex—p( —p3ptz3)
I3 (0)

X [1+—,exp( Pzptz3 )] . —

We have neglected the term exp( —y;„,~tz3) owing to the
fact that the I'& level is isolated.

Using this measurement procedure, we have obtained
Pz(t, z) and P3(tIz) for values of t&z ranging from 13.6 uP
to 77.6 ns, i.e., for 40 m/s&5u, ~7 m/s. The experimen-

FICi. 5. Collisional depolarization of Yb(6s6p Pl ) by noble
gases. Vertical bars represent experimental data. Dashed lines
correspond to hard-sphere model. The hatching results from cal-
culation with the two-component long-range interaction model
proposed in the text.

where u and U, are, respect&vely, the most probable and
the mean relative velocities (V„=2u/I/m) and where, ac-
cording to Eq. (A3),

Joe)o,I(u, &Iz)= f ' d8,
~Is dO

(62)

where O, z ——(k&ut&zp/m) ' and 3 (0) is a t&z-independent
coefficient which is close to unity (Table I). This expres-
sio»ndica«s that I I, '(tIz) may be regarded as the rate of
collisions which occurs at a scattering angle larger than
8&2. This lower boundary is the scattering angle in the
center-of-mass frame, for a collision where the active-
atom velocity change is

~

v —v'~ =(kIt, z) '. According
to Eqs. (AS)—(All), the tIz dependence of o,~(u, OIz) and
of I"3, '(t&z) is t Iz in a van der Waals potential. This sim-
ple t&z dependence applies neither at large tI2, where
diffractive collisions should be considered, nor at small
t&z, where the small-angle approximation fails. Since
o.,I(u, 8&z) may be expressed in terms of o.,&

as a parameter
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TABLE I. Experimental and calculated cross sections for elastic scattering of total population and for alignment destruction in
Yb*—noble-gas collisions.

He
Ne
Xe

14
2.7

27.8

A (0)

0.82
0.75
0.73

o,j (expt. )

(A)
220(20)
320(20)

1240(60)

173
310

1034

o' ' (expt. }
(A )

94(3)
123(7)
300{20)

o' ' (calc.)

(A )

3
6

20

(Appendix A), values of o,~
are obtained by fitting the cal-

culated expression to the experimental points (Fig. 4). Re-
sults are summarized in Table I.

B. Depolarization in Yb(6s 6p P~ )—noble-gas
collisions

We have measured the quantity d [rb '(t&i)
—I"b '(ti2)]/dp, where, according to Eq. (55)

r,'"(r„) r,"—'( „r)= J'" [IV"'(O,g, ) —IV"'(O, g, )]

&icos(kig, tiz)/dg, . (63)

This is the difference between the restitution terms to
population and to alignment. By analogy with the preced-
ing discussion on elastic scattering, this quantity may be
regarded as the rate of collisions which, occurring at an-
gles smaller than 8&z, destroys atomic alignment. Atten-
tion must be paid to the very simple way in which the sig-
nal ratio measurements enable us, through determination
of I b '(ti2) —I b '(t, 2), to subtract the elastic scattering
velocity-changing effect and to isolate the depolarizing-
collision-specific velocity-changing effect. Difficulties in
performing this subtraction probably caused the previous
experimental failure ' "to observe velocity changes asso-
ciated with depolarizing collisions.

Our SPE measurements are limited to a few points in
the small 0» region. These data need to be complemented
by the determination of the total rate for alignment de-
struction,

yb = f dg, [8" '(0,(, ) —W' '(O, g, )], (64)

which equals the t &z
——0 limit of the quantity

I b '(tiz) —I b '(t&z) which is measured in SPE experi-
ments. The quantity yb

' —[I b '(tiz) —I'b '(tiz)] may be
regarded as the rate of the col1isions which destroy align-
ment while occurring at a scattering angle larger than t9]z.
An auxiliary standard photon-echo experiment provides
us with yb

' (Fig. 6).
A first linearly polarized laser pulse, which is resonant

with the a-b transition, populates the sublevel m=O in
level b at time t=O. Two subsequent laser pulses, in reso-
nance with the b-c transition, irradiate the sample at
times T and T+~. They produce a regular photon echo
at time T+2r from the population which survives in lev-
el b at time T. According to whether their polarization is
crossed with or parallel to the first pulse polarization, the
last two pulses probe either the m=O or the m =+1 sub-
levels. In the latter case the signal is zero in the absence
of collisional transfer between Zeeman sublevels. Since no

