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Nondegenerate four-wave mixing in a single-mode optical fiber is proposed as a method of
squeezed state generation. An analysis of the near-degenerate mixing process for forward propaga-
tion in realistic fibers is presented along with the theory of an experimentally feasible detection stra-
tegy. The effects of the quantum nature of the optical nonlinearity and absorption are modeled by
treating the fiber medium as a collection of anharmonic oscillators. Methods of suppressing un-
desired effects such as stimulated Brillouin scattering are presented as is a technique for providing
the phase-shifted local oscillator wave necessary for the detection of squeezing. Preliminary experi-
ments on fiber characterization and the detection of four-wave parametric fluorescence are

described.

I. INTRODUCTION

Quantum noise theory predicts states of optical radia-
tion in which the fluctuations are not distributed uniform-
ly in phase, as in a coherent state, but rather show less
fluctuations in one phase quadrature and more in the
orthogonal quadrature.'™ Such “squeezed states” of light
are predicted to yield quantum-limited detection sensitivi-
ty well above the standard quantum limit in a variety of
homodyne and heterodyne experiments. While various
proposals have been made for methods of generating such
states, so far squeezed states have eluded experimental
realization. (For preliminary reports on current experi-
ments, see Refs. 4—6.) This paper proposes a new class of
squeezed-state generation devices based upon the third-
order nonlinearity of single-mode optical fibers. The dif-
ficulties inherent in such generation schemes are different
from and perhaps more tolerable than those involving the
nonlinearities of isolated atoms and nonlinear crystals.

The history of the squeezed-states field is one in which
practical and fundamental difficulties overlooked in initial
proposals later proved intractable enough to prevent ex-
perimental progress. Originally, squeezed states were
called “two-photon coherent states” because of the expec-
tation that a two-photon laser operating well .above
threshold would produce such radiation.? It was later
realized that spontaneous emission would mask any
squeezing produced by such a laser even if a near-
degenerate two-photon laser could be operated.”® Later
proposals involved parametric amplification®'® (or
second-harmonic generation!""'?) in crystals showing a
second-order optical nonlinearity.!> Photorefractive-index
damage and low-frequency light scattering in crystals
needed in such experiments and the incompatability of
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available laser and detector technologies seem to make
such methods prohibitively difficult at present.

Recent research has focused on degenerate four-wave
mixing as a method of demonstrating squeezed states.!4—2!
The main conceptual difficulty has been to create a
squeezing effect large enough to detect using a process
that is intrinsically very weak in all transparent media.
Atomic systems—where near-resonant transitions enhance
the optical nonlinearity—have attracted particular atten-
tion, as has the possibility of enclosing the medium in a
single-port cavity.?=23 Detailed calculations and initial
experiments for the near-resonant case have demonstrated
the importance of noise arising from the inadvertent
creation of an ' excited-state population.'®2!  While

- squeezed states may yet be demonstrated using an atomic

medium, the medium and laser parameters necessary to
produce a detectable reduction in quantum noise in the
presence of nonideal noise from the interaction itself are
rather beyond current technology. We were therefore led
to consider extreme off-resonant interactions and to re-
cover a detectable squeezing effect by tight focusing, high
density, and long interaction lengths. Such requirements
led naturally to the proposal to use an optical fiber. Pre-
liminary experiments, however, revealed difficulties
unique to the fiber geometry.

Section II of this paper outlines the theory of four-wave
mixing (4WM) in an optical fiber in sufficient detail to
calculate the parameters needed for squeezing. Those pa-
rameters are shown to correspond to the “ideal-noise”
case of an ensemble of anharmonic oscillators driven far
off-resonance. The heterodyne-homodyne detection of
squeezed states produced by nondegenerate four-wave
mixing is then described. Deleterious effects due to
acoustic interactions in the fiber—principally the stimu-
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lated Brillouin effect—are described and methods pro-
posed for suppressing them.

Section IV describes a proposed experiment for generat-
ing squeezed states in an optical fiber employing a
traveling-wave geometry. A second experiment using a
ring resonator will be the subject of a later paper. Tests of
experimental feasibility will be described and discussed.

II. SQUEEZED-STATE GENERATION
AND DETECTION WITH A SINGLE-MODE
OPTICAL FIBER

The optical fibers which are used in our experiments
consist of ~90-um-diam cylinders of high-purity fused
silica, with a core of slightly higher index material. Down
the axis, light is guided by the index of refraction gradient
of the core and is propagated as a quasi-Gaussian beam
with mode radius w~=2 pum with an attenuation coeffi-
cient of <14 dB/km. No higher-order modes are guided,
and while one may initially assume that the fiber is free of
birg{ringence, polarization states.cannot be clearly separat-
ed.

In such a system, the only feasible way to distinguish
the pump input and output waves in four-wave mixing is
by frequency. Consider a pump wave of frequency o,
propagating in the positive z direction with amplitude
E(w,). The pump wave couples a copropagating probe
wave with frequency and amplitude w, and E(w,) to the
complex conjugate of a signal wave of frequency
®3=20;—o, and amplitude E (w;),?

aE(w3) 13(03 (3) 2 % a

%~ one fiXE“w))E (a)z)—-2—E(co3) , (1)
0E(w;) 3wy . 5, * a '

% - 2ne f2 XV E“(w))E (w3)——2—E(w2) ) (2)
where

X =x(03,01,0;, —a,)
=0.5%10"1* esu~0.6x10~2 mks units

is the optical nonlinearity (for constant parallel polariza-
tion), and a~=~3X10~3 m~!, the attenuation coefficient
for silica fibers. Equations (1) and (2) are in mks units; in
the more familiar esu system, the first term on the right
of the equal sign must be multiplied by a factor of 4.
The E(w;) are the Fourier amplitudes of the electric
field
E(r,t)=7 > E(w;)F;(x,pe
J

—iw;t +ik;z

Je T 4c.c. (3)

In Egs. (1) and (2), the transverse spatial profiles are
specified by the dimensionless functions F;(x,y).”> The
overlap factor

_ f | Fi(x,p) | 2F5(x,p)F3(x,y)dx dy
- f | Fj(x,) | %dx dy

has been employed to account for any mismatch in beam
profiles. The frequency shift e=w;—w, has been as-
sumed small enough that phase-matching considerations

fi @)
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can be neglected.?® In practice for a 100 m length of
fiber, this approximation is justified up to e=w,—w,~1
GHz, in which case £/w; <2X 10~

The dimensions of E are V/m in Egs. (1)—(3) and the
intensity has the dimensions W/m?. It is more convenient
and customary in quantum optics to express optical field
amplitudes in uhits such that the square of the amplitude
is proportional to the number of quanta in the field; such
a parametrization requires the definition of a quantization
volume.?’ For traveling waves in an optical fiber, it is
more useful to define the field in terms of the number
of quanta per second passing through the area
Aj=f | Fj(x,p) | %dx dy /| Fj(0,0)|> of the confined
mode. Since in our experiments all optical frequencies are
very near w;, the intensity of each frequency component
COJ is

Rncey
L==

The power and the intensity in the guided mode are relat-
ed by I;4;=P; and the quantization volume is Vo =4;l,
where [ is the fiber length.

