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We study transients in resonantly coupled three-level systems. Two of the levels are coupled by
intense two-photon pumping, and the third one provides a probing level. Adiabatically eliminated
levels appear in effective system parameters. Experimentally, this model is applicable, e.g., in
resonantly enhanced parametric and harmonic generation in atomic vapors. A distinguishing
feature in the system is the appearance of ac Stark shifts in the probe spectra when pumping at the
two-photon resonance. The nutation signal is shown to give information on the effective two-

photon Rabi frequency and on the decay rate of the dipole-forbidden two-photon coherence. Free-
induction decay is strongly dominated by population-induced effects; Raman-like peaks introduced

- by Stark shifts may show large instantaneous gain. Gaussian pump pulses are investigated to inves-

tigate effects arising from the temporal sweeping of the two-photon Rabi flipping and the modula-
tion of the Stark shifts. The results also provide relevant information on the gain dynamics of
coherently pumped lasers.

I. INTRODUCTION

The study of transients in three-level systems has been
the object of considerable work (see, e.g., Refs. 1—12)
dealing in particular with effects such as optical nutation
and free-induction decay, as well as with more
elaborate techniques including photon echoes, ' ' '
delayed-pulse spectroscopy, self-induced transparency, "
two-pulse delayed spectroscopy, etc. The measurement
of transients provides information on atomic and molecu-
lar systems complementary to that given by the methods
of saturation spectroscopy While. those yield information
in the frequency domain, transient effects give directly the
time domain dynamics of the system, and as such consti-
tute a powerful tool to measure relaxation rates.

It is natural to search for spectroscopic techniques that
combine the advantages of both, i.e., that deliver simul-
taneously time- and frequency-domain information. Du-
cloy et al. ' have proposed such a technique. It consists of
applying a weak probe field to the system and monitoring
its gain profile at various times, or equivalently in
measuring transients at various probe frequencies.

In this paper, we apply a similar technique to study the
dynamical behavior of two-photon pumped atomic sys-
tems. Specifically, we consider a two-photon pumped
three-level system (see Fig. 1), which differs from the usu-
al (one-photon pumped) case in that all transitions are
now allowed, one of them being the two-photon transition

~

1)-~2). We show that its transient response yields infor-
mation about relaxation rates, and in particular about the
two-photon coherence relaxation rate y&2, not available
from standard linewidth measurements.

The appearance of two-photon dynamic Stark shifts,
which act even at the two-photon resonance as intensity-
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FIG. 1. Level scheme with the weak cw probe field E2 at fre-
quency vq coupling to the 12)-13) transition and the pump
beam E~ at frequency v~ coupling levels 11) and 12).

dependent detunings, leads to further distinctions between
this and the standard three-level system. The onset and
disappearance of these shifts following a sudden switch on
or off of a strong pump field Ei can be monitored by
measuring the gain profile of a weak probe field E2 nearly
resonant with the

~

2)-
~
3) transition. Finally, the tran-

sient behavior allows a clear distinction to be made be-
tween Raman-type and population-type contributions to
the dynamics of the system.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our model and develop the density
matrix equations of the system, introducing the effective
two-photon matrix element and the two-photon Stark
shifts. This formalism is then used in Sec. 111 to discuss
the optical nutation effects occuring after sudden switch
on of the pump field Ei. Free-induction decay is
analyzed in Sec. IV for the case where the system has
reached steady state before Ei is switched off. In both
Secs. III and IV, square pump pulses are considered. This
restriction is removed in Sec. V, where Gaussian pump
pulses are introduced. Finally, Sec. VI contains a sum-
mary and conclusions.
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A major flaw of pump-probe techniques, when applied
to complicated systems, is that the results typically de-
pend on a considerable number of parameters. In order to
simplify the analysis of the data, it is crucial, both experi-
mentally and theoretically, to consider limiting cases
where at least some of these parameters can be eliminated.
General solutions are in fact quite complicated and use-
less, and we therefore limit our discussion to some illus-
trative limiting cases.

