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Two-state problems involving arbitrary amplitude and frequency modulations
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Analytic solutions for a class of pulses that includes an infinite variety of amplitude and frequen-
cy modulations which we previously obtained are applied specifically to the square, Gaussian,
Lorentzian, hyperbolic-secant, and the exponential pulses, among others. For all the different types
of amplitude- and its corresponding frequency-modulated functions, the outcome of the atomic exci-
tation is given by the same simple analytic formulas. Our analytic solutions apply equally to two-
state collision problems.

I. INTRODUCTION

The time evolution of a two-state problem in which the
two states are coupled by a possibly time-dependent in-
teraction is governed by the following coupled equations
obtained from the time-dependent Schrodinger equation
for the probability amplitudes c&(t) and cz(t) for the two
states

~

1& and
i
2&:

dc'(t)i'
=Hei�(t)ci(t)+Hip(t)cp(t),

dt
(la)

dc2(t)i' =H2&(t)c&(t)+H22(t)cq(t),
dt

(lb)

where H,J ——{i
i
H

i j& represents the matrix element of
the Hamiltonian H. Equations (1) have been studied in
connection with the two-state collision problem' in
which the matrix elements H,J. depend on the internuclear
distance of the colliding nuclei and thus on time. Equa-
tions (1) also arise naturally in the studies of nuclear mag-
netic resonance and coherent excitation of atomic and
molecular systems by lasers, where the matrix elements
depend on the external magnetic or electric field.

Beginning with the pioneering work of Rosen and
Zener, Landau, Zener, and Rabi some 50 years ago, the
problem of finding analytic solutions of Eqs. (1) for vari-
ous forms of time-dependent H J has again received con-
siderable attention in recent years. ' ' We have been
able to achieve a considerable unification as well as exten-
sion of various analytic results recently with an analytic
solution' of Eqs. (1) that includes an infinite variety of
the time-dependent forms of the matrix elements. We
shall use the language of laser physics, which relates the
off-diagonal elements H &z and Hqi to the amplitude
modulation of the incident laser pulse, and the diagonal
elements H i i and H2z, or H22-H i i to the frequency
modulation. .Our analysis is applicable, of course, to other
two-state problems that we have mentioned.

In this paper we develop our previous solution some-
what further, emphasizing the application to finite pulses
whose amplitude modulations are of the types most com-
monly used: the square, Gaussian, Lorentzian, hyperbolic
secant, and the exponential pulses. For all the different
types of amplitude- and its corresponding frequency-

modulation functions, the outcome of the atomic excita-
tion is given by the same simple analytic formulas.

Section II describes some of the well-known transfor-
mations of Eqs. (1) that lead to equations and terminology
more familiar to the laser physicists. Sections III—V
describe various specific and general types of pulse func-
tions in what we call the (aijy) and (aP) models, respec-
tively. Section VI and Table I summarize most of our re-
sults.

- II. TRANSFORMATIONS OF EQS. (1)
TO SOME OTHER FORMS

A transformation

c.(t)=aJ(t) exp —— H~J(t')dt', j=1,2J J (2)

X exp ——I [H22(t') —H i i (t')]dt'—00

daz(t)
iA = a, (t)H»(t)

dt

Xexp —f [H22(t') —Hii(t')]dt (3b)

In the study of coherent excitation of atomic systems by
lasers, another step is usually taken between Eqs. (1) and
(3) as we shall outline below. The Hamiltonian of the sys-
tem is

A =H~ —dE,
where H, is the unperturbed Hamiltonian of the atomic
system, d the atom's dipole moment operator, and E the
electric field operator evaluated at the position of the di-

applied to Eqs. (1) gives the following coupled differential
equations of the more "standard" form:

dai(t)
iA = a2(t)Hi2(t)

dt
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pole. The frequency m of the incident laser field E(t)
given by

E(t)=$'(t)exp i f to(t')dt' +c.c. (4)