The pump field can be treated classically, but correct
description of squeezed-state generation requires the probe
and signal amplitudes to be described by operators

|E(0;)]|?. (5)
J

172

~ Fiw

E(w;)= ;;‘Q— a, (6)
172

= Fiw

E(w;)= -e‘i‘/z as, (7

where a, and a3 obey the boson commutation relations
T
[aisa j 1= 8ij

and e=n%, The quantized equations describing four-
wave mixing corresponding to the classical Egs. (1) and
(2) are

d .
Ez—a2=—tKE2(w1)a§ , (8)
40— ik*[E*(w)]a, ©)
dz ’
where
3601
K% ;;h()(m( — 03,001,001 —0)))

is the coupling constant. The average over X ) accounts
for the possible effects of varying polarizations within the
fiber. Loss has been ignored and f, has been assumed
equal to f3. These operator equations follow from the in-
teraction Hamiltonian

#=#kEXw)atal +H.c. (10)

with z =ct /n. ]
The solutions for the operators at the end of the fiber

z=1[are
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ay(l)=a,(0)cosh[ |« | | E(w)|?]

E*w;) )
—ia}(0)———2X _sinh[ || |E(oy)|4],
|e| |E(e)| :
(11a)
as(I)=as(0)cosh[ |k | | E(wy)|?] :
" kE* ;) . )
— 0)———————sinh E(w;)|“1].
ia}(0) = sinhl x| | E(w,) 1]
(11b)

The case with finite loss has been treated in Ref. 17.

For the case where the input to the fiber in modes at w,
and wj are only vacuum fluctuations, the mean amplitude
at the output is

for j =2,3 and the mean-square amplitude
= 1 fiw; |y
(| E(w;,D | 2>='g"—.’/';_(ajaj>

fiw;
- GVQ

xsinh?[ |k |1 | E(w)|*] << | E(w,D) |2 .

(12)

The wave emanating from the output end of the fiber at
z =1 is a superposition of the components at the three fre-
quencies

E(z=D~[E(@pe " +E(wye "
+E(w3)e—iw3t]+c.c.

A unit quantum efficiency detector placed in the output
beam from such a fiber would produce an average electric
current equal to the electron charge times the average
photon flux I, /#w; due to the pump wave. Fluctuations
in the intensity due to beating between the pump wave
and the two weaker waves would produce ac detector
currents at the beat frequency. The mean square of these
ac currents represents a detector noise power which can be
measured electrically.?® The current i(¢) produced by a
unit quantum efficiency detector due to an instantaneous
light intensity 7 (¢) is

i(t)=%l(t)/1 , (13)

where e is the magnitude of the charge on the electron, 4
is the area of the detector, and o is the frequency of the
light. It is convenient to resolve the detector current into
Fourier components i(€) and to relate these components
directly to Fourier components of the intensity.

The local oscillator wave (which is derived from the
pump wave) reaches the detector with an amplitude that
can be treated classically. We define a local oscillator am-
plitude E;o and introduce a phase ¢/2 being the phase
difference between the local oscillator and the pump as
well as a pump attenuation coefficient .77, both defined at
the exit plane of the fiber as

ELO=&*E(a)l)eiqS/Z:ERei(O-Hﬁ/Z) . (14)

The complex amplitude is written as JE (w;)=Ege®®
where 0 is an absolute phase that may vary slowly in time
as the pump phase diffuses, and Ey is real. The dom-
inant contribution to the 540 Fourier components of the
intensity at the detector result from beating between this
classical local-oscillator wave and the frequency-shifted
signal and idler waves which are treated quantum
mechanically. The appropriate operator is

{ Efo(0)[E(w;+€)+E(w;—¢)]
+EL0(601)[E T(wl+8)+ET(wl_g)]]
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ncey *
[Efo(w)ay+a3)

2

o
GVQ

+ELo(co1)(a;+a§)] (15)

and the average detector current at frequency ¢ is
(ile) =<2(T(e)) . (16)

In (15) and (16), € has been assumed large enough that
technical noise on the local oscillator is absent.

Electronic spectrum analyzers measure the power in an
electrical signal at frequency € within an electronic band-
width Ae. For a photodetector producing a current i(z),
the electronic-power spectral density is

N(e)=(i*e))R , (17)

where R is the electrical resistance. Thus, the quantity
measured when optical signals and noise is detected on the
spectrum analyzer is

2

N(e)= A*R{I%(&)) . (18)

It is convenient to define the variance of the Fourier com-
ponent of the (current and) intensity at frequency &,

Vile)=(IXe)) —(I(e))? .~ (19)

The case of e=0 where the pump wave beats with itself
has been purposely omitted. When (E(w;))=0 for
Jj=2,3, the quantity experimentally measured, N(g), is
directly related to V;(¢) by

2
Vi(e)A2R . (20)

e

N(e)= oo

We shall now show that the experimentally measured
quantity N (e) describing the electronic fluctuations at
frequency ¢ is directly related to the quadrature phase am-
plitudes at modulation frequency € by calculating the
variance V;(g,¢) of the detected intensity at the end of the
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fiber. We write

a+as

e =

One can define a variance of the field components at
phase ¢/2 and frequency shift € which is analogous to the
variance defined previously for the degenerate case:!:2°~3!

V(e,¢)=cosX(¢/2+ (X)) —(X,)?)

+sinX(¢/240)((X3}) —(X,)?)

(X1 X,)+(X,X,)
2

—sin(¢ +20)

— (X ){Xy) ] . (22)

The variance of the intensity at the detector is then

Vi(e,¢)={I*e))—(I(e))?

2
c“ephiw
=220

| E(wy) |*V(e,8) , (23)

or in terms of the local-oscillator intensity,

s¢)— ILOV(s ). (24)

The relevant f1e1d quadrature variance may also be ex-

panded in terms of e, giving

Vie,p)=+++[2(eTe) —2¢eT)(e)
+e~i-26((p2) _ (¢)?)
+ei¢+2i8(<e’r2>__<e‘r)2)] . (25)

The spectral density of the noise power is
e)dde=(i%e))R de

24_ 4fioc
fiw n VQ

ILoV(€,¢)R de , (26)

where R is the resistance of the detector. Note that for
E(w,) and E(w3) in vacuum states, the usual coherent
state results are obtained %’

V(E’¢) ’ cohz% ’
VI(£’¢) Icoth‘ILO . (27)
n VQ
Squeezing occurs when the noise in Eq. (26) is less than
ecA?
Ncoth VQﬁa) ILO . (28)

The factor cA /nV represents an intrinsic bandwidth due
to the time of propagation down the fiber of volume V.
The area A is formally that of the detector, but may be
assumed equal to the fiber mode. The nonlinear interac-

=X +iX, . @1

tion [described by the Hamiltonian (10)] in the fiber alters
the variance of the quadrature amplitude operators. We
find for the initial state of a, and a; in the vacuum

(e)=(e"y=0=(e)?=(e")?, (29a)
(efey=(ala,)=sinb?[ |k | |E,(0)|¥], (29b)
<e2)=(a2a3)=—i'l(—22|i—ecosh[|:c| | E(w)|21]

xsinh[ |k | |E{(w)|%], (29¢c)
which yields

V(e,d)= 5+ 3sinh’[ |«| | E(wy)|?]

