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This paper contains a description of the behavior of a multimode unidirectional ring laser with a
homogeneously broadened active medium. Our formulation is based on the conventional Maxwell-
Bloch (MB) equations, but is distinguished from other treatments by the inclusion of a finite mirror
reflectivity and an arbitrary value of the gain parameter. We review the steady-state behavior of the
system and analyze the longitudinal profile of the field and of the atomic variables. With an ap-
propriate transformation of variables, we transform the boundary conditions of the ring cavity into
standard periodicity type, even in the presence of a finite reflectivity, and derive an infinite hierar-
chy of coupled mode equations. We analyze exactly the linear stability of the system, and investi-
gate the dependence of the instability domain on the reflectivity and gain parameters. A numerical
study of the full MB equations for a parameter range of the type explored in the recent experiments
by Hillman et al. [Phys. Rev. Lett. 52, 1605 (1984)] reveals similarities, but also considerable differ-
ences between the results of the theory and the main experimental signatures of their instability.
However, the injection of numerical noise shows the presence of numerous coexisting basins of at-
traction which are likely to play a significant role in the dynamics of a noisy laser.

I. INTRODUCTION

The occurrence of sustained spontaneous oscillations is
a well-established phenomenon that affects nearly every
type of laser under appropriate operating conditions. '

Models of homogeneously broadened active media have
played a leading theoretical role in the study of instabili-
ties since the early 1960s; in fact, criteria for the emer-
gence of self-pulsing in single-mode homogeneously
broadened systems were advanced, even before the
discovery of the ruby laser, and were then generalized to
multimode operation around 1968.

The behavior of single-mode lasers has been analyzed
extensively over the last decade, especially over the range
of parameters where the laser equations develop an insta-
bility of the type discovered by Lorenz in his well-
known studies of convective hydrodynamic instabilities.
Multimode systems have received comparably more limit-
ed attention from the viewpoint of their stability proper-
ties after the early studies of Risken and Nummedal, and
of Graham and Haken, apart from the recent investiga-
tions of ultrashort pulses by Haken and Ohno.

The behavior of these systems in the linearized regime
around their steady state is well understood. The ampli-
tude of the single-mode laser becomes unstable in the so-
called "bad-cavity" limit if the linewidth ~ of the only ex-
cited cavity mode exceeds the sum of the polarization (yz)
and population (y~~) relaxation rates and if the laser gain
is larger than a certain threshold value. %'hen the cavity
linewidth is smaller than yz+yii, the resonant mode is al-

ways stable for arbitrary values of the gain parameter.
Nonresonant modes, however, can become unstable if the
unsaturated gain is sufficiently large and the intermode
spacing is small enough.

A common feature of the type of instabilities displayed
by homogeneously broadened lasers is the high value of
the self-pulsing threshold (often called the second thresh-
old) which is typically some ten times higher than the or-
dinary threshold for laser action, when measured in terms
of the unsaturated gain parameter.

Yet, a recent experiment (Hillman et al. ) demonstrat-
ed the existence of a spectacular instability not far above
the ordinary laser threshold in a cw-pumped dye laser
operating in the "good-cavity" limit. This instability is
characterized by a discontinuous increase of the average
dye laser output power, the sudden emergence of sym-
metric sidebands, and the simultaneous disappearance of
the laser resonant spectral component. Seemingly, the
only unusual features of the experimental setup are the
very high reflectivity of the mirrors in the ring cavity and
the extremely large number of cavity modes under the
gain profile of the active medium. In spite of the fairly
typical arrangement, the observed behavior is difficult to
explain in terms of our current understanding of the
Risken-Nummedal and Graham-Haken models for at
least two reasons: First, the dye laser gain required to
trigger this effect is only slightly larger than what is re-
quired to produce normal laser action and second, the
resonant laser mode is apparently suppressed discontinu-
ously by the emerging sidebands for increasing values of

32 1563 1985 The American Physical Society



1564 LUGIATO, NARDUCCI, ESCHENAZI, BANDY, AND ABRAHAM 32

the pump parameter. The Risken-Nummedal —Graham-
Haken instability, instead, is characterized by a much
higher second threshold and by the persistent presence of
the central laser component.

In an attempt to shed some light onto these apparently
conflicting observations, we have undertaken a detailed
analysis of both the linearized behavior and the nonlinear
evolution of a multimode laser. Most earlier studies of in-
stabilities have assumed, more or less explicitly, that the
unsaturated gain per pass and the mirror transmittivity T
are sufficiently small to justify the assumption that the
field is spatially uniform in steady state. ' Here, we re-
move this restriction and allow the possibility that the
laser may have mirrors with arbitrary reflectivity and an
active medium with any value of the unsaturated gain.

We have discovered, nor surprisingly, that multimode
lasers possess a rather complicated phenomenology that
includes periodic and chaotic attractors, soft- and hard-
mode instabilities, and even the appearance of square-
wave pulsations for a high density of cavity modes. The
existence of numerous coexisting attractors suggests that
noise may play a significant role in prescribing the actual
observable evolution. Unfortunately, at this point, we are
still unable to identify all the main signatures of the Hill-
man et al. instability in our numerical results.