(6)

where

Q:—2A 'd8', (7)

is usually assumed to be nearly resonant with the transi-
tion frequency coo between two particular levels of the
atomic system that are dipole connected. The following
substitutions are made into Eqs. (1):

ci(t) =b, (t) exp ,'i —f co(t')dt', (5a)

c2(t) =b2(t) exp —,'i f—co(t')dt'; (5b)
L

and then the so-called rotating wave approximation is
made in which terms containing the rapidly oscillating
factors exp+2i to(t)dt are ignored. The following
coupled differential equations are then obtained that are
still of the form given by Eqs. (1) but the matrix elements
of which vary slowly with time compared to the optical
frequencies:

—n
iA

dt &z ' — +~ &z

—iB igu =e a/a2+e a2a$,
—i8 jg

u =1(e a ia2 —e a2ai),
a2a2 a1a1 2 2

(12a)

(12b)

(12c)

can be used to transform Eq. (10) into the familiar Bloch
equations '

u

0 A

u

(13)

0 —A 0

where u and v represent the components of the atomic di-
pole moment in phase and in quadrature with the incident
laser field and w represents the population inversion for
the atom, with the subscripts 1 and 2 referring to the
lower and upper levels, respectively. Thus the atomic
populations in the lower and upper levels at time t are
given, respectively, by

~

ai(t)
~

and
j a2(t) t, and the ini-

tial condition of the atoms at t = —oo is usually assumed
to be

A = f A(t)dt .

For the case of constant detuning, 8 is simply given by
(coo to)—t.

It can be verified that the following transformation

~ai( —~)
~

=1, a2( —&g))=0. (14)

are referred to as the Rabi frequency and the atom-field
detuning, respectively, d being the atom's dipole moment.
We now apply a transformation of the type given by Eq.
(2) to Eq. (6), obtaining again Eq. (3) in which the H~J
denote the following:

H22 —H)) ——AA . (9b)

The Rabi frequency 0 is related through Eqs. (7) and (4)
to the generally tine-varying amplitude 8'(t) of the in-
cident laser field, and the atom-field detuning b, may de-
pend on time, either because the frequency co of the laser
field is modulated or because the frequency separation coo

of the two levels is made time-dependent through an ap-
plication of a direct magnetic or electric field.

To cover various types of two-state problems, we shall
write Eqs. (3) in the following standard form:

In terms of the density-matrix formulation, the quanti-
ties u, u, w in Eq. (13) are related to the density-matrix ele-
ments p;J of the atomic system by

u —pi2+pzr ~

t(PI2 P21) ~

~ =p2z —p~~ .

(15a)

(15b)

(15c)

N
v 7

A

When the solution of
~

a 1 ~

and
~
a2

~

is determined from
Eq. (10) [or equivalently when the solution of

~
bi

~

and

) b2
~

or
~
ci

~

and
~

c2
~

is determined from Eqs. (6) or
(1) since b~ and cz di.ffer from aj only by a phase factor],
the population inversion w can be determined from Eq.
(12c) and the coherences u and u can be determined from
Eq. (13) as

a)
l

a2 ——Ae'iB
2

I
A iB

2

0

a&

a2
(10)

and

v —Am

B

where A and 8 have the dimensions of angular frequen-
cies, representing the Rabi frequency 0 and detuning 6,
respectively, for problems in quantum optics and magnet-
ic resonance, while representing the intranuclear matrix
elements —2iri 'H12 ( = —2A 'H21) and fi ' (H22-H11),
respectively, for collision problems. The notation A is in
line with the notation of pulse envelope area A used in
laser physics defined by '

The above steps make the determination of the phases of
ai and a2 unnecessary for the physically measurable
quantities given by Eqs. (15).