+ 3Im |e—i* cosh[ |k | | Ej(wy)] 2]

|« I
xsinh[ |k | | Ey(e;) | 4] . (30)

We note that the variance ¥'(e,¢) is independent of the
absolute phase 0, and thus insensitive to phase diffusion
of the laser source.’? The nonlinear susceptibility of glass
is known to be real and positive at the frequencies of in-
terest.”> The coupling constant k must then be real and
positive for an optical-fiber medium. Hence, the optimal-
ly squeezed component is measured if one selects ¢ =1 /2.

For ¢ =0, the noise spectral density is increased and the
output of a fiber is more noisy than the coherent-state in-
put. However, if the phase of the local oscillator could be
shifted by /4 with respect to the transmitted pump (i.e.,
¢=m/2), the detector-noise spectral density would fall
below that of N y(e) and thus squeezing would be
demonstrated. Such a phase shift can be accomplished by
a variety of interferometric techniques, one of which will
be described in Sec. IV.

III. ANHARMONIC-OSCILLATOR MODEL
FOR AN OPTICAL FIBER

The calculation of the preceding section treats the non-
linear susceptibility of an optical fiber as a classical quan-
tity. Previous publications have shown, however, that
such a treatment is an approximation at best, and that the
true quantum nature of X®  can produce additional
noise.'® It is thus instructive to parametrize the linear and
nonlinear optical properties of silica-glass optical fibers in
terms of some solvable quantum model and to see the ex-
tent to which a classical approximation applies. A quan-
tum model also facilitates correct treatment of fiber at-
tenuation. The quantum model chosen was = the
anharmonic-oscillator treatment of Reid and Walls.*?
The relevant optical parameters of glass fiber are the in-
dex of refraction n =1.45, the atomic absorption constant
a=3%10"3 m~!, the effective nonlinear susceptibility
6X =3 10" cm3/erg~4x 1072 mks. The laser fre-
quency w~3X 101 sec™! was assumed to lie far below
any transition from the ground state. The anharmonic-
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oscillator analysis requires assignment of model values of
the glass. The Classius-Mossotti equation for the complex
index of refraction
2

nollX 31)

n*4+1 3 :
relates n=ng +in; to the complex susceptibility of the
medium X=X'+iX" (in mks units). Since ngz >>n; and
X'>>X", Eq. (31) can be directly applied to yield X’. The
imaginary part of the susceptibility X'’ can be related to
fiber attenuation constant a by expanding Eq. (31) and
keeping the first nonvanishing imaginary terms
2

()
—X". 32
nge X (32)

n§+2
3

()
a=2n;—=
c

For typical fibers with ng=1.45 and a=3X10"3 m,
these formulas yield X'=0.81 and X" =4x10~!1,

The Hamiltonian for the anharmonic-oscillator model
considered for the medium by Reid and Walls®3 is given
by

o =10b"b + 7w (bT)%b2

3 t= —imjt =1 imjt
+ﬁg21[b E(wj)e +bE ((wj)e V']
j=

+bTh+b'T (33)

where Q is the oscillator frequency, b is the oscillator
operator, and E(w;) is the pump field. The weak side-
band fields are represented by E(w,) and E(w3) as defined
in Egs. (6) and (7). The field-oscillator coupling is speci-
fied by the parameter

172

@
T (34)

#Vy

g:

where p is the dipole-moment operator and ¥V, is the
quantization volume. The reservoir operators I'g and 'y
give rise to a loss rate I'. The nonlinearity parameter W
is responsible for the interaction that gives rise to squeez-
ing. The work of Reid and Walls!'®2!:33 shows the squeez-
ing in the output field to be a function of two scaled pa-
rameters, namely, the scaled detuning §=(Q —w;)/T and
the scaled medium intensity |By|2 In the perturbative
regime (satisfying | 8| >> | By|?), | Bo|? is related to the
driving field intensity as follows:

2
| Bo| >= ;/ig_'ﬁ |E(wy)|?. (35)

In order to calculate the values of & and |f,|? corre-
sponding to the experiment, we fit the model to the ap-
propriate X'* values for the glass fiber. The equations for
four-wave mixing in a medium modeled by anharmonic
oscillators are derived in Ref. 33. After elimination of the
oscillator variables, the following equation is obtained for
the c-number stochastic field amplitudes a; =(a; ) of the
weak fields (j =2,3):

a;=—igP;, (36)
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where P; is the medium polarization which may be ex-
panded in the perturbative regime as

4
P;=¢ S XV E(o) | *al_;

) (X" +iX")atj +6

n42

+ Fj(t)] , (37

where the factor of 6 in the second term results from per-

mutation symmetry, and mks units have been assumed.*
Reservoir fluctuations are represented by the fluctuat-

ing force Fj(¢). The anharmonic-oscillator model of Reid
and Walls>?® gives

ajz_(yR-f-zyI)aj—tIa;_,+l"(l‘), (38)

where I'(¢) is a fluctuating force. In the perturbative re-
gime,

2C

= =e€gX",
YR 1+82 o8
71=——lzf§2 =egX’, (39)
—4
4C n42
|x|=‘118—2130|2=660 3 ’ 21X | E@)]?,

and 2C=eog2N /T, where N is the number of oscillators.
The phases have been set to correspond to the fiber case.
The nonlinear optical susceptibility of the medium is con-
tained in the parameter X¥ which has been defined to in-
corporate the local field correction effects.!3

Immediately, we see the scaled detuning is simply the
ratio of X' to X"/,

§=—"—=-—=2%101. (40)

In fact, the anharmonic-oscillator model predicts that for
6> 10, the only factor destroying squeezing is the loss pa-
rameter Y, i.e., the ratio of loss to coupling (yr/| X|)
must be small for good squeezing. This ratio is in fact re-
lated to the intensity parameter |fB,|2. Examination of
Eq. (39) shows

| Bo | 2= | 3242)7* X |E(ey)|?
0 2y X"

2| E(w)|?
a

n242
3

, (41)

where the last equation expresses (B)? in the same terms
as Egs. (1)—(30), with constant polarization.