Finally, it should be noted that a further generalization
of the system discussed here would include the use of two
probe beams, one of them about the I2)-I3) and the other
about the I3)-I 1 ) transition. This gives rise to parametric
and four-wave-mixing transients —an interesting subject
worth more extensive explorations in the future.

II. THEORETICAL FORMALISM

Two-photon resonant transitions are second-order pro-
cesses which take place through intermediate nonresonant
dipole allowed transitions. ' For strong pump fields, con-
siderable population can be transferred into the upper
resonant state so that a nonperturbative description of the
dynamics of the system is required.

To rigorously take into account all intermediate levels
poses insurmountable difficulties, but if all of them are
strongly detuned, their probability amplitudes are calcul-
able by perturbation theory. Furthermore, the large de-
tunings enable the intermediate levels to adiabatically fol-
low the switching on and off of the fields. (Note the limi-
tations on pulse rise and fall times imposed by this as-
sumption. ) In this situation, the dynamics of the system
is satisfactorily described by a simple two-photon, two-
level Bloch model ' in which the intermediate levels are
eliminated and their influence included into an effective
Rabi frequency and into Stark shifts of the resonant lev-
els. The original two-. level model is easily modified to in-
clude a third, near-resonant level (see Fig. 1). In this case,
the electromagnetic field is described by the electric field

E (t)= [—,
' E1(t) exp( i vlt) + —,

' —E2(t) exp( i v2t)]+c.c.—,

dp2)

dt
= —(Y21+1~1+l ~s 1I1)P21

—l V23p31+l V21(P22 P11)

QP23

dt
= —( Y23+ l 62+ l &,2I1 )P23

V21pl3+ V23(P22 p33) i

(2)
dp~3

dt s3 1)P»+ V23P12 —«12P23 ~

dp11

dt
—Y3P33+(1V21p12+c c ) &

dp22
Y2p22 [(lV21P12+ l V23p32)+ c.c.]

where d,j is the electric dipole matrix element for the

I
i )-

I j) transition, and k21 is the effective two-photon
coupling constant

1 d2j'dj1
k2) ——

211 $2 ~ —v1j 1
(4)

The two-photon ac Stark shifts co„I1, i=1,2,3, have
been expressed in terms of the dimensionless pump inten-
»ty I, =2

I v2,
I
QT, /Y», with

dp33

dt ) 3P33+ Y2P22+(1V23P32+c'

Here, Yj is the decay constant of level
I j ) and Y;j the re-

laxation rate of the coherence p,z, cu,
&

are the atomic tran-
sition frequencies, A~ ——co2~ —2v& and 42 ——co23 —v2 are the
pump and probe detunings, respectively, and A3 ——6& —62.
Doppler shifts are easily included in the detunings in the
case of traveling waves, but we shall ignore them here.
The reduced interaction matrix elements Vz are given by

d23E2
V23 =—

2f2
(3)

k2iEi2
V2i =

24

where E1 and E2 are slowly varying field amplitudes in-
cluding the spatial variation and v~ and v2 are the pump
and probe frequencies, respectively. In a previous paper, '

we expanded the relevant elements of the atomic density
matrix in the Fourier series and obtained equations for the
resonant, slowly varying components by adiabatic elim-
ination of the nonresonant ones. We neglected the contri-
butions of nonresonant polariza'tions between intermediate
states, which lead to the introduction of a partial two-
photon matrix element V&2& in the equations of motion.
More recently, we applied the same method, ' but consid-
ering all nonresonant components exactly to first order in
the fields. ' We obtained then equations similar to those
of an ordinary three-level system, recovering the total
two-photon matrix element V~2 everywhere in the equa-
tions of motion, namely

and

T1 ———,
' (2/Y2+ 1/Y3)

r

1 IdjlI ~lj I d2j I ~j2
~~J. —Vj COJ2 —V)

X (1/k21V'T1 /Y21),

~s2=—

X (1/k21+ T1 /Y21),

~s3 ~s 1 ~s2

I d3j I ~3j I dj 2 I ~j2
2. 2+ 2 22R j ~3j v1 ~J
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The detailed analytical procedure to obtain Eqs. (2) is
given in Ref. 16. The main assumptions and requirements
involved are the following: (1) the adiabatic criterion