The paper is organized as follows. In Sec. II we review
the steady-state behavior of a homogeneously broadened
laser with special attention to the role played by the finite
reflectivity of the mirrors and the arbitrary gain (i.e.,
away from the mean-field limit). In Sec. III we derive an
infinite hierarchy of coupled-mode equations; we study
the steady-state configuration of a truncated five-mode
system and demonstrate the possibility of discontinuous
turn on and hysteric behavior in such solutions. In Sec.
IV we carry out a linear stability analysis of the
Maxwell-Bloch (MB) equations and derive a new charac-
teristic equation for the eigenvalues that generalizes the
well-known results of Ref. 4. In Sec. V we explore the
dynamical evolution of selected multimode unstable sys-
tems with varying values of the cavity intermode separa-
tion. Depending on the chosen parameters we identify
periodic and irregular oscillations, square-wave pulsing,
and isolated attractors which are reminiscent of the five-
mode solution discussed in Sec. III. The power spectra of
the output field modulus display sharp lines and broad-
band features which can be readily correlated with the
shape of the time-dependent pulsations. Finally, in Sec.
VI we summarize our findings and provide a critical com-
parison between the numerical solutions, and the results
of the measurements by Hillman et al.

II. MAXWELL-BLOCH EQUATIONS:
STEADY-STATE CONSIDERATIONS

We consider the behavior of a traveling-wave field in-
teracting with a homogeneously broadened laser medium
in a unidirectional ring cavity. As in many earlier studies
of this problem, we model the active medium as a collec-
tion of homogeneously broadened two-level atoms with a
transition frequency co& between the lasing 1evels, and re-
laxation rates yq and y~~ for the polarization and popula-

FIG. 1. Schematic representation of the unidirectional ring
resonator. Mirrors 1 and 2 have an arbitrary reflectivity coeffi-
cient R, while mirrors 3 and 4 are perfect reflectors. The active
medium is confined to the longitudinal region 0 &z &I..

(2.1a)

(2.1b)

(2.1c)

for the coinplex field envelope W, the atomic polarization
envelope H, and the population difference &; a
represents the small signal gain constant per unit length,
and h=(co& —coL )/yi is the scaled detuning between the
atomic and the (unknown) laser frequencies. Equations
(2.1a)—(2.1c) must be supplemented by the boundary con-
ditions

W(0, t) =RA (L, t b,t)e—(2.2)

where bt =(W L)/c; W is—the length of the ring reso-
nator, L is the length of the active medium, and 50 is the
accumulated phase difference per round trip
[50——(L/c)(toe —coL )] due to a possible mismatch be-
tween a selected cavity resonance co~ and the field carrier
frequency toL, .

Equations (2.1) can easily be solved in steady state as
shown later in this section. Because, however, the resona-
tor may have significant transmission losses, and the very
notion of cavity mode as a stable resonating structure is
not well defined under these conditions, an alternative ver-
sion of the MB equations becomes preferable for the pur-
pose of deriving an infinite hierarchy of coupled-mode
equations.

For this purpose, we follow a procedure first proposed
by Benza and Lugiato" and introduce the new indepen-

tion difference, respectively. The cavity is shaped as a
ring resonator which can only support propagation along
a single direction (Fig. 1). In our development the mirrors
are allowed to have an arbitrary reflectivity and the unsa-
turated gain parameter per pass is not limited to small
values, in spite of the fact that the removal of these re-
strictions causes the cavity field to acquire a nonuniform
longitudinal profile. Transverse effects, however, are ig-
nored throughout, by enforcing the plane-wave approxi-
mation.

The basic equations of motion are the well-known MB
equations
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dent variables

Z Z

L—zt'=t+
c I

and the new dependent variables

(2.3)

The field equation then becomes

d
( )

a(1 ib—)

dz " 1+6, '+ ~~„(z) ~'
(2.8)

It is convenient to represent the complex field profile in
the form ~ „(z)=pe', where the modulus and phase
satisfy the coupled equations

F(z', t') =P (z', t')exp —ln(Re ')
L,

I

P(z', t') = H(z', t')exp —ln(Re ')
I.

(2.4a)

(2.4b)

dp
dz

AP

1 +Q 2+p2

aA
1++2+ 2

(2.9a)

(2.9b)

2 '
D(z', t')=&(z', t') exp lnR

L,
(2.4c)

F(0,t')=F(L, t') . (2.5)

The role of the transformation (2.3) is to remove the time
delay from the boundary conditions in the new frame of
reference; the transformation (2.4) eliminates the multipli-
cative factors that appear in Eq. (2.2), so that the new
boundary conditions for the field amplitude F(z', r') be-
come

From the identity

1dp 1 d8
p dz g dz

we obtain

(2.10)

ln = —=[8(z)—8(0)],p(z) 1

p(0) b.
(2.11)

while from Eq. (2.9a), we can derive a transcendental
equation for p(z)

The new equations of motion take the form

dF W dF
~

lnR
~ F .

(g g) W F P

(I+& )ln + —,
'

[p (z) —pz(0)]=az .
p(0)

(2.12)

dP 2z'
at', =yi FD exp

~

lnR
~

—(1+id)PI.