A 100 m length of fiber with a 2 um radius core has
quantization volume Vp=1.2X 1073 em®=1.2x10""°
m3. With 1 W of laser power in that core, the intensity
is 80 GW/m? which implies |E(w,)|?=2.3x10*
erg/cm*=2x 10" V¥/m2. Thus, |B,|? is of the order of
3. Clearly, the perturbative condition (8>> |fB,|?) as-
sumed above is satisfied.

One might object that many aspects of this model are
naive. For example, one might anticipate that phonon
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broadening and other effects should increase the homo-
geneous linewidth of a room-temperature fiber beyond the
value given in Eq. (39); however, the fact that the phonon
spectrum is bounded by a frequency many times less than
the detuning ) —w implies that phonons can have no ef-
fect on the far-wing absorption. In the anharmonic-
oscillator model, those wings are correctly described as
due only to radiative effects which are not bounded in fre-

quency. The values we obtain for I" and 8§ are consistent -

with radiative damping. The parametrization above is ad-
mittedly grossly oversimplified and somewhat pessimistic.
The actual attenuation, e.g., in an optical fiber is due
mostly to light scattering and not due to absorption by the
transitions responsible for the index of refraction. Even
so, one can employ this model to estimate the additional
noise produced by the quantum nature of the medium
under the conditions of our proposed experiment.

The appropriate phase-matched equations for the weak
fields are derivable directly from Eq. (38). These have
been solved by Reid and Walls? and the variance V(e,d)
derived as a function of |B,|? for the scaled detuning &
given above is plotted in Fig. 1. The curves are insensitive
to the precise value of 8, provided § > 10. At lower inten-
sities (| By|2<1), attenuation of the medium dominates
and minimizes the squeezing otherwise possible due to the
nonlinear coupling. At high pumping powers, the quan-
tum anharmonic oscillator does not contribute excess
noise to the optical fields, even in the presence of
moderate absorption. Thus, one might imagine that the
model of Kumar and Shapiro!” which treated the loss and
medium in a phenomenological manner is validated by
this result. In particular, the length of the fiber does not
affect the squeezing for al <1 and |By|%> 1.

However, the absence of noise contributed by the
quantum-mechanical medium may result from the choice
of an anharmonic-oscillator model to describe the medi-
um. Other models'®2!—particularly the two-level atom
model—are known to predict excess noise at high pump
powers and thus lead to reduced squeezing, especially at
moderate values of the detuning 8. We also attempted to
fit the optical-fiber nonlinearity to a two-level atom
model, and generally succeeded except that the sign of the
optical nonlinearity was incorrect. In a two-level atom
away from resonance, nonlinear effects must act to reduce
the magnitude of the total susceptibility. Since the linear
susceptibility is positive (n > 1) below resonance, the non-
linear susceptibility must be negative.

General considerations, similar to those used here to fit
the fiber data to the anharmonic-oscillator model, resulted
in a reasonable parametrization of a model two-level atom
medium with a nonlinearity having the correct magnitude.
The methods of Reid and Walls!®?! then showed that
even that medium would produce squeezing consistent
with that predicted for the anharmonic-oscillator model at
the power levels accessible in our apparatus. The excess
noise resulting from population of the excited state was
insignificant since the detuning 8 from resonance was so
great that sufficient nonlinear interaction took place with
negligible population transfer. The fact that two quantum
models that differ so greatly in their details predict
squeezing comparable to the Kumar-Shapiro model'’
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FIG. 1. (a) Field quadrature variance as defined in Eq. (25) as
a function of the nonlinear coupling. Curve a is the result of
the anharmonic-oscillator model /=100 m and a=3Xx10"3
m~!. In that case |By|%’=k|E(w;)|%. Curve b is an
anharmonic-oscillator result for /=100 m and a=1x10"3
m~!. This case corresponds approximately to a length of fiber
with 0.5-dB loss or a/=0.12 as described in the text. The value
of |Bo|? is 3.3x | E(w;)|? for this curve. Pump attenuation
and depletion have been neglected. Curve ¢ shows the semiclas-
sical results of Eq. (30) in which loss has been ignored. All three
curves are consistent with the semiclassical theory of Ref. 17.
The box indicates the region expected to be accessible in our ex-
periment in which the stimulated Brillouin effect limits the
pump power. (b) Field quadrature variance as a function of nor-
malized pump power for the fiber with a=3X10"3 m~!. The
numbers labeling the curves indicate the total fiber length in me-
ters. The attenuation of the weak waves in this geometry does
not disastrously decrease squeezing so long as pump depletion

.can be neglected. When the nonlinear interaction exceeds the at-

tenuation and al <1, increasing the fiber length improves the
squeezing. The result for infinite fiber length agrees with that
for 1000 m to the accuracy of this plot.. While the anharmonic-
oscillator model has produced these data, these plots are also
consistent with the theory of Ref. 17. The two-level atom model
would differ for long fibers.
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under the conditions of our fiber experiment suggests that
such an experiment has a considerable chance of success.

IV. PROPOSED EXPERIMENT

The foregoing discussion implies that squeezed states
can be generated by nondegenerate four-wave mixing in
an optical fiber. For an unequivocal demonstration, the
noise spectral density of Eq. (20) must be reduced by a
factor of 10 below that of a coherent state Eq. (28). Such
a reduction requires that the fiber length /, pump ampli-
tude E (w,), and effective nonlinearity « fulfill

|k| | E(w;)]| ¥ >+In10~1.15, (42)

where the attenuation constant has been temporarily set to
zero. To detect the squeezed state generated in an optical
fiber, one must also phase shift the pump wave at fre-
quency @; by /4 to produce a local oscillator wave at
the detector which beats with the squeezed quadrature.
Such a phase shift can be conveniently imposed by a con-
focal Fabry-Perot resonator used in reflection.3%3¢

Consider the off-axis confocal resonator diagrammed in
Fig. 2. The input mirror has an intensity reflection coeffi-
cient p and transmission 7. The back mirror of the cavity
has reflectivity p’ and transmission 7" where T >>T" and
E=1—p>1—p'=n. A wave of complex amplitude
E;(w) is incident upon this device. The reflected ampli-
tude Er and transmitted amplitude Er are given by

1 iA
ER=——1/;_) 1———&'&‘7—& E;
1—pp'e’
A2+ n(n+8)—ifA
~ Er, (43)
A2t (+£P !
T /)I/ZE 2 .
Ep=—f" L 7yg |A2EEEMLIA g gy
I—ppe A2+ (E+7)

where A=(nw/c)l,—A; is the detuning of the incident
frequency from the jth transmission resonance, /. is the
optical length of the cavity, A; accounts for any phase
shift due to reflection at the mirrors, and A; | ;=A;4-27.
Resonances occur at A=~0 and the approximate expres-
sions are appropriate for |A| << 1. Near a transmission
resonance, the amplitude and phase of reflected wave Ex
are given by

2 122
IER12=IEI|2 2A+ 2 ’ (45)
A+ (n+8)
Er .
3 —— <)]
ETA—’
| 2 /4 >

FIG. 2. Reflective Fabry-Perot interferometer cavity as used
to provide a local-oscillator wave. The mirror reflectivities are p
and p’, while the transmission coefficients are T and T’. The
incident, reflected, and transmitted field amplitudes are indicat-
ed along the corresponding propagation directions.