I
dE1 ldt

I
«

I
blJE1 I

must be satisfied for each inter-
mediate detuning b, tj, i.e., the pump field should be adia-
batically applied with respect to all intermediate states,
but not necessarily with respect to the resonant levels; (2)
the coupling between nonresonant amplitudes is neglected;
(3) only first order terms in the probe field are kept; (4)
the resonant states under consideration are nondegenerate.

In this paper, we assume a thin sample in which the
fields radiated by the medium remain small compared to
the external fields and where pump depletion due to two-
photon absorption is negligible. The requirement for the
probe gain g is that gi. &&1, where g is proportional to
Im(p23) and L is the sample length. The condition
gL «1 also implies that the output field is simply given
by

E(L,t) =E(O, t L/v)(1+—gL),
where v is the speed of light in the medium. Having opti-
cally thin samples avoids complications due to propaga-
tion and phase-matching effects and thus benefits from an
easier analysis of the data.

An analytical expression for the smaH signal gain is ob-
tained by solving the density matrix equations (2) to first
order in the probe field. The zeroth-order solution in V23
obeys the equations

0
dp1i 0 . 0

y3P33+ ( V21P12+
dt

0
dP22 0

dt y2P22 (l V2lp12+C. C )

0
dp33 0 0

dt
='V2P22 —'V 3P33 ~

the general expressions are rather complicated aQ lack
transparency. We shall therefore consider here only some
illustrative limiting cases which most easily reveal the un-

derlaying main physical features and which also allow the
most reliable extraction of spectroscopic parameters from
experimental data. As regards the pulse shapes, it is
worth recalling once more that our transient analysis is
valid only for "adiabatic square pulses, " i.e., pulses which
rise and fall in a time short compared with any relaxation
time of the system of resonant levels, but still long enough
to satisfy the adiabatic criterion with respect to the inter-
mediate transitions.

III. OPTICAL NUTATION

We consider first the situation where the atomic system
is initially in its ground state, i.e., p,z(0)=51;51J, with a
weak cw probe E2 applied to it (see Fig. 1). The strong
field E, is switched on at the time t=O The. transient
response of the system, usually called optical nutation, is
monitored by measuring the time-dependent gain spec-
trum of E2. In steady state, ' the gain spectrum consists
of two peaks due to the dynamic Stark splitting of the
upper level. A pecularity of two-photon pumped systems,
as compared to the usual situation, is that these peaks
may be asymmetric because of Stark shifts. Initially nei-
ther Stark shifts nor Stark splittings are present. The evo-
lution of the gain spectrum for t & 0 gives therefore infor-
mation on these effects in addition to providing means to
determine effective Rabi frequencies and decay constants.

A. Resonant pumping

Conservation of energy implies that at the Stark shifted
resonance 6'& ——0, we have h2 ———A3. Introducing these
values of the detunings into Eqs. (7) and (8) we obtain for
the Laplace transform cr23(s) of p23(t)

r

0dP» . o . o o

dt
(y21+1~1 )p21+1 V21(p22 pll)

0p»=0
0P23=0 .

After solving these we obtain the coherences p23 and p13
from

o.23(s) =1

where

l V23 I V21 I
(s +y 3 )

sD21(s)D23(s)

y2
2 1— (s +y13+i 6 2)+ (s +y2)

S +f3

o o

dt
(y23+1~2)P23+l V23(P22 P33) 21P13 ~

1

o

dt
= —( y13 —l k3 )p13+ l V23p12 = 1 V12p23 .