III. THE (aPy) MODEL

The steps that led us to our analytic solution13 of Eq.
(10) for a general class of amplitude- and frequency-
modulated pulses, which we shall call the (aPy) model,
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A . Aa'~+ i8 ——a~+ —a~ =0 .
A

(16)

Then we introduce the change of variable from t, the
time, to

followed closely that introduced by Rosen and Zener.
First, elimination of a 2 from Eq. (10) leads to the
second-order differential equation

and the subsequent proof that for a given initial condition,
the level populations at time t of atoms subject to pulses
of the type given by Eqs. (21) are independent of h (z). '

Equations (21a) and (21b) show that we can make A,
the pulse amplitude into an arbitrary function of time; its

OO ~

area is a= A(t)dt. Then 8 is a function that con-
tains two adjustable parameters. In particular, for the ini-
tial condition that at t = —oo, the atoms are in level 1 or
the ground state, i.e.,

z =z(t) &0 (17) ~ai( —ao)
~

=1, a2( —oo)=0, (22)

subject to the restriction that z & 0 and

z ( —ao ) =0, z (+ ao ) = 1 . (18)

the solutions of ai and a2 of Eq. (10) are given up to a
phase factor by

J

The transformation from t to z changes the range of the
independent variable from ( —oo, + ao ) to [0,1]. In terms
of z, Eq. (16) can be written in the form

2

ai + . ln —+i8 ai+ ai=0,1 d (19)
z

a i F(a *,b —*—,c',z),

a2 —— z 'F(a —c + l, b —c +1,2 —c,z),ab )
1/2

1 —c

(23a)

(23b)

z(1 —z)
h (z)

~ a [z(1—z)]'/
h (z)

(21a)

(21b)

where the prime denotes the derivative with respect to z,
and it can be compared with the hypergeometric equation

c —(a+b+1)z, ab
z(1 —z) z(1 —z)

A crucial feature of our solution is the introduction of an
arbitrary function h(z) in the relation between z and t,
and in the pulse functions A and 8

[(~2 132)1/2 i p]
1

2' (24a)

b [ (
2 P2)1/2 t'P]

2m
(24b)

C= 2+2 (24c)

where F(a,b, c,z) denotes the hypergeometric function and
where a, b, c are given, in terms of the parameters a,P, y in
the pulse functions (21) by

1 Pz+y
h (z)

(2lc) The final level populations at t = + oo are given by

~
a i (+ ao )

~

=sechy sech(P+ y ) I sinh ( ,' P+y ) +—cos[ ,
' (a P—)'/ ]—I,

~
a2(+ ce)

~

=sechy sech(p+y)Isinh ( —,
' p)+sin [ —,

' (a —p )' ]j .

(25a)

@=2nm, n =1,2, 3, . . . . (26)

(2) If y= ——,'P, then the population is completely excit-
ed to the upper level at t = + oo when

@=(2n —1)m, n =1,2, 3, . . . . (27)

The solution for the atomic excitation given by Eqs.
(23)—(25) is the solution for our (aPy) model in which the
incident pulse functions given by Eqs. (21) can assume an
infinite variety of amplitude and frequency modulations
allowed by the arbitrary function h (z) on whose presence
the final outcome does not depend. The importance of
the parameter 4—=(a —P )'/ can be seen from observing
the following circumstances:

(1) If P=O, then the population completely returns to
the ground level at t =+ oo when

Thus in the presence of frequency modulation, the param-
eter @,rather than the total area of pulse amplitude

A =f A(t)dt =a (28)

should be identified with the dipole turning angle under
the conditions specified above. We should mention that
our solutions (23)—(25) are valid even if a &P. By choos-
ing h (z) =const or h (z) =const( Pz +y ), we have the spe-
cial cases considered by Rosen and Zener, Hioe, and Bam-
bini and Berman. In the following section, we shall show
that the square, Lorentzian, and Gaussian pulses, among
others, are also cases of our (aPy) model corresponding to
particular choices of h (z) in Eqs. (21).
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IV. SPECIFIC REALIZATIONS
OF THE (aPy) MODEL

In Eqs. (21) if we let

z = —,
' [1+f(g (t) )], (29)

dX 1 ) X=—tanh
a —x2 2 a

we get, from Eq. (34),

2tanh 'f =g(t)+const .