@y =tan™!
R A 4n(n+E)

__—fA ] . (46)

The maximum phase shift possible on a single reflection
from such a cavity is
172

£
7

1

O, =tan~ (47)

2

“which occurs at detuning A, =V n(nn+§).

In a realistic cavity T'=107", implying a maximum
phase shift of ~m/3. To achieve a 7/2 phase shift, one
must reflect the beam Ei back onto the cavity to double
the effect. The reflected wave with phase shift 2& then
becomes the local oscillator wave at the detector. The use
of a Fabry-Perot resonator to shift phases in this way also
reduces the intensity of the local oscillator to a level that
can be withstood by a p-i-n photodiode.

Returning to the single-reflection geometry, one can de-
fine a phase shift between a carrier wave near a cavity res-
onance and sidebands detuned from resonance as

¢/2=Dp(w;)—[Pr(w;) +Prlw3)]/2 . (48)

In Eq. (48), the phase shift ¢ /2 has the same meaning as
¢/2 in Eq. (14), while the phases ®(w;) correspond to Eq.
(46) with A=(nw;/c)l. —Ay. The carrier wave at o is
closer to resonance than the other frequency components
and thus experiences most of the phase shift. Frequency
components shifted from the pump by frequency
£>>(n+E&)c/nl, are not phase shifted by the cavity. For
such frequency components, the cavity can be regarded as
a simple mirror with reflection coefficient p. Squeezing is
not adversely affected if p> 1—4V (g,6).

In our proposed experiment, a pump wave of power
P(w,) is focused into a fiber of length / as shown in Fig.
3. The pump wave is produced by a single-mode krypton
ion. laser oscillating at 647 nm and isolated from fiber re-
flections by a Faraday rotator. The pump frequency is
w1, stabilized electronically, and the inputs to the fiber at
frequencies w, and w; are merely vacuum fluctuations.

The four-wave mixing effect in the fiber causes squeez-
ing at the output. The transmitted waves are reflected
from a confocal cavity as described above. The cavity
resonant frequency is locked at a constant offset to the
pump frequency to provide the required phase shift. The
beam reflected from the cavity is detected by a high-speed
silicon p-i-n photodiode D with quantum efficiency above
83%. The optical power level at the diode must be suffi-
cient to overcome thermal noise, and the diode output
must be amplified by a low-noise circuit. Finally, the
power spectrum of the amplified diode output is Fourier
analyzed and displayed on an electronic spectrum
analyzer. The dc current produced by the photodiode
must also be measured to determine the detected power
level. The coherent-state quantum noise level at frequen-
cy shift ¢ is determined by measuring the noise spectral
density from the detection system at various dc currents
when the laser beam or a powerful incoherent source is in-
cident on the detector.

The signatures of a squeezed state would be (1) a noise
level measured at the spectrum analyzer below that ex-
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FIG. 3. Overall scheme of the squeezing experiment. Pump
power from the stabilized laser is coupled into the fiber which
must be subjected to a temperature gradient to suppress the
stimulated Brillouin effect. The fiber output is recollimated and
coupled into an optical cavity which attenuates and phase shifts
the pump light. The local oscillator and sidebands beat at the
photodetector D, and the electronic noise spectrum and average
detector current are recorded.

pected for a coherent state producing the same dc current
at the detector, and (2) a noise level that varies with the
local oscillator phase as predicted by Egs. (26) and (30)
yielding a noise level below that of a coherent state for
¢=m/2, and above for ¢=—7/2.

There are several experimental difficulties to be over-
come before squeezed states can be demonstrated in this
fashion. Achieving sufficient pump intensity I () in the
core of a fiber is the first difficulty. We have found it
possible to couple 40% of ‘the laser power into a single-
mode core. Since the maximum power of a suitably stable
laser is only 3 W, one must choose a fiber capable of
reaching the condition of Eq. (42) with <1 W of pump
power. While the nonlinear susceptibilities of all fused
silica fibers are approximately equal and equal to the non-
lmear susceptibility of fused quartz (X{3};=0.5x10~"
X$351=0.2X10"1* esu), the intensity obtainable in the
core depends on the overlap function f, and the area of
the propagating mode. Thus, the mixing efficiency per
unit length varies approximately inversely as the square of
the propagating mode radius. Fibers are available with
mode radii varying from 1 to 3.5 um. Polarization
preserving fibers show larger nonhnearltles because the
larger nonlinear susceptibility x4 ,,11 may always be excited
by the linearly polarized waves in such a fiber, whereas
random pump polarization couples to an average of the
X tensor in more common fibers.?#3’ We have per-
formed an extensive series of experiments to determine the
best available fiber. These experiments and their results
are described in Sec. V. It suffices to say here that the
condition of Eq. (42) can be fulfilled in fibers with mode
radius <2 pm with ~0.5 W of pump power and [~ 100
m.

A more serious limitation results from the physics of
narrow-band wave propagation through an optical fiber.
Above a certain threshold power, the stimulated Brillouin
effect couples the forward-propagating pump wave to a
frequency-shifted backward-propagating wave. This
stimulated Brillouin reflection clamps the average
forward-propagating power at a value near the threshold,
which for 100 m of 2 pm core fiber is typically near 75
mW, well below the power required for squeezing.’

The stimulated Brillouin effect has been extensively re-
viewed.?®> The equation for the amplitude of the
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backward-propagating wave is

OF E_+2E_ (49)
Tz =8h-+7 2
where
I'gP(w) :
glo_)=—30 8" O (50)
(601—0)_—03) +TI'p

is the Brillouin gain coefficient,

Q 2(01
B e/nV,+1

is the frequency shift, ¥V is the sound velocity, and I'p is
the homogeneous linewidth of the Brillouin transition.>
For the traveling-wave case, the threshold for unaccept-
-able attenuation of the forward-propagating pump and
unacceptable Brillouin induced noise occurs when

glo_)~5. , (51)

This threshold can be suppressed substantially by
broadening the Brillouin line shape. The frequency shift
Qp depends on the sound velocity, which is somewhat
temperature dependent,” i.e.,

V,=Vy(1+bT) , (52)

where for silica V,=5968 m/s and b= ~1x107*°C~1.