I" I
I

I I

('b
I I
I
I I
I

4)&

echo

6s 7g 5]

6a 6p p)
3

+1 0
tl ~ Il

I~~l

R6s 50 ll il

Yb
FIG. 6. Light pulse sequence, level scheme, and beam polari-

zations for measurement of total disalignment rates. W'avy ar-
rows represent collisional transfer between Zeeman sublevels.

velocity selection operates on level-b multipoles, the ratio
of echo signals in crossed and parallel configurations is
related to yacc' by

]./2
I(~ 2—2exp( —yb T)(z)

(2) (65)
2+exp( yb—T)

From the measurement of this ratio for different values of
perturber-gas pressure p we deduce dyb /dp. The corre-(z)

sponding total cross sections for alignment destruction are
given in Table I.

As in the case of elastic scattering we compare our data
with a calculated expression. Our SPE results for depo- .

larizing collisions are restricted to the case of light per-
turbers. Thus the relative-velocity distribution may be as-
sumed isotropic (Sec. II81). In addition, we assume the
following.

(i) A common trajectory for different M sublevels (Sec.
II 8 3).

(ii) A single trajectory at scattering angle 0 (Sec. II 8 4).
This enables us to express IV' '(O, g, ) in terms of the elas-
tic scattering cross section and of the alignment-decay
probability P' '(Kb, u). In a j= 1 level, the multipole ex-
pansion of the interaction potential is composed of two
terms only:

Jz
V(r, j)= V"'(r)+ q„' V"'(r)—, — (66)

where V' '(r) and V' '(r) are, respectively, the isotropic
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and the anisotropic components, and j, is the j component
along the internuclear axis. Long-range interaction is ex-
pected to play a dominant role in these large rate col-
lisions. The following potential shapes are thus assumed:
(i) V' '(r) = C' —'/r in the small-angle scattering region
and (ii) V' '(r) =C' '/r in the region where
P' '(Kb, u) ~ 1 ( C' ' is algebraic).

Within the framework of the common trajectory ap-
proximation, the translational motion is fully determined
by the isotropic component of the potential. Thus C' '

coincides with the parameter of the elastic scattering po-
tential in level 6s 6p P& which has been derived from data
in the preceding subsection. The Anderson-model calcu-
lation of y' ' leads to

y',"=2.5XU„(C"'/au )'" .

Comparison with our measurements of yb enables us to(2)

determine
~

C' '
~

. Knowing C' ' and
~

C' '
~

we com-
pute I b '(t~~2) —I I, '(t&2) (Appendix C). Experimental
and calculated values of d [I ~b '(t&2) —I I, '(t&~2)]/dp are
drawn in Fig. 5.

C. Discussion

Both elastic scattering and depolarizing-collision results
are compatible with our assumptions on the potential
shape. As an illustration of our measurement sensitivity
on potential shape we have drawn in Fig. 5 the curve cor-
responding to hard-core depolarization. It lies well
beneath the experimental points. According to the Ander-
son model, the contribution to y' ' of collisions with
P' '(Kb, u) ~ 1 amounts to 0.25y' ' in the case of a 1/r
potential [cf. Eqs. (C5) and (C6)]. Small-angle depolariz-
ing collisions that we detect in our SPE experiments con-
tribute at most 20% (Yb-Ne) and 30% (Yb-He) to the
alignment total decay rate y' '. Thus these collisions

occur precisely in the region where P' '(Kb, u) &1
where the potential dependence of P' '(Kb, u) affects the
Anderson-model calculation of the depolarizing differen-
tial cross section [cf. Eq. (C7)]. The long-range 1/r
behavior of the interatomic potential corresponds to a
dipole-dipole interaction. In collisions which involve
ground-level rare-gas perturbers, a usual approximation
identifies the energy denominator in a dipole-dipole pseu-
dopotential with the rare-gas ionization energy. Then the
dipole-dipole pseudopotential between an active atom 3
and a perturber B is

V(r») =—,&a(& q'
I
p~

I
q'&+ —'

& q'
I
3(p .)' —p'

~

q &),

(68)
where o,& is the perturber polarizability and Pz is the
active-atom dipole-moment operator. For an ns-n'p state
one obtains

(69)

(70)

Radial integrals may be calculated in a parametric central
potential. For Yb(6s 6p P

~ ) one obtains
&6, ——15.54ao, &r &6&

——25. 30ao, &r &6, 6z
———3.89ao.