(38)

(39)
where f is a function to be determined, then

i = = —,f'(g(t))g(t),
dt

(30)

where the prime denotes the derivative with respect to
g (t). We now consider the set of pulse functions in which
h (z) assumes the following simple form: f =tanh[ —,'g(t)] . (40)

From Eq. (36), remembering that z =0, 1 correspond to
t = —oo, + ~, respectively, we are required to have
g(+oo)=+co. If we choose g(0)=0 for convenience,
then we have

h (z) =[g(t)] '[z(1—z)] (31)
The corresponding pulse functions, from Eqs. (37) are
given by

& (z) = [g(t)] '[ —,
' (1—f')] (32)

Substitutions of Eqs. (32) and (30) into Eq. (21a) gives us
the following equation which the function f must satisfy:

OI

df [ i (1 f2)]1—s
2 g

(33)

=g +const .d
(1 f2)i —s (34)

Substitutions of Eqs. (32) and (33) into Eq. (21a) also gives
the relation between z and f

where 5 may be positive or negative. Then from Eq. (29),
h (z) can be written as g(t)sech[ —,

'
g (t)],

2m

8 = g(t) I p+2y+ ptanh[ —,'g(t)]I .
2m

(41b)

dX X

[(&2 2)3]1/2 &z[ 2 2]1/2

we find, from Eq. (34),

(42)

These pulse functions have been given in our earlier pa-
per, ' and have been shown to give some earlier results for
special choices of g(t), g(t)=t/~ being one of the sim-
plest choices.

Case II: 5= ——,.1

Since

z
2 df

z 1 —z

from which we get

(35) 4f =g(t)+const .
[ 1 f2]l/~

Choosing the constant to be zero, we find

(43)

ln
Z

1 —Z
=2 tanh f +const (36)

( I6+g 2) 1/2 (44)

&=—g(t)I —,[1—f'(g(t))]I' '

(P+2y )+Pf(g (t) )
g t

21K
I
—[1 f (g (t))] J

For all the different sets of pulse functions that we shall
obtain in the following, which correspond to different
values of 5 and functions f and g, the degree of atomic
excitation, given by our formulas (23)—(25), depends only
on the three parameters a, p, and y.

CaseI: 5=0.
Since

(37a)

independent of 6.
There is an infinite number of choices for 6 that would

yield analytic expressions for the integral on the left-hand
side of Eq. (34). There are„however, three particularly
simple cases corresponding to the choices of 5=0, ——,', —,

'

that deserve special attention because for these cases, f
can be expressed as simple functions of g (t), which is still
arbitrary but whose behavior at t = —~ and + oo, or at
z =0 and 1, must be required to be consistent with Eq.
(36). The corresponding pulse functions are then given,
from Eqs. (21b) and (2lc), by

Consideration of Eq. (36) again requires g(t) to have the
property that g (+ oo ) =+ ao. The pulse functions from
Eqs. (37) are given by

g(t)
~ 4u. 1

16+g (t)' (45a)

8=—1 g(t)
z i/z p+ ~+ 2 i/2 (4pg (t)

[16+g (t)2] 1/2 [16+g (t)2] 1/2

dX

[g 2 X2]1/2
=sin

we find, from Eq. (34)

sin 'f =g(t)+const.
Choosing the constant to be zero, we find

(46)

(47)

For the case g (t) =constt, /1 is the Lorentzian pulse, and
8 above gives the corresponding detuning function, and
together they give an atomic excitation given by our for-
mulas (23)—(25).

Case III.
Since
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f=sin[g(t)] . (48) The pulse functions are

Consideration of Eq. (36) requires g (t) to have the proper-
ties that

A= exp( r—
~

t
~
),

2
(59a)

g (+ oo ) = + —,
'

m. .