A sinusoidal temperature distribution of magnitude 7
imposed on the fiber has the effect of broadening the gain
curve of Eq. (50), while retaining constant area

golsP(wy)
glo_)=——7"T""
2
2 d®
X
Js [01—0_—Qp(1+b7sin®) P+ T3

(53)

This has the effect of lowering the maximum Brillouin
gain and increasing the threshold. Figure 4 shows the
transmitted and reflected power as a function of the input
power for a 100 m length of 4-um-core-diameter fiber
with and without a 200° temperature gradient. The Bril-
louin threshold can be raised to more than 250 mW by

o
N
|

o
|

Transmitted and
Reflected Power (W)

0 1w
Incident Power

FIG. 4. Suppression of stimulated Brillouin scattering by an
imposed temperature gradient. Curves a and b show the
transmitted and reflected power, respectively, from a fiber sub-
jected to a 200° temperature gradient. Curves ¢ and d show the
transmitted and reflected power from the same fiber at room
temperature. The temperature gradient lowers the SBS gain and
raises the threshold, making possible larger pump transmission.
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this technique. In practice, the 10-cm-diam coil of fiber is
heated at the top and cooled by cold nitrogen gas boiled
from liquid nitrogen at the bottom.

A second—and unexpected—acoustic effect produces
phase modulation of the transmitted probe light.
Thérmally excited transverse modes of the fiber structure
cause compression, dilatation, and uniaxial stress at the
core of the fiber, thus modulating the transmitted beam.*!
This guided acoustic-wave Brillouin scattering (GAWBS)
has been the subject of other articles and a typical spec-
trum is partially reproduced in Fig. 5.> The maxima of
the vibrational modes appear at definite frequency shifts
£gi, and exceed the quantum noise level of Eq. (28) by tens
of dB. One might hope that the noise level in the gaps be-
tween modes would be equal to the quantum limit, but the
minimum noise level depends crucially on the fiber struc-
ture.

on the material used for the protective jacket around the
silica fiber. Without such a jacket, the damping of the
GAWBS modes is very small, but the fibers are unaccept-
ably' delicate. Both very soft jacket materials such as sil-
icone rubber and very hard materials such as aluminum
give reduced linewidths.

The maximum frequency shift € is limited by the fre-
quency response of high-quantum-efficiency photodiodes
more than by phase matching or group-velocity matching
considerations in a fiber.”>*® For the FND-100 photo-
diode produced by EG&G corporation, the maximum use-
able frequency is € ~300 MHz, well below the frequency
shift where fiber properties become significant. The
minimum useable frequency shift is set by the width of

-38 T T T T
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FIG. 5. ‘A portion of the guided acoustic-wave Brillouin
scattering (GAWBS) spectrum of 100 m of Hitachi SP-6315
fiber. Trace a shows the GAWBS signals for 2-ma photodiode
current with 50 mW of pump light transmitted through the
fiber. Curve b shows the shot plus thermal noise level produced
by an incandescent light or laser beam giving the same detector
current. The 2-dB increase in the minimum noise level
represents phase noise produced by thermally excited mechani-
cal eigenmodes of the fiber. Trace a was taken, using the polar-
ization spectroscopy technique of Ref. 42 and corresponds
roughly to a 45° phase shift of the local oscillator. The ap-
paratus of Fig. 3 yields similar results except for an additional
peak at 29 MHz.

We have found that the linewidths of the modes depend

the transmission resonance of the Fabry-Perot cavity.
Within such a resonance, vacuum fluctuations are
transmitted through the cavity into the detector. For our
initial cavity, the lowest useable frequency shift was 15
MHz. :

Inside the resonant cavity, the pump wave that has been
transmitted through the fiber builds up because of the
cavity resonance and can reach an intensity level which
damages high-quality cavity mirrors. Thus, one must
choose mirrors which can withstand the required power
levels as well as provide sufficient phase shift and pump
attenuation. Since the reproducibility of the manufacture
of such mirrors is not yet assured, selecting a suitable pair
of cavity mirrors can be an important subsidiary problem.

Finally, it is essential that the cavity resonance frequen-
cy be detuned a correct and stable amount from the laser
frequency. This requires careful design of servo electron-
ics for the laser frequency and for the cavity resonance.
The cavity phase of Eq. (47) varies more rapidly with the
detuning A than does the transmitted and reflected inten-
sity. Fortunately, cavity-locking technology is now a
highly developed art, and sufficient stability should be
achievable.*

Loss due to reflection at optical and detector surfaces
and due to scattering in the fiber ultimately limits the de-
gree of squeezing obtained. Antireflection coating can
reduce this effect, but a certain number of optical surfaces
must be traversed between the fiber and detector. Special
coatings may be required to keep the total loss from such
effects below 10% or so. Coating the detector surface
may also increase the quantum efficiency. While a
change from the presently available 83% to 93% in quan-
tum efficiency results in only a 12% increase in signal, it
produces more than a factor of 2 increase in detectable
squeezing and thus might be a worthwhile goal for those
concerned with photodiode development, especially should
a squeezed state be experimentally demonstrated.

V. PRELIMINARY EXPERIMENTS
A. Fiber characterization

Numerous manufacturers now supply single-mode opti-
cal fiber suitable for 647-nm radiation. The nominal
specifications vary dramatically from one manufacturer
to another, and the actual fiber properties often diverge
wildly from specifications. Selection of a fiber suitable
for squeezed-states experiments therefore required de-
tailed characterizations of the fibers actually available for
purchase. The length of fiber used in an actual experi-
ment must be sufficient to give a decent nonlinear interac-
tion, but not so long as to attenuate the pump or other-
wise degrade squeezing. For the purpose of fiber charac-
terization, we have arbitrarily focused on fiber lengths
giving 0.5-dB attenuation. When the squeezing is small,
the loss due to 0.5-dB fiber attenuation is roughly as im-
portant as the imperfect quantum efficiency of our detec-
tors as a limitation on the degree of squeezing. Three
simple parameters were of major importance: the attenua-
tion (which varied from 14 to 110 dB/km), the stimulated
Brillouin threshold for a length of fiber with 0.5-dB at-
tenuation, and a coefficient
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which relates the 4WM signal power to the pump and
probe input powers for the 0.5-dB loss fiber (i.e,
al =0.12). The second equal sign relates K to measure-
ments made in a fiber with actual length / different from
the nominal optimum.

An acceptable fiber would have KP(w;,z=0)>1 at a
pump power equal to the stimulated-Brillouin-scattering
(SBS) threshold. In practice, reaching that criterion re-
quires creating a large temperature gradient along the
fiber as discussed previously, and thus it is also important
that the fiber tolerate temperature stress. Finally, some
region in the GAWBS spectrum must show a noise level
near the quantum limit if squeezing is to be detected.
GAWRBS spectra of all candidate fibers therefore had to
be taken at pump power levels comparable to those needed
for squeezing.