(2.6a)

(2.6b)

Finally, we express the steady-state boundary conditions
(2.2) in terms of the field modulus and phase:

~(0)ei8(0) R~(L)ei8(L)e (2.13)

Equation (2.13) combined with Eq. (2.11) (specialized at
z =L) yields the mode-pulling formula

2z'
ai',

= —
y'(~ , (FP*+F*P)+—D+exp —

(

lnR
[I.
(2.6c)

co,yq+coz v

&+'Y~

or in terms of iI(„

(2.14)

H„(z)= —W „(z) (1 i b,)—
1+6, +

~

a„(z)
~

I+6
1+6, '+

~

w„(z) ~'

(2.7a)

(2.7b)&„(z)=—

The price one has to pay in exchange for the simple
boundary conditions (2.5) is the appearance of space-
dependent factors in the equations of motion. This is,
however, only a minor inconvenience, since the new set of
partial differential equations and their boundary condi-
tions allow a "natural" modal expansion of the ordinary
Fourier type, as if the cavity had perfectly reflecting sur-
faces.

An additional advantage of the present formulation is
that the new field amplitude F(z', t') usually displays
small deviations from longitudinal uniformity, under
steady-state conditions, even for relatively small values of
the mirror reflectivity and large values of the unsaturated
gain per pass. This fact is not obvious and will be justi-
fied by the following analysis.

In steady state, the MB equations (2.1) can be solved at
once for the atomic parameters with the result

&~c c flnR
fK=

1+re ~yi
where i( is the scaled field damping rate out of the cavity.
This result remains valid for arbitrary longitudinal field
profiles. Equation (2.12) (for z=L) and the boundary
conditions (2.13) yield the relation

2R
p (0)= [aL —(1+6, )

~

lnR
~ ] (2.15)

1.—R

and the gain threshold condition

aL )(1+b, )
~

lnR
~

The required field profile can be obtained from Eqs.
(2.12) and (2.15) by elementary numerical methods. A
few typical profiles are shown in Fig. 2(a). Evidently, for
the chosen atomic and cavity parameters, the profile of
the field ~ deviates significantly from uniformity; on the
other hand, the modulus of the new field amplitude F is
very nearly constant over the entire active medium [Fig.
2(b)]. If, in the course of approximate calculations, it
should be necessary to require spatial uniformity, the best
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ics. Here, Eq. (3.1) acquires a special significance because
it fits exactly the boundary conditions and thus allows the
interpretation of the expansion coefficients f„(t ) as the
electromagnetic mode amplitudes of the ring cavity in the
new (z', t') frame. This is especially satisfactory because
in the original coordinate system the notion of cavity
modes would have been hard to support with any rigor be-
cause of the "leaky" nature of the resonator.

In Eq. (3.1) we have d „(t')=d„*(t') because of the real
nature of the population variable. Over the range
0(z &1., the chosen modal functions form a complete,
orthonormal basis set such that

(3.2)

1.75
0 0.5 Z/'L

Upon substituting Eqs. (3.1) into the MB equations (2.6),
and with the help of the orthonormality condition (3.2),
we obtain the following coupled equations:

d . . &~c —~f„= i a„f„—n— 1 i — f„+2Cp„

(3.3a)
FICr. 2. (a) Longitudinal profile of the field amplitude

as a function of the scaled coordinate z/I. . The parameters
used in this simulation are nl. =2, 8 =0.7, mode spacing =5,
co& ——roc. The derivation of

~

P
~

from uniformity is 35%%uo. (b)
Same as {a) for

~

F
~

on a greatly expanded vertical scale; the
derivation of

~

F
~

from uniformity is 2.5%.

P„=g fmdlgm l „—(1+ib, )Pn, (3.3b)

d
n = 'Y 2 g (fmPm —n+fmPm+n )+dn + ln

m

strategy is to operate in the primed reference system (2.3)
and in terms of the new field and atomic variables (2.4).

We observe, finally, that in the mean-field limit
(aL ~0, R~ 1, with aL /T—:2C =const) the profile of
the field ~ (which becomes identical to that of F) is uni-
form in space. In particular, from Eq. (2.15) the well-
known result

(3.3c)

where the time derivatives are taken with respect to the
scaled time variable ~=yzt' and where

2m.nc&n= ~
(3.4)

=2C —(1+6 )

follows at once.

(2.16) 1
&~c

'Vx

III. COUPLED-MODE EQUATIONS

For special applications, it is often convenient to re-
place the MB equations with a suitable infinite set of cou-
pled ordinary differential equations to be truncated ac-
cording to appropriate criteria. As already mentioned, the
best starting point for a modal decomposition is the set of
equations (2.6) because of the convenient form of the
boundary conditions for the field variable F(z', t'). In
fact, the Fourier representation of the field and atomic
variables

F(z', t') f„(t')
+ 00 .k g

P(z', t') = g e " p„(t')
D (z', t')

(3.1)

is automatically consistent with Eq. (2.5) provided we
select the wave numbers k„equal to integer multiples of
2m. /L. (kn =2m. /L, n =0, +1,+2, . . . . ) Modal expan-
sions of this type have been used frequently in laser phys-

kml, n ~~m+1,n,
nn ~&., O

(3.5')

(3.6')

and the modal equations reduce to the well-known form
derived, for example, in Ref. .10.

Equations (3.3) are especially useful when it can be ar-
gued that a small number of modes are operating simul-
taneously. The one-mode approximation, for example,
has been used extensively in the past to study the chaotic
evolution of the field fo(r) in the unstable regime. ' The
limit of validity of the truncated hierarchy, on the other

The mode-mode coupling coefficients g l „and the popu-
lation equilibrium values q„are defined by

1 —R
(3.5)

2
~

lnR
~

+2ni(m + l n). —

gn
1 —8 (3.6)

2
~

lnR
~

+2vnn

Note that, in the mean-field limit, we have
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hand, remains an open question, at least for arbitrary
values of the parameters. It is clear, however, that the ac-
curacy of a solution obtained from the superposition of a
limited number of modes is sensitive to the spacing be-
tween adjacent cavity eigenvalues. In particular, when o. 1

is sufficiently larger than y), one may expect that even a
severely truncated set of modal equations should serve the
purpose well. However, this is not always the case, as dis-
cussed in more detail in Sec. V.