The pulse functions from Eqs. (37) are given by

(49) p+Zy+psin[ —,m(1 —e "~'
~ )]8= ,'r e—xp(—r

~

t
~

)
cos[ —,

'
m (1—e "

~

'
~ )]

A = g(t—),
7r

(50a) (59b)

~ g (t) P+ Zy+ P sin[g (t)]
cos[g (t)]

The especially simple form of A in terms of g in Eq.
(50a) allows us to choose various forms of pulse functions
of interest. In particular let us consider a square pulse, a
Gaussian pulse, and an exponential pulse.

Let r be a positive parameter in all the following cases.
(i) 2 square pulse of area a.
%'e let

r

r, —m /2r & t & m /2r
0, elsewhere . (51)

The pulse functions become

ar
7T

r p+ 2y+ p sin(rt)
cos(rt)

(52a)

(52b)

in the time interval m/2r &t—&m. /Zr, and zero else-
where.

(ii) A Gaussian pulse of area a.
We let

The behavior of 8 as t~+ oo is

lim 8= (p+—2y+p) .
t-++ 00 'Tr

(60)

V. THE (aP) MODEL

For the case when the pulse functions A and B have the
same time dependence except for possibly a multiplicative
constant, the solution of the coupled equations (10) can be
shown to be reducible to the solution first given by Rabi. s

We shall refer to this case as the (ap) model for reasons
that wi11 become apparent.

Instead of considering Eq. (10), we may consider the
original coupled equations (1) or (6), where the solutions
c1,c2,' b1,b2 , and a'1, a2 of the same subscripts differ from
each other only by a phase factor. Thus up to a phase
factor, Eqs. (1) and (6) can be written, in terms of A and
8, which have the usual meanings specified below Eq.
(10), as

r T

l (61)—A B
g(t)=V mr exp( r t ), — (53)

If A and 8 have the same time dependence, we may write

g (t)=v m.r f exp( r t )dt = ,' m. erf(—rt) . —

The pulse functions are

(54)
A =a/(t),
8 =pp(t),

(62a)

exp( r t 2), —
17

(55a)
(~2+p2)1/2 (63)

where ct and p are positive constants. Let us also denote

r exp( r t ) p+Zy+psin[ ,' m e—rf(rt)]-8=
cos[ —,

'
m erf(rt)]

Notice that the behavior of 8 as t~+ oo is

(55b)
and define

r=P(t)= f P(t)dt .

In terms of this new time scale r, Eq. (61) reduces to

(64)

lim B= (P+2y+P) .
~ 2r t

t~+ ce 7T

(iii) 3 symmetric exponential pulse of area a.
We let

g(t)= exp( r~ t
~

)—
2

——,'m[1 —exp( r I t
~
)], t &0—

g(t)= ',
, m[1 —exp—(—.r

j
t

J )], t )0 .

(56)

(57)

(58)

a,
1

&2 2

—p —tx a 1

(65)

( aOr)
/
=1, ( a2Or)=O,

can be easily found to be

(66)

in which the matrix elements are now constants. Since we
shall be only interested in pulse functions for which the
area A of the pulse is finite, we shall assume that P(t) and
P(t) have the properties that P(+oo)=P( —oo)=0, and
thus from Eq. (64), r=o will correspond to t = —oo. The
solution of Eq. (65) corresponding to the initial condition
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(a)

A
B

Row p t

8

Row 2
0

A
8

Row 5
0

0

8

Row 4 0

A B

~o
B

0 t

B2yRow 1 B=—tanht
77

FIG. 1. We present in column (a) sketches of some special amplitude modulation functions; in column (b) sketches of their corre-
sponding antisymmetric frequency-modulation functions obtained under the assumption that ) = —

2 P in the (any) model; and in

column (c) sketches of their symmetric frequency-modulation functions obtained under the assumption that P=O in the (aPy) model.
Column (a) Column (b) Column (c)

Q3 =—secht

Row 2
a 1

277 $+ t ( ]+$2)1/2

Row 3

n 7T

7r' 2 2

0, elsewhere

—tant
7TB= 0

2p
'TT

Row 4 &2e B= e ' tan[ zvrerf(t)] B= e ' sec[ z
m. erf(t))