Using tabulated values for a (Ref. 38) we calculate
V' '(r), V' '(r), and the corresponding elastic scattering
and depolarization cross sections (Table I). A reasonable
agreement is obtained for elastic scattering. On the con-
trary, calculated anisotropy is much smaller than indicat-
ed by our measured depolarization cross sections. This
suggests that short-range interaction may dominate the
depolarizing process. Thus our initial assumption of
1/r -potential behavior is questioned.

In a I'& level the potential anisotropy may be analyzed
in terms of two potential curves,

O. &

0—

-0.
al

J

O.

K
O

&b +He,

15 ~ (A)

FIG. 7. Potential curves from data analysis with the two-component long-range interaction model. Upper curves and lower curves
represent V~ 0(r) and V~ I(r) components, respectively.

L L
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V, ,(r) = V"'(r)+-', V'"(r),

VM +$(r)=V' '(r) ——', V' '(r), (72)
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which express the potential dependence on the electronic
orbital momentum component MI along the internuclear
axis. In the dipole-dipole interaction region our previous
calculation indicates that V~ o —VM ~. Potential

L L

curves depart from the each other at shorter distances due
to short-range interaction anisotropy. Since the short-
range interaction is generally more repulsive in ML ——0
than in ML ——1 we may suppose that V~ o lies above

L

V~ &. Thus V' '(r) ~0. Knowledge of the sign of
V' '(r) enables us to determine VM 0(r) and VM ~(&)

from our previous determination of V' '(r) and of V' '(r).
Corresponding curves are represented in Fig. 7. It appears
that VM o(r) is very close to zero in the explored angular

L

domain. Thus, in this region

V' '(r)= —, V~ —)(r) .

Consistency between our initial assumption of a 1/r6 po-
tential shape and the existence of a short-range interaction
is preserved provided we assume that VM z(r) alone is

affected by short-range forces and that VM ~(r) remains
L

close to a van der Waals potential in our region of in-
terest.

V. CONCLUSION

We have demonstrated that SPE techniques can be used
to realize angular analysis of collisional scattering. Com-
parison between experiment and calculation has been per-
formed, starting with a long-range r model potential.
For the first time in a nonlinear laser spectroscopy experi-
ment, velocity changes which accompany depolarizing
collisions have been measured. This has been made possi-
ble by the very simple way in which the SPE signal ratio
subtracts the velocity-changing effect corresponding to
elastic scattering from that which is specific to depolariz-
ing collisions. Stimulated-photon-echo techniques should
be extended to investigation of other quasiresonant pro-
cesses such as transfers between fine-structure levels and
rovibrational levels or as energy-poohng collisions. Pro-
cesses which slightly change atomic translational motion,
such as electronic collisions, might also be examined.

Working with a gas sample imposes some drastic limi-
tations on the SPE method. In particular, velocity
averaging washes out fine details such as rainbow oscilla-
tions and orbiting resonances. However, the coarse infor-
mation which is displayed in a SPE experiment may be
valuable. Active atoms are detected inside the collision
volume so that both ground-state and short-lived excited
atoms may be monitored. The magnitudes of the cross
section are determined, not only their variations. Both
elastic and inelastic processes may be considered.

Finally, storing a modulation inside the velocity distri-
bution of active atoms may be regarded as a way of mark-
ing them. It should be possible to follow this modulation
through reactive processes in order to identify reaction
paths.

APPENDIX A: CLASSICAL ELASTIC
SCATTERING IN A LONG-. RANGE r ' POTENTIAL

1. Small-angle-deflection function

s 1f(s) =V'm I
2 2

2I (s/2) .

E= —,pu (@=reduced mass, u=relative velocity) is the
kinetic energy available for the collision.

2. Integral expression of the scattering cross section

The contribution to the total scattering cross section of
collisions with an impact parameter b, & bo is mbo If the.
short-range contribution to the small-angle scattering may
be neglected and if bo lies in the long-range interaction re-
gion, one may thus write

do e)
m bo — dQ=o, i(u, 80) . (A3)

The integration domain Qo refers to collisions with a
scattering angle 8& 80(bo), where 8O(bo) is the scattering
angle for an impact parameter bo. For large bo and small
80, Eq. (Al) can be used for b (8) and Eq. (A3) gives

cr,~(u, 8O) =msg (s)(C/E80)

where

g(s)=[(s —1)f(s)]'i'/s .