We now turn our attention to an interesting kind of
steady-state solution of the truncated expansion that sug-
gests the possibility of discontinuous behavior in certain
regimes of pulsed operation. We are interested in the ex-
istence of what could be labeled a symmetric solution
under resonant conditions 5~c ——0, hence Z=O. By sym-
metric solutions we mean that the resonant field fp has
been suppressed to be exactly zero, that the field F(z', t')
and polarization P(z', t') remain real, i e.

f.=f . p. =p-.
and that the Fourier amplitudes take the form
(i =0,+1,+2, . . . , n a fixed index different from zero)

f2!n p21n

f„=ia„f„—a(f- „+2Cp„),d'r (3.8a)

d, p;=f;dp+f d2„p„-—

,".d.= V(f.p—.'+f-.'p-„+d-p+-1),

d
d, d2;= r(f;p—;+d,„) . -

(3.8b)

(3.8c)

(3.8d)

The five-mode truncation shows that the field modes are
coupled not only by a slowly varying gain term (dp), but
also by a component (d2„-) that oscillates at the beat fre-
quency between the mades. This additional coupling is
the "population pulsation term" identified, for example,
in Ref. 13.

As shown in the Appendix, the amplitude and the oscil-
lation frequency of the only nonzero mode in steady state
are given by the coupled equations

that the symmetric solutions (3.7) do indeed satisfy the en-
tire infinite hierarchy of modal equations in the mean-
field limit. ]

The relevant equations of motion are

e
—i(21+1)vt

f(21+1)n ~ (21+1)ne
(3.7)

(I+4vi(+ If; I'» (3.9a)

—i(21 + 1)vt
~(21 +1)n ~(21+1)n

—i 2lvt
d21n d2lne & d(21 +1)n

where the symbols f, p, and d denote constant values; all
other modal amplitudes are equal to zero for any selected
integer value n The osci.llation frequency v is unknown,
a priort', and must be calculated. The main reason for dis-
cussing a solution of this type is the existence of certain
signatures which are also typical of the pulsations ob-
served in the experiments by Hillman et al. Thus, for ex-
ample, the conditions (3.7a) ensure that the resonant com-
ponent will never be part of the total output field. Ap-
parently, a symmetric solution is inconsistent with the ex-
act modal equations (3.3), but it becomes consistent with
them in the mean-field limit, a condition that appears to
be well verified in the experiments by Hillman et al. In
fact, in this case, a solution of the type

f„=O, In I
&n

f„(t)=const+exp( —ivt)+0,

implies that also the amplitudes f(21+&)„, p21+, )„, d(21)„-
are different from zero as a result of the structure of the
modal equations. Because an exact analytic solution of
this type is probably unfeasible, we consider explicitly a
five-mode model (i.e., n =0, +n, +2n, for any integer n)
in the limit R —+1, aL +0, with 2C=aL/—T& oo. We
stress that infinitely many symmetric solutions (for
n =1,2, . . . ) exist within the confines of the five-mode
truncation. [Note, in addition, that the numerical results
discussed in Sec. V give strong support to the conjecture

vt(1+4v)() —2v(( I f„ I

I+4v2)+
I f„ I'

& = 3 If; I'+4 If-. I'(1 —v.v)(+2v(()

+(1+ )(1+4 ))) .

(3.9b)

(3.10)

In the good-cavity limit (n « 1) the operating frequen-
cy vz is essentially a„ to within corrections of order x,
while the field intensity

I f„Iis a soluti-on of the quadra-
tic equation that results from Eq. (3.9a). It is a trivial
matter to verify that a plot of

I f„ I
as a function of C is

double valued if

4 21+—1 ——
y y

(3.11)

provided, of course, y &2(W3 —1)=1.46 in order to en-
sure that o. „ is positive. A typical curve displaying the
steady-state intensity as a function of the parameter C is
shown in Fig. 3.

Assuming that a symmetric solution can be excited, the
double valuedness of the steady state suggests that the
turnon and turnoff of this solution may be discontinuous.
Actually, numerical simulations based on the truncated
set of equations (3.8) indicate that the symmetric solution
does not bifurcate from the stationary state of the five-
mode model given by

I fp I

=2C —1, dp ———1/2C,
pp =fpdp' it does, however, have a stable domain of ex-
istence which is accessible by hard excitation. Once
trapped in this domain, the five-mode solution indeed
conforms to the requirements (3.7) and, in particular,
displays the expected sudden turnoff, upon decreasing the
gain parameter C.
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10

5W(z, t) . 5f(z)
5%(z, t) =e ' 5p(z)
5&(z, t) 5d (z)

(4.2)

13 C

I

)

I I I

12 14 15
Cmin

FIG. 3. Typical steady-state output intensity curve as a func-
tion of the gain C for values of the parameters leading to doub-
levalued behavior; n& ——5, y =2.

d 5f (z) =H (z)5f (z),
GZ

where

(4.4)

and obtain the following expression for the polarization
fluctuation 5p (z):