The manufacturer’s attenuation measurements were
verified by comparing the power transmitted by a 10 or
100 m length of fiber (depending upon availability) with
the transmission of a 0.1 m length. Care was taken to el-
iminate cladding modes, and to use identical input cou-
plings. The manufacturer’s measurements were found to
be generally accurate for unstressed fiber. The tempera-
ture gradient required to raise the SBS threshold also
raised the attenuation in many fibers. We surmised that
microbending of the fiber due to contraction of the jacket
at low (near liquid nitrogen) temperatures, and due to car-
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bonization at high temperatures was to blame. High and
low temperatures will ultimately degrade the performance
of any fiber, but those showing increased attenuation at
either +200°C or — 100°C were rejected.

The SBS threshold was measured on 10 or 100 m fiber
lengths in an apparatus similar to Fig. 3. The incident,
transmitted and reflected powers were measured by three
photodiodes and plotted as in Fig. 4. The threshold
power was determined as the transmitted power at which
the reflection began a more than linear increase. This
point also corresponds to the onset of noise bursts in the
transmitted radiation and to the appearance of a new
spectral component in the reflected beam.

Since no attempt was made to suppress reflections from
the ends of the fiber, the SBS threshold measured in this
way corresponds to the condition

[g(w_)—2a)l+2InR =0, (55)
where g (w_) is the SBS gain in Eq. (53), a is the attenua-
tion constant of the fiber, I is the fiber length, and
R =0.042 is the reflection coefficient at the ends of the
fiber. The factors of 2 appear because SBS light is ampli-
fied by interaction with the pump only when traveling in
the backward direction, but must make a complete round
trip through the fiber (backward and forward) for feed-
back to occur.’®3° Estimates of the SBS gain coefficient
and threshold for a fiber of length different from [ are ac-
curate only to +30%. Table I summarizes the results of
room-temperature measurements. The SBS gain corre-
lates inversely with the area of propagating mode in the
fiber core, pretty much as expected. Also shown are the
minimum SBS gains obtained using temperature gradients

TABLE 1. Characteristics of available single-mode fibers.

Sample SBS gain - SBS gain
Core diameter Attenuation « length [ 25°C AT,y M K

Fiber (um) (10° m™Y) (m) (m~1/W) (m~1/W) (dB) (W~
Hitachi a
SP-6315 4 3.5 10.6 2.4 0.26 21+1 1.242
York 3.5 : 32 7.76 <19 2411 1.620.2
LB-600
BTL 6.5 33 120 0.75 20.3+1 1.1+0.2
140
Newport
FSv 7 2.3 11 1.2 14.7+1 0.56+0.1
(1982) .
Andrew 1.2 24 9.8 20 7.7 24+2 1.6+£0.4
Hughes )
LTI 7 8.6 10.6 <2 5+1 0.20+0.05

2100 m fiber length.
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on two fibers that appeared promising. The large im-
provement for the Hitachi fiber is consistent with theory;
high pump power and/or temperature gradients seemed to
cause permanent damage to the Andrew fiber.

To measure the nonlinear mixing coefficient K of these
fibers, the apparatus shown in Fig. 6 was assembled. An
acousto-optic modulator driven at €,=71 MHz provided
a pump beam which was focused into the fiber along with
a probe beam shifted by £,=40 MHz. Four-wave mixing
in the fiber produced outputs frequency shifted from the
pump by +31 MHz. A local-oscillator wave at the laser
frequency mixed with the fiber output on the face of a
photodiode. The local oscillator was shifted from the
pump by —40 MHz, thus the nonlinear optical effect in
the fiber produce photodiode signals at 102 and 9 MHz.
An electronic spectrum analyzer can easily display the
levels of these signals along with the 31, 40, and 71 MHz
signals due to the beating of the input waves with each
other and with the local oscillator.

The beat signal levels at the detector were proportional
to the product of the powers of the two waves beating at
that frequency. Thus, the power of any optical com-
ponent can be easily inferred from measurements of a few
transmitted power levels and the spectrum-analyzer out-
put.

In the experiment, the pump and probe power transmit-
ted through the fiber was increased from 4 and 2 mW,
respectively, to 50 and 35 mW, while the power at the
photodiode was held constant with a variable attenuator.
The local-oscillator power also remained constant. Under
these circumstances, the beats due to the incident frequen-
cies and any nonlinear effects in the photodiode remain
constant, while the signals due to the nonlinear effects in
the fiber vary as PXw;)P(w,). Typical data appears in
Fig. 7. We found that with 6 mW of pump light, 7 mW
of probe, and 13 mW of local oscillator, the nonlinear sig-
nals produced by 10 m of 4-um core fiber were 12 dB
above the background signals due to detector nonlineari-
ties, etc.

A figure of merit for nonlinear mixing in a fiber can be
defined by subtracting one incident beat level (in dB) from
the nonlinear signal levels produced by a fiber with length

Spectrum
Analyzer

Laser .
Boam AO.1 feA.0. 2 Gy @
71 MHz 40 MHz
“o n: i]
wq +71 MHz w0+40MHz

Vanable
Attenuator

FIG. 6. Apparatus for measuring the optical nonlinearity of
a fiber by heterodyne-detected four-wave mixing. The two
acousto-optic modulators labeled A.O.1 and A.O.2 produce
waves which mix in the fiber by a CARS-like 4WM process
(CARS is coherent anti-Stokes Raman spectroscopy). The
local-oscillator wave at the laser frequency beats with the ampli-
tudes of the nonlinearly produced waves to give signals on the
spectrum analyzer. The laser power can be varied while the
diode current is maintained constant with the variable attenua-
tor to verify that the detected signals scale properly with the
power in the fiber.

Beat Frequency MHz
20 40 60 80 100

Beat Signal Level dBm
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FIG. 7. Spectrum-analyzer output produced by the apparatus
of Fig. 5. The frequency shifts of the inputs, their difference,
and the outputs are labeled. The fiber is a 10.6 m length of Hi-
tachi SP-6315, and two traces are shown. Trace a corresponds
to 50 mW of light frequency shifted by 40 MHz and 60 mW
shifted by 71 MHz. Trace b corresponds to 4.5 and 13 mW,
respectively. The two traces are almost identical except for the
magnitudes of the signals produced by nonlinear mixing in the
fiber.

! and transmitted pump and probe powers P(w;,/) and
P ((02,1 )

M= S(ZEI ——Sz)—S(Sl)— 1010g10P(a)1,l)
—101ogioP(wy, ) — 13al
—e 32y (56)

Here, S(g;)~10log o[ P(w;,/)P(wyp)] is the spectrum-
analyzer signal level in dBm at the indicated beat fre-
quency, the powers are in watts, and the dependence on
absorption a and fiber length / normalized the figure of
merit to the al =const case:

Typical results are shown in Table I for six fibers. The
theory of 4WM in fibers relates our figure of merit M to
K and to the nonlinear susceptibility X' and the mode
area 4,%

M =201og;oK +19.79

—101loggle —al/2

=201log;o +19.79 . (57)

";0“’3 Fo{ X))
a

The experimental 4WM coefficient KP(w;,0) is related to
the coupling constant « in Eq. (30) by

KP(0,,0)~ 0.102

——=k|E |? whenal «<1. (58)
Since the nonlinear susceptibility of all these fibers should
be equal and equal to that of fused silica, our results can
be considered as measurements of the mode areas.*® It is
not surprising that the fibers with smaller modes give
higher values of M (and of the SBS gain).