(A4)

(A5)

3. Small-angle differential cross section
for elastic scattering

The small-angle differential cross section can be ob-
tained from

doe& db db
dQ dQ sinOdO

(A6)

Substitution of (A2) in (A6) gives

do el

dQ
=g (s)(C/E8) '/8 sin8

or as 0~&1

doe) =g (s)(C/E8) '8
dA

(A7)

The relation between the scattering angle 0 and the im-
pact parameter b in the small-deflection domain, as given
by classical mechanics for a —C/r' potential, is "

8=(s —1)Cf(s)/Eb',

where
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4. Semiclassical total elastic cross section

(A9)

where

p(~)=~ [2f(&)] ' "/sin[+/(s —1)]I [2/(s —1)] .

Neglecting the glory contribution to o.,&, the classical
scattering cross section cr,1(u, 8o) and der, 1/dO can be ex-
pressed using O.,i instead of C as a parameter:

doe] 1=—(s —1)
dA s

1

2
sin

7T'

(s —I ) /s

The semiclassical approximation leads to the following
expression for the total elastic cross section (including dif-
fractive collision contribution) in a —C/r' potential:

2/(s —1)
C

Cr 1=P (S) +glory contribution,
Au

APPENDIX 8: ELASTIC SCATTERING
DECAY RATE

We intend to determine

1 ( tlz~ Ug) f WOO(vi, v~ )dvz

Woo U„u, +,
X cos(kg, t12)dg, ,

where Woo(v„v,
'

) is given by Eq. (38). The following as-
sumptions are used.

(i) kut12(p/m) ))1. This means that only small-angle
scattering contributes to the restitution term.

(ii) kb, v, t12 « 1 where b.v,"=2v m A/m ~cr,1. This
means that diffractive collisions do not perturb the modu-
lation stored in the velocity distribution, so that they do
not contribute to y(t12, U, ). Their contributions to the
departure term and the restitution term balance each oth-
er.

(iii) Small-angle scattering is mainly due to the long-
range interaction potential which varies as r

According to Eqs. (15) and (43),

Woo(v,', v, )=l1l f d u d u'dvtdvt5(v' —v —Y)

X8 o,1(E cr,18 )

do ei
o'g1 ( u|8 ) =17$8

dA

(A10)

(A 1 1)

where

X Wz(vz) W(vt )5(u —u')

Xu '(do, 1/d0),

do,1/dQ= . g I f~M (u R")
I2J+1 ~,~

(82)

(83)

where E =pu/g. Reduction of the ten-dimensional integral to a three-
dimensional (3D) integral leads to

Woo(v,', v, ) =X

where

j

2 f+" f+"dxdr — '-"f"dz -~""
(~)' 'u —" —" ' d& (1+P')' ' (84)

m 0z 1+P+ U

2p 1+p' Z'

2

2
I

UZ

—2u (85)

2
=Xz+ 1+ P

Q
—2 Z2

r

F Uz

( 1 +p2)1/2 +
2Q

1— 1

Z2
(2
—2
Q

(86)

' 1/2
Z2+p2v' —vI =" Iu' —u

m 1+Pz

g, =v,' —v, .

P (Z)—(1+p )(v,')'-/u Z (89)

u2 p2=X + 1+ Z2

t
' 1/2 2

( 1 +p2 )
1/2 Z 2

(810)

When do,1/dQ falls off rapidly as 8 increases and when
(m/p)g, «u, P (Z) and u /u reduce to

(87)

6' )Od ——AU, /u,
8, & 812 ——(kut12p/m)

(811)

(812)

The former condition indicates that I9, lies in the classical
scattering region and the latter condition implies that col-
lisions at 8&8, do not contribute to y(t12, U, ). Compati-

(88)
I

Let us define an angle 0, which fulfills the following two
conditions:
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bility of these two requirements is guaranteed by assump-
tion (ii). Thus, in the calculation of y(t1z, u, ) we may re-
place the differential cross section da, 1/dQ by

d0,1/dQ if 8&8,
0 if8&8, .

The cutoff angle 8, is chosen so that 8, =8,u /u. Thus,

=(x/~'") ——2
Up Q

and o,1(u, 8) is defined by Eq. (A4). Then we use Eq. (A3)
in order to put the departure term in y'(t1z, u, ) into the
form

f W'(v„v,' )du,
'

do,'1 da, 1

dn dn .-8,
where

H(x)=0 if x &1,

(814) f d u a,1(u,8, )u

XexpI —[(u1/u )+(u, —u, ) /u~] I

=¹r,1(u, 8, )v„C(v, ),
where

(822)

(823)

H(x)=1 if x &1 .