5p(z) =
z

y, (X+y)))—y))~,',(z)
5f(z) .1+%,~ (A, +yg)(A, ~y)))+7 j.l ))W,~(z)

(4.3)

Note that the reference phase of the steady-state field has
been set equal to zero in eq. (4.3). On combining Eqs.
(4.1a), (4.2), and (4.3), we obtain the field fluctuation
equation

An extension of this steady-state analysis to a larger
number of modes involves very cumbersome algebraic ma-
nipulations and has not been pursued. Unfortunately, the
relevance of this solution to the observed Hillman instabil-
ity is only tenuous because, by construction, the beat fre-
quency between the excited sidebands (2a„-, in the five-
mode case) is independent of the gain and, in addition, the
existence of discontinuities in the state equation is con-
strained by the inequality (3.11) which may not be satis-
fied in the Hillman experiment where y is likely to be
smaller than unity.

IV. LINEAR STABILITY ANALYSIS

In this section we investigate the conditions under
which unstable behavior develops in the neighborhood of
one of the possible steady states of the ring laser system.
The procedure adopted in the following calculation is con-
ceptually identical to those of numerous earlier studies;
the major difference arises from the spatial dependence of
the field amplitude which' is a consequence of the arbi-
trary gain and reflectivity parameters. This calculation is
limited, at present, to the resonant case (5~c —0) and is
constrained by the assumption that the fluctuations of the
variables are real. This removes the possibility of describ-
ing possible phase instabilities. Because, however, small
phase fluctuations in resonance do not grow in the mean-
field limit, it is reasonable to expect that this condition
will persist, for reasons of continuity, even when aL or
the transmittivity are no longer very small.

The linearized equations of motion that follow from
Eqs. (2.1) are

z
5f (z) =5f(0) exp II dz'H (z') =5f(0)e &)' .

0 (4 6)

The evaluation of the spatial integral can be carried out
with a clever change of independent variables from z to
~„(z) as done by Carmichael in the case of absorptive
multimode optical bistability' and with the help of the
field equation in steady state [Eq. (2.8)]. The result is

~+ 7// 7J/~ st

~.~l (~+y. )(~+y)))+ yiy))~.'~]

(4.7)

The integral in Eq. (4.7) can now be performed by elemen-
tary techniques. Thus, the required field fluctuation takes
the form

~yy (A, +y))) —yiP „(z)
H(z) = ——+ 1+~, (z) (~+yg )(&+y)) )+ygy))W,', (z)

{4.5)

The formal solution of Eq. (4.4), of course, can be ob-
tained trivially with the result

—--5w +——5& = —+5%,1 8
BZ C Bt

(4.1a)
5w (z, t) =e '5f (0)e~" (4.8)

5H =yg(5w W„~w „5W—5%),
a 5W = —y, (5w H,„+~„5%+5&),

(4 lb) The boundary conditions

{4.1c) 5w (0, t) =R 5w (L,t (W L)lc)— —(4 9)

where we have assumed 6~ =6M* and 5%=5%*. %'e
seek solutions of the type

together with Eqs. (4.8} and (4.7} yield the following tran-
scendental equation for the rate A, :
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gence of unstable behavior. Figure 4(a) shows its depen-
dence on the refiectivity, while Fig. 4(b) displays the effect
of varying the small signal gain. A comparison of exact
and approximate solutions obtained from Eqs. (4.10) and
(4.11) is shown in Fig. 5. Clearly, even for rather large
gain parameters and low reflectivity coefficients, the re-
sults do not display large differences.

V. EVOLUTION OF A MULTIMODE LASER
AND POWER SPECTRA OF THE OUTPUT FIELD

When dealing with cavity configurations where the
mode spacing a& is of order unity or less, using the MB
equations becomes almost unavoidable, particularly if the
system is likely to develop instabilities. The numerical
work of this section was carried out by solving the MB
equations (2.6) in resonance (5&c——0) using the same in-
tegration scheme described in Ref. 4(b). For comparison,
we have also solved several truncated versions of the
modal expansion (3.3), also under resonance conditions,
using a standard fourth-order Runge-Kutta routine. In
both cases we have performed our calculations in double
precision.

We divide our survey of the numerical results according
to the values of the scaled cavity damping rate a.. Thus,
in Sec. VA we discuss numerical simujiations carried out
in the good-cavity limit (~&&1), while in Sec. VB we
analyze results pertaining to the bad-cavity configuration
(~»).

may consider. ~ as an adjustable parameter and, if neces-
sary, assign to it larger values than predicted on the basis
of the formal definition c

~

lnR
~
/Wyj.

If c7t is sufficiently larger than unity, usually only one
mode can be unstable during the linear evolution. In this
case, as time progresses, one expects an essentially simple
periodic behavior of the output intensity, apart from the
unavoidable harmonic components introduced by the non-
linearities of the equations of motion. This is well con-
firmed by selected solutions of the MB equations with the
system initially prepared in a state with a zero output
field and polarization and a uniform inverted population.
An example is shown in Figs. 6(a)—6(c). In this case, the
parameters have been selected so that the very first side-
band, at c7~ ——5, falls within the instability domain [Fig.
6(a)]. The long-term behavior of the solution confirms, by
inspection, that the period of the pulsations is indeed con-
sistent with a radian frequency of 5 [Fig. 6(b)]; the power
spectrum of the real output field envelope makes this pre-
cise [Fig. 6(c)]. Note that, as anticipated, several harmon-
ic components with reasonable power levels are also ob-
servable.