Row 5 3 =ae B= sgn(t) —e " ' tan[ 2 tr(l —e " ' )]4
B=~e ''~ sec[ —m(1 —e ''')]

2

a
~ (r) =cos( —,I"r)+ i—sin( —,I r), (67a)

where I is given by Eq. (63). In terms of the time-
dependent pulse functions, we have

a2(r) =i—sin( —,I r),= r (67b) a, (t) =cos[ —,
' I P(t)]+i—sin[ —,

' I P(t)], (68a)
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a (t)=i—sin[ —,
' I P(t)] . (68b)

The atomic populations in levels 1 and 2 are thus given by

a+2@ a
2I 2I"+ cos[I P(t)],

Qp 2

, Il —cos[ry(t)]I .

'(69a)

(69b)

Notice that unlike in the case of the (aPy) model in
which the amplitude area is normalized to be always equal
to 0., we have not normalized the amplitude area in Eq.
(62a) to be equal to o.; instead the amplitude area is seen
to be equal to aP(+ Oo ).

If we denote

0 (t) = I (t(t), (70)

it is seen that the population completely returns to the
ground level when @(t)=2ntr, n =1,2, . . . , and that the
population is never complete1y excited to the upper level
unless P=O, in which case a comple'te population inver-
sion occurs when 4(t) =(2n —1)m.

As an example, if 3 and 8 are both Gaussian, then

Q(t)=exp( r t ), —
and the use of Eq. (64) gives

P(t) =f exp( r t )dt= [—1+erf(rt)],

(71)

(72)

and

(tI(t)=exp( r
i
t

i

—)

—exp( r
i
t

i
), t(0—1

r
(((t)= '

1—[2—exp( r it i )], t)0—

(73)

(74)

for our solution given by Eqs. (68).
The solutions with three input parameters were treated

in the previous section. The input parameters are ct, P,
and y; we do not count r, the time-scaling parameter.
They involve hypergeometric functions that appear as
solutions of differential equations with three regular
singular points. One can simplify the calculations by

which we use in Eqs. (68) and (69) for our solution.
Another example is if A and B are both exponential, then.
we have

demanding two regular singular points. This condition
leads to the ctP model, which has been treated in this sec-
tion.

VI. SUMMARY

We have presented analytic solutions to the two-state
problem, Eqs. (23)—(25) for the (aPy) model and Eqs.
(68) and (69) for the (ctP) model in which the pulse func-
tions given by Eqs. (21) and (62), respectively, allow an in-
finite variety of amplitude and frequency modulations.
Our results are summarized in Table I for the general
cases involving arbitrary functions of a general type, as
well as some special realizations including the hyperbolic
secant, Lorentzian, square, Gaussian, and exponential
amplitude-modulation functions together with their corre-
sponding frequency-modulation functions. In Fig. 1, we
present in column (a) sketches of these special amplitude-
modulation functions; in column (b) sketches of their cor-
responding antisymmetric frequency-modulation func-
tions obtained under the assumption that y= ——,

'
P in the

(ctPy) model; and in column (c) sketches of their sym-
metric frequency modulation functions obtained under the
assumption that P=O in the (ctPy) model. For given
values of a, P, and y, the final outcome of the degree of
atomic excitation is independent of the type of the pulse
functions used. For the (aP) model, the frequency-
modulated function is assumed to have the same shape,
except for a multiphcative constant, as the amplitude-
modulated function and the final outcome again only de-
pends on the values of a and P but not on the shape of the
pulse functions.

We should also mention those solutions that can be de-
rived from the confiuent hypergeometric equation, the
Landau-Zener solution being one of them. We have re-
cently succeeded' ' in extending the Landau-Zener solu-
tion to the three-level problem by finding an appropriate
generalization of the confluent hypergeometric function.

It should be pointed out that the importance of these
analytic solutions goes beyond the two- and three-level
problems because various many-level problems possessing
certain types of dynamic symmetries can be reduced to
the two- or three-level problem. '
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