Let us denote Woo (u,', u, ) and y'(t1z, u, ) as the collision
kernel and the modulation decay rate which are calculated
using do,'1/dQ instead of do,1/dQ. It results from the
previous discussion that within the limits of our initial as-
sumptions [Eqs. (811)and (812)j

C(u, )= f d u(u/u)'1

U Q

XexpI —[(u1/u )+(u, —u, ) /V~]I .

Combining departure and restitution terms we obtain

y (t12~Uz ) y(t12r Uz ) (816) y'(u„t1z ) =%a,1(u, 8,2)V„A (u, )

=%a,1(u, 812)V„A (u, )+¹r,1( u, 8, )V,B (u, ), (818)

The restitution term in y'(t1z, u, ) may be written as

f Woo (u„u, +gz)cos(k1g, t12)dg,

= f WOV(u„uz+gz)[COS(k1g, t12) —l]dg,

+ f Woo (u, u, +gz)dg, , (817)

where Woo(u„v,
'

) has been substituted for Woo (v„u,' ) in
the first term on the right-hand side as a consequence of
the definition of 8, . Substitution of Eqs. (A7) and (814)
in (817) leads to

f Woo (u„v, +gz)cos(k1g, t12)dg,

+%a,1(u, 8, )V„[B(u,) —C(u, )j . (825)

B(v, )=C(v, ) .

The final result is

y( t1z, u, )=¹r,1(u, 812)V„A (u, ) .

(826)

(827)

According to Eq. (45), the relaxation rate of the modula-
tion stored in the velocity distribution of a level's total
population is given by

( t 12 ) = f WL ( Uz )y ( t 12r Uz )duz (828)

According to Eq. (816), this expression does not depend
upon 0, , Thus

where

3 (u, )=(2/ms)I ( —2/s)cosm/s

X f dZF(Z, U, /u),

B(u, )=(2hrs) f X-'-"dX
X f dZF(Z u, /u)

' ]/2

XH X
1+/3

Xexp[ (P v,'/Z v')]—

—1 —1/s

F Z, —' =(1+P')-'"
1+P'

(819)

(820)

The u, deper1dence of y(t1z, u, ) is mainly located in the
factor exp[ —(p u, /Z V )] which appears in Eq. (821).
Thus, when p « 1, this factor is close to unity and

I'O1(t »)=y(t», 0) . (829)

Another limiting case occurs when the coherent spectral
width of the laser pulses is much larger than the Doppler
width. Then, WL(u, )=W(vz) and integration over u,
leads to

I "'(t„)=y(t„,O)p/[(1+ p')' 'arctan/3] . (830)

APPENDIX C: ANDERSON-MGDEL CALCULATION

The aim of this appendix is to achieve a simple-model
calculation of

I (t12)—I' '(t12)

= f dg, cos(kg, t12)

X f f dXdI'(u/u) X [8"O1(0,$, ) —W"(O, g, )]dg, . (Cl)

Xexp[ —(X +F )], (821) The quantity W' '(O, g) —W' (O, g) is expressed in Eq. (39)
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in terms of the elastic scattering differential cross section
and of the k-multipole decay probab&lity, assuming isotro-
pic relative-velocity distribution, common trajectory for
different M sublevels, and single trajectory at scattering
angle 8 (cf. Secs. IIB 1, IIB 3, and II B4). Under the ap-
proximation that the transverse motion is separated from
the longitudinal one, Eq. (39) may be substituted into Eq.
(43). By integrating over vz and vz one obtains

(G2)

w"(o, g, ) —w"'(o, g, )

=X f d Yd u 5(g, —Y, )w„(u')
do'"

X5(u —u')u '-- Pk(J u)

where g=
I g ~

. Remember that the requirement m~ && m
is implied in the initial assumption of isotropic relative-
velocity distribution. Then, reduction of Eq. (C2) to a 3D
integral leads to

w"(o, g, ) —w"'(o, g, )= —f + fP u

g2 p2 dc ""
e dX d Y f P "(Jg, u )exp

z
dg, (C3)

where

=X2+ Ã2+—2 2p u
—2

Then setting ~ = kyar, z, g= kg, t, 2, and 8&2——kut, 2p/I, and integrating by parts, we obtain

2 2do' '

I""(t&2)—I' '(tt2)=2'„8~2 f dosing f f dXdYe P"(Js,u)exp[ —((8&2/2) ] . (C4)