t0

A. The good-cavity limit

In the good-cavity limit, unstable bands of sidemodes
may develop symmetrically on either side of line center; of
course, a very different dynamic response can be expected,
depending on the intermode spacing and on the total
number of unstable modes. Note that according to the
model discussed in Sec. II, the cavity damping rate a and
the intermode spacing cYt are in a fixed relation with one
another [~=(

~

lnR
~
/2~)a~], so that for given values of

the mirror reflectivity and cavity length W, ~ is also
fixed. On the other hand, real systems are likely to suffer
non-negligible losses also from a variety of optical com-
ponents besides the cavity mirrors. For this reason, we
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FEG. 5. Comparison between the real parts of the unstable

eigenvalues obtained from the exact equation (4.10) and its
mean-field limit (4.11). The parameters used in this simulation
are aL =10, R =0.65, mode spacing =3.0, y=0. 1.

M

FIG. 6. (a) Real part of the unstable eigenvalue for different
values of the intermode spacing a viewed as a continuous vari-
able. The parameters used in this study are aL =2, R =0.95,
y=0. 5, al ——5, and 2C=39. (b) Amplitude F(L, t) as a func-
tion of the scaled time yjt. (c) Power spectrum of the output
field on a semilogarithmic scale.
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A second test is displayed in Figs. 7(a)—7(c). Here the
parameters have been selected so that the second sideband
at frequency c72 ——2 falls within the instability region,
while the first sideband is stable in the sense of linear sta-
bility. With the laser initially in a nonlasing state, the ini-
tial evolution of the output field displays a transient oscil-
latory pattern with a frequency of pulsations equal to a&.
Gradually, however, a higher-frequency component
develops [Fig. 7(a)] and eventually dominates [Fig. 7(b)].
This frequency is, in fact, equal to c72 as confirmed by the
power spectrum of the output field [Fig. 7(c)]. Note that
the actual value of the fundamental frequency as mea-
sured from the power spectrum is not exactly equal to 2
because of frequency pulling effects. The correction,
however, if of order v=8.2)& 10 and thus very small.

%"ith such a limited number of harmonic components

JI
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FIG. 7. (a) Amplitude F{L,t) as a function of the scaled time
yjt for aL =2, R =0.95, @=0.08, o. ~

——1, and 2C =39. The in-
itial conditions correspond to a state with zero field, zero polari-
zation, and complete inversion. The frequency of oscillation is
approximately equal to cY& during the initial phase of the evolu-
tion; at later times, the field develops a modulation which even-
tually is the origin of a pulsation frequency equal to cY2 (the fre-
quency of the unstable mode). (b) Long-time evolution of
F(L, t); the frequency of pulsation of the field amplitude corre-
sponds to a&. (c) Power spectrum of the output field on a semi-
logarithmic scale.

in the exact solution, it is not unreasonable to expect that
a five-mode truncation (n =0, +1,+2) of the modal
hierarchy should reproduce the basic features of the oscil-
lations rather faithfully. Using the same initial conditions
as in the previous case, an initial transient pulsation at
frequency a~ ——1 displays a gradual modulation that even-
tually dominates for long times. The long-term solution
is exactly sinusoidal with a frequency a2 ——2 and displays,
of course, no harmonic components. The exact oscillation
amplitude is reproduced, however, with a fairly large er-
ror ( =30%).

%'hen. the. intermode spacing is considerably smaller
than unity, entire bands of sidemodes can become unstable
if the gain is sufficiently high. The evolution of the sys-
tem, starting from an unstable stationary state of the MB
equations, is characterized, at first, by a small amplitude
oscillation with a frequency that corresponds rather close-
ly to that of the unstable mode with the largest real part
of the eigenvalue [Fig. 8(a)]. This is followed by a pro-
gressively more and more complicated amplitude modula-
tion which is probably connected with the growth of addi-
tional unstable modes [Fig. 8(b)]. The fully grown pattern
[Fig. 8(c)] displays very little in the way of apparent regu-
larities except for a beat pattern at a frequency approxi-
mately equa1 to cY&, probably because the relative phases of
the individual modes undergo a slow temporal drift. The
power spectrum is quite revealing, however. As shown in
Fig. 8(d), the spectrum of the output field consists of a
fundamental band of regularly spaced lines (the spacing
between lines is equal to the selected intermode spacing)
and its harmonic components. In addition, a narrower
band of low-frequency beat notes is very prominent near
the origin of the frequency axis.

The picture suggested by the spectrum of Fig. 8(d) is in
qualitative agreement with Haken's suggestion that the
evolution is governed mainly by a packet of modes whose
amplitude is a slowly varying function of space (as well as
time, from the point of view of an observer at the exit
port of the cavity), with an oscillation frequency roughly
assigned by the most unstable mode and a frequency
spread of the order of the instability range. A precise
correlation between Haken's proposal and the type of
behavior displayed in Fig. 8 will require additional analy-
ses.

Matters are made more complicated by the presence of
a chaotic attractor which appears at higher values of the
gain [Figs. 9(a) and 9(b)] and by the tendency of high gain
solutions to abandon the original oscillating pattern and
to adopt a striking square-wave shape [Figs. 10(a) and
10(b)]; in the latter case.the real field envelope has a much
smaller average value than shown, for example, in Fig. 8,
in closer qualitative agreement with the observed pulsa-
tions of the experiments by Hillman et a/. , where the en-
velope of the oscillating field presumably has a zero aver-
age after the quenching of the resonant laser component.
The frequency of these square waves, however, is c7~-
regardless of the Rabi frequency. These solutions are
highly suggestive of the existence of additional neighbor-
ing attractors whose role in the overall picture is very
much an open matter at this time.