From this information, we ‘determined that the best
fiber available to us was the Hitachi SP-6315. Unfor-



tunately, the GAWBS spectrum of this fiber (partly
shown in Fig. 5) has wide and overlapping peaks with no

regions at the quantum noise level.* The width of the °

GAWBS components is due to the damping provided by
the jacket material. In later experiments, we hope to
modify or remove the jacket or find an even more suitable
fiber.

B. Heterodyne detected four-wave parametric fluorescence

The ideas proposed previously in this paper are specula-
tive enough that an early and concrete experimental test
seems desirable to justify further effort. We have per-

formed such an experiment and appear to have detected

s

the increased noise or “unsqueezing” due to nondegen-
erate four-wave mixing in a fiber. The results are qualita-
tively consistent with expectations, but far from defini-
tive. Still, the experiment highlights the actual difficulties
that will be encountered in a squeezing experiment while
providing sufficient results to encourage further effort.

The general scheme of the experiment is similar to Fig.
3. A stabilized single-mode krypton.laser at 647 nm was
coupled through a Faraday rotation isolator into a 100 m
length of Hitachi SP-6315 single-mode fiber. The fiber
was wrapped around an aluminum drum, the top of
which could be heated to 300 °C while the bottom could be
cooled down to liquid-nitrogen temperature. The output
of the fiber was recollimated and directed into a specially
constructed confocal Fabry-Perot interferometer.

The input mirror of the 10-cm spacing interferometer
had 94% reflectivity, while the back-mirror reflectivity
was 99.6%. The reflection from the input surface was
directed into an EG&G FND-100 photodiode which was
used for noise measurement. Other interferometer out-
puts were directed to a second photodetector used for ser-
vo control of the interferometer. The interferometer reso-
nance frequency was locked to the laser frequency by
dithering one mirror and integrating the difference be-
tween the lock-in-detected detector amplitude and a nomi-
nal set-point and then applying the integrated voltage to a
piezoelectric translator on one mirror. The phase of the
reflected light could be varied a bit by changing the refer-
ence level. The maximum excursion was too small to ap-
proach ®=+7/4, but the quadrature at =0 could be
clearly accessed.

The noise-measurement photodiode produced two out-
puts. The steady-state dc current was measured by a digi-
tal ammeter to determine the detected optical power. The
high-frequency detector output was amplified by a Q-bit
538 preamplifier and boosted further by a Minicircuit

Laboratory ZHL-1-2W power amplifier. The amplifier .
outputs were then displayed on a Hewlett-Packard Model -

No. 8568B spectrum analyzer. When the dc detector
current was 4 mA, corresponding to a detected power of
10 mW, the total (quantum plus thermal) noise level

displayed on the spectrum analyzer was 3 dB above

thermal noise alone.

The quantum noise level at every detector current was
measured by shining an incoherent source on the detector,
and measuring the current and noise level. The process
was repeated using the krypton laser and the output of a
short optical fiber. At low detected power, the noise was
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entirely thermal in origin. When the thermal noise level
was subtracted from the total noise, the remaining quan-
tum noise power varied linearly with the detector current
as expected.

When the laser was coupled into the long fiber and the
output reflected from the interferometer into the noise-
detector diode, the GAWBS spectrum of the Hitachi fiber
appeared on the spectrum analyzer. Adjusting the set-
point of the cavity servo (and thus altering the phase of
the local oscillator) resulted in a minimum GAWBS noise
signal. This minimum GAWBS condition corresponds to
a zero-average phase shift for the local-oscillator beam.
The nonzero minimum deviation from the shot noise level
results from servo error and oscillation which produces a
nonzero mean-square phase shift.

The spectrum-analyzer frequency scan was stopped at a
frequency of 47.8 MHz which corresponds to a minimum
in the GAWBS spectrum. With maximum phase shift,
the minimum GAWBS noise at this frequency was ~5
dB above the quantum plus thermal noise when the detec-
tor current was 4 mA. With zero-average phase shift, the
GAWBS noise should be well below quantum noise at all
our detector powers. Displaying the noise level as a func-
tion of time revealed an oscillating noise component that
synchronized with the 60-Hz line frequency, indicating a
line-frequency-induced servo error. Measurements of the
noise level were therefore made at the minimum of the
wave form.

0.50

V(e,¢=0)
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FIG. 8. Quadrature-variance increase. due to heterodyne-
detected four-wave parametric fluorescence measured in the ap-
paratus of Fig. 3 on 100 m of Hitachi SP-6315 fiber. The points
represent measurements of the noise level measured by the spec-
trum anlayzer relative to the noise produced by an incandescent
light or unmixed laser beam yielding the same average detector
current. The horizontal axis is the pump power at the output of
the fiber. The solid curve is the prediction of Eq. (30) for the
fiber parameters of Table I, and an effective interaction length
of 83 m. Since the 1.4-dB attenuation of this fiber is greater
than the optimum described in the text, one must correct the in-
teraction length accordingly. Data taken at low pump power is
uncertain because of the difficulty in correcting precisely for the
thermal noise in the detection system.
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In the four-wave-mixing experiment, the laser intensity
coupled into the fiber was increased from 12 to 200 mW.
The output of the fiber was reflected from the interferom-
eter, but with a decrease in local-oscillator power of a fac-
tor of 10, making that beam weak enough to be detected
without damaging the photodiode. The noise power mea-
sured at 47.8 MHz on the spectrum analyzer was recorded
along with the dc detector current and pump power inside
the fiber.

To reach a pump power of 200 mW inside the fiber
without stimulated Brillouin scattering, one must impose
a 400° temperature gradient along the fiber. The Hitachi
fiber could tolerate the high and low temperatures only
for limited time. Only two runs could be made before the
fiber fractured. The results are presented in Fig. 8. The
vertical axis shows the ratio for the detected noise in the
four-wave-mixing experiment to the quantum noise level
found for the thermal and laser light at the same detector
current. The horizontal axis is the pump power at the

output of the fiber. While there is a lot of scatter in the
data, it does appear that four-wave mixing produces more
noise than would be produced by a coherent state. The
solid line shows the prediction of Eq. (30) for a value of K
implied by the measurement in Table I. This value of K
implies a value for « | E | 2/ of 0.83 for P(w;,])=200 mW.
The open rectangles in Fig. 1 correspond to this value of
k| E | *l. This result is very encouraging, given the limita-
tions of the experiment. If one were able to phase shift
the local oscillator by 45° without encountering GAWBS,
squeezing by a factor of 5 might well appear.
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