The variation of P "(J,u ) as a function of the impact pa-
rameter b =J/K in a long-range 1/r' potential has been

studied extensively. As the impact parameter decreases,
P"(J,u) increases continuously up to about unity. Then,
as b keeps decreasing, P"(J,u ) oscillates. The Anderson

model consists in doing the following.
(i) Replacing P"(J,u) by an asymptotic expression

P„(J,u) for b ~ bk, where bk is such that P,",(Kbk, p) =1.
Actually, the validity range of P„(Kbk, u) should be re-

stricted to the region where P"(J,u ) && 1, i.e.,

~

VM(r) VM(r)
~

((fi—u/b.
(ii) Setting P"(J,u)=1 for b ~bk. This means that os-

cillations are replaced by a mean value which is assumed

equal to unity.
In summary, the Anderson model leads to

1 s —2
X

~s s —1 g

—&+4/s

g 2

der"' P"(J,u)= '

1
' s —2

7T'$ $ —1

for g&gk
' 2/s+1

k

0

for 0~ gk .

g
—2

(C7)

P,",(Kbk, u) = 1,
where, for j =1,

2

(C8)

The impact parameter bk is connected with the potential
anisotropy through the equation

(b /b) " "forb&b
P"(J,u)= '1 f b b (C5)

P„(Kb,u)=gk I, z [V '(b)]
fiu

'
3

P Kb, u 2~bdb =mbk s —1 s —2 (C6)

As a consequence, the k-multipole-destruction cross sec-
tion is

where

3 3
X

s s 2
(C9)

In the long-range small-angle scattering region the impact
parameter b and the scattering angle 0 are connected by
Eq. (A2). Since a common trajectory has been assumed
for different M sublevels, the elastic scattering potential
may be identified with either component VM(r).
Equivalently, it may be identified with the isotropic com-
ponent V' '(r)= gM VM(r)l(2j +1). Conversely, the
elastic scattering potential constant can be expressed in
terms of X and of 0k which is the scattering angle at bk.
Finally, we obtain

2 s —1I, =2X —X . X, s odd
3 s

3 s —1I, =—X —X X, s even
2 4

(clo)

and where g t
———, and g2 ——,o . Then we substitute

mg/pu for 8 in Eq. (C7) and transport this latter expres-
sion into (C4). We perform integration over g' in the hmit
of experimental interest 0~2 && 1. We obtain



32 STIMULATFD PHOTON ECHO FOR ANGULAR ANALYSIS OF. . .

I (t~2) —I' '(t ) = —~u g" dr e " i' '~' r ~" " +—cosy
2 s —2 — +~ . Sln s
s s —1 y 2

2
——x 'Re[e' ~'1 (1 2—/s, iy)]

2I+-
S

+ p ~~x + ~~Re[e2'~~~@(1 4/g iy)] (Cl 1)

where x =HI, /H, z, y =xr' " ", 2"=2"(u ), Ok ——Hk(u ); I (a,x) and y(a, x) are Euler's incomplete gamma functions.
An approximate expression is obtained by setting x=y. Then,

I (t)2) —I (t 2)=—&u„X I 2—k [p) 2 s —2

s s —1 s —1
+—cosx ——x ~'Re[e' ~'I (1—2/s, ix)]

x 2 . 2

21+—

2+ I 2 ——x 'Re[e ' 'y(1 —4/s, ix)]s (C12)

A limiting case of experimental interest occurs when depolarizing collisions do not preserve the modulation in velocity
space at a scattering angle larger than Hk. Then, x ~&1 and Eq. (C12) reduces to

I (r„)—r (t„)=—XV„X I 2 —— cos I 1 ——x-+ '.k (0) 2 s 2 k 2 4 —2 4/s
s s —I s s ' s

This expression exhibits a t ~q
+ dependence. An expression similar to (827) may be found in this limiting case:

(C13)

I "(t„)—r")(t„)=au„[~"'(u,e„)—~"(u,e„)]2 cos
2m's —2 I 2 —2

1 2 —4
s s —4 s s

(C14)

where

k
o. (u, Hid)= f dg .

6'lZ d8 (C15)

The t~q ——0 limit of I "(b~2)—I' '(b~2) cannot be obtained from the small-angle expression (C11). It may be derived
from Eqs. (36) and (C6). One obtains

y =I (0)—I ' '(0)=X f d u W, (u)uX =¹„I2— X " .
s —1

(C16)
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