The square-wave shapes obtained "spontaneously"
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FIG. 8. First phase of the transient evolution of the field amplitude in a case when several of the sidebands are simultaneously un-

stable (in this case, three sidemodes on each side of a„=0 are unstable according to the linear stability analysis). The overall evolu-
tion from t =0 to the end of (c) required many thousands of time units. In these figures the origin of the horizontal time axis is al-
ways reset to zero. The parameters used in this simulation are aL =0.54, R =0.95, mode spacing =0.05, y=0. 1. The cavity damp-
ing rate is set equal to 0.1 to accelerate the approach to steady state. Other simulations have been carried out with the theoretical
value of sc without appreciable differences in the final results. (b) A subsequent phase of the transient evolution of the field amplitude.
The slowest modulation of the pattern corresponds to a frequency 0.04 which is approximately equal to the intermode spacing. (c)
Fully developed oscillation pattern of the output field amplitude. (d) Power spectrum of the output field on a semilogarithmic scale.

under the influence of large chaotic pulsations have a
strongly attracting domain of existence, as we tested by
degrading the time-dependent solution with the injection
of numerical noise and by performing an adiabatic scan
for decreasing values of the gain parameter practically
down to the laser threshold value. Furthermore, suffi-
ciently large levels of numerical noise (obtained with a
uniform random number distribution having a width of
about 10%%uo of the output intensity) can perturb the laser
steady state, even under low gain conditions, and force the
system to jump into the square-wave attractor.

Solutions of the symmetric type have also been found to
exist and to evolve stably. In testing this point we have
selected, as initial conditions, the stationary values of Eqs.
(3.8) as the only nonzero modes for the Fourier expansion
(3.1) of the MB variables. When the mode spacing ai is
sufficiently smaller than unity (e.g., ai ——0.05 as in Fig.
11) periodic square-wave solutions for the field amplitude
develop with a fundamental frequency given by a„and a
zero average value of the real field F(L,t') (this is a
characteristic feature of the symmetric solutions). By an
adiabatic scan of the gain parameter, under conditions
(3.11), the symmetric solutions have been found to disap-

pear discontinuously at C =C;„(see Fig. 3) in agreement
with the indications provided by the state equation for

! f„! obtained from the five-mode model. For values of
a„smaller than the right-hand side of Eq. (3.11), the am-
plitude of the symmetric solution approaches zero as C
approaches C,b, from above; for C & C,i,„the only stable
state is the stationary solution of the MB equations. In all
cases we have seen evidence that the domains of attraction
of the symmetric solutions are isolated from the ordinary
steady state because of our inability to reach them in other
ways than by the assignment of the appropriate initial
conditions and that, furthermore, the temporal behavior
of the symmetric solution is qualitatively described by the
five-mode theory of Sec. III.

B. The bad-cavity limit

The relation a =(!1nR
! /2ir)a& between the intermode

spacing and the scaled cavity decay rate puts stringent
limitations on both A and a& if one wants to ensure that ~
is sufficiently larger than unity. Thus, for example, with
a reflectivity coefficient equal to 0.7, one needs a mode
spacing cY~ of the order of 25 so that ~=1.S. In this re-
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FIG. 9. (a) At a higher gain value than used in Fig. 8, the

long-term solution develops sharp irregular bursts which are a
symptom of erratic behavior. The parameters used in this simu-
lation are uL =0.62, R =0.95, mode spacing =0.05, @=0.1,
~=0.1. {b) Power spectrum of the output field on a semiloga-
rithmic scale. Note the broadband structure of the spectrum.
The low-frequency, evenly spaced peaks are at a distance
u& ——0.05 from one another.
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FIG. 10. (a) For sufficiently high gain values, the transient

oscillation develops a pattern which is reminiscent of intermit-
tency phenomena. The parameters used in this simulation are
aL =1.54, R =0.95, mode spacing =0.5, @=2, x=0.05. (b)
The long-term solution eventually develops a square-wave
shape.

rather surprising and wi11 be the subject of a subsequent
separate investigation.

gime the interaction of the central mode, which can now
become unstable, and the nearest sidebands may be quite
weak. It is then reasonable to inquire into the ability of
the single-mode approximation to provide a good quanti-
tative description of the unstable dynamics of the central
mode.

Two interesting facts emerge on exploring this issue:
First, for sufficiently small values of y the unstable cen-
tral mode does not display chaotic oscillations beyond the
self-pulsing threshold, but instead displays periodic pulsa-
tions with a periodicity that depends on y, and second,
even for rather large mode spacing, c7~, the agreement be-
tween the single-mode approximation and the exact solu-
tion of the MB equations, is rather poor, away from the
mean-field limit (Fig. 12). Thus, the single-mode approxi-
mation is questionable in general, even if the nearest side-
bands are very far from the central mode, and becomes
acceptable only if R approaches unity and if aL is suffi-
ciently small. The reason for this discrepancy can easily
be traced to the spatial dependence of the atomic vari-
ables, away from the mean-field limit [see Eqs. (2.7) and
(2.4)].

The appearance of regular, instead of chaotic, pulsa-
tions in the single-mode model for small values of y is

VI. CONCLUSIONS AND OVERVIEW

This investigation on the behavior of a multirnode laser
was stimulated by the discovery of unstable pulsations in
a ring dye laser system by Hillman et al. We have
stressed in the Introduction and reviewed in greater depth
in Sec. V that we are still very far from a satisfactory
understanding of the origin of this instability. Thus,
while the MB equations for a multirnode laser give clear

10—

F- Q
1000

-1O ~

FIG. 11. Example of a symmetric square-wave-like solution
generated from the initial conditions given by Eqs. (3.1); the pa-
rameters used in this simulation are aL =0.1, R =0.95, mode
spacing =0.05, y =0.1, ~=0.1.



1574 I.UGIATO, NARDUCCI, ESCHENAZI, BANDY, AND ABRAHAM 32

30—

20—

10—

. )I
0 50 t 100

FIG. 12. The solution of the MB equation and of the single-
mode approximation (taller spikes) are overlapped in this simu-
lation corresponding to aL =15, R =0.7, mode spacing =50,
@=0.01, ~:—4. The two regular trains of pulsations differ both
in amplitude and frequency.

evidence for a much richer and complicated behavior than
anticipated, no single set of operating parameters and con-
ditions has yielded solutions that match all the key experi-
mental signatures of the effect. These are probably best
summarized as follows.

(1) The instability threshold is only slightly higher than
the ordinary laser threshold.

(2) The instability is accompanied by a discontinuous
increase of the average output power.

(3) A gain scan displays hysteretic behavior of the out-
put intensity; this suggests the presence of coexisting
domains of attraction.

(4) Above the instability threshold, the resonant laser
mode is suddenly quenched and the output power is
shared apparently in an even way between two symmetric
sidebands which emerge abruptly with a finite spectral
separation.

(5) The spacing between the excited sidebands is a
monotonically increasing function of the circulating cavi-
ty field, i.e., it depends on the Rabi frequency of the tran-
sition. Thus, a rate equation analysis of this problem is
not appropriate.

(6) The experimental setting is such that al «1, i.e., a
large number of cavity modes are comprised within the
unsaturated atomic line profile.

With reference to our own simulations, the following
comments can be made.

(1) According to the linear stability analysis, unstable
sidebands emerge symmetrically at a distance from line
center which is a monotonically increasing function of the
Rabi frequency. This is true both within and outside the
mean-field limit. However, the threshold gain for the em-
ergence of this type of instability is several times larger
than that required for laser action. Thus, our time-
dependent solutions, in the case cY& « 1, reveal the qualita-
tively correct spacing between the excited sidebands, but
large gain values are required to produce this effect.

(2) The excitation of the sidebands produces a competi-
tion between the resonant laser mode and the nonresonant
spectral lines; the central mode, however, is never
quenched, according to the numerical solutions.

(3) Noise injection into the model creates solutions with
a much smaller average power at the resonant frequency

APPENDIX: DERIVATION OF EQS. (4.9)

The purpose of this appendix is to sketch the derivation
of the state equation for the symmetric five-mode model
discussed in Sec. IV. The starting point of this analysis is
the set of equations (4.8). We seek steady-state solutions
of the form

do dO~ d2 d2 e
(Al)

where v is the unknown frequency of oscillation of the
s1dcband f~ Illcasulcd IclRtlvc to tllc ccIltcI' of thc Rtollllc
line. With the help of Eqs. (Al), Eqs. (4.8) take the form

than at the sidebands; still, the resonant mode is not fully
quenched and, in any case, the fundamental frequency of
the osci11ating solution is now close to the intermode spac-
ing cY& (and, thus, is independent of the Rabi frequency).

(4) Discontinuous behavior has been observed with sym-
metric solutions. However, the connection between these
solutions and the observed experimental features is tenu-
ous. The excitation of symmetric solutions requires rather
special initial 'conditions, and the pulsation frequency is
fixed and independent of the Rabi frequency. It is in-
teresting, on the other hand, that at least in principle an
infinite number of such solutions exist and that all of
them are consistent with a zero amplitude of the resonant
mode.

(5) II1 tllc bad-cavity 11111lt, a sltuRtloll wlllc11 docs llot
relate to the experiments of Ref. 9, we; have observed
periodic and chaotic solutions of the single-mode I.orenz-
type equations. The appearance of periodic solutions is
confined to sufficiently low values of y apart from the
usual windows in chaos. A comparison between the solu-
tion of the exact MB equations and the single-mode model
reveals good quantitative agreement only in the mean-
field limit. This result should serve as a warning against
an uncritical use of modal expansions. On the other hand,
precise criteria for the validity of the truncated modal
equations are still lacking and in need of further investiga-
tions.
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where vq=v/yq and v~~
——v/y~~. A convenient strategy to

solve the algebraic system of equations (A2) is to solve for
ps from Eq. (A2b),

3
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(f.do+f d-2-. »—t Vg
(A3) Equations (A4), (A5), and (A3) lead to

and to substitute this result into Eqs. (A2c) and (AZd).
These can now be solved for do and dz„with the result

f„(1—Ziv~~)
I'n =

(1—Ziv[~)(1 —t v[[)+ I f; I

' (AS)

do = —2/B, (A4)
If we now substitute Eq. (AS) into Eq. (A2a) and separate
the real and imaginary parts, the required result follows.
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