D21(s) = (s +y2)(s +y3)(s +y21)

+2I V21 I (2(s+y3)+32] ~

D23(s) (s +y23+1~2)(s +y13+1~2)+ I V21 I

(10a)

(lob)
The superscript denotes the order of perturbation in V23.
We have also introduced the intensity-dependent detuning
5,' =6;+co„.I).

In the following, we shall assume that y3 ~&y2. This is
not a necessary requirement, but reduces the number of
equations because the population accumulation onto level

I
3) remains negligible, leading to some simplification of

the analytical calculations.
For square pump pulses, analytical solutions of Eqs. (7)

and (8) are easily found by the Laplace transform. But

The roots of the polynomials D21(s) and D23(s) deter-
mine the transient behavior of the probe gain, the pole
s=O being responsible for the steady state of the system.
The three roots of D21(s) can be found approximately by
applying the condition y3 »y2. In order to proceed, we
rewrite D21(s) as

D21(s) =(s +y3)[(s +y2)(s +y21)

+4I V21 I'l+2I V21 I'y2
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and solve perturbatively in the last term by using
Newton's expansion technique. ' The six poles of the I.a-
place transform Eq. (9) are then approximately given by

s) ——0,
sz= Y3 (Yz/2)A ~

$3 4 — (Y2 +Y2 i )/2 +Y2& /4

+t [4
I Vzl I

'—(Yz Yzi)'/4

+(Yz~ / )( Y3 Y2 Yzl)]

(12)

1.0

0,5

00

$5 6 (Y}3+Y23)/2—ibz

+(t /»[4
I Vzl I (Y23 Y13) ]

where

41 Vzi I

'
41 Vzi I

'+(» —»)(»~ —»)
The probe gain profile is proportional to the imaginary
part of the inverse Laplace transform of crz3(s), which in
turn has the form

p23(t)= gR;exp(s;t), (13)

where R; is the residue corresponding to the pole s;.
Let us briefly discuss each contribution in Eq. (13) to

p23(t). (a) The steady-state term (s, =0) consists of two
peaks centered at b,z

——+
~

Vzi ~, in agreement with Ref.
15. (b) The sz contribution also exhibits two peaks cen-
tered at b, z ——+

~
Vzi ~, 'but it is negative and decays very

rapidly at the rate Y3. (c) The roots s3 and s4 can give
rise either to pure exponential decay or to damped oscilla-
tions, depending upon the relative magnitudes of

~
Vz~

~

and
~ Yz —Yz~ ~

/4. Two situations are of Particular sPec-
troscopic relevance. In the weak-field limit,

j Vz,
~

&& ) Yz —Yz, ~
/4, the roots s3 and s4 lead to ex-

ponential decay at rates y2 and y2~. This regime is there-
fore suited for measuring atomic decay rates, especially
the dipole forbidden decay rate Yz&. In the opposite limit,

( Vzi
~

&&
~ Yz —Yzi ~

/4, s3 and $4 give rise to a transient
signal which decays at the aPProximate rate (yz+Yzi)/2,
and oscillates at approximately twice the effective two-
photon Rabi frequency 2~ Vzi ~. This limit thus gives in-
formation on the two-photon matrix elements of the sys-
tem. (d) Depending upon the relative magnitudes of

I Vzi I
and

I Yz3 —Yi31/4, the square root in Eq. (12)
yields either. pure exponential decay or oscillations in the
contributions due to s, and s6. In the weak field regime

(( ( Y23 Y i3 ~
/2, the signals decay at rates Y23

and Yi3 and oscillate at the beat frequency b,z. (Recall
that bz contains the ac Stark shifts. ) For strong pump
field, they decay at the average relaxation rate
(Y23+Yi3)/2 and oscillate at the approximate superposi-
tion frequency hz+

~
Vzi ~. For a long-lived upper state

(Y3»Yz ) the s 5 and s6 contributions decay away much
faster than those due to s3 and $4, which, therefore, are

I

+-2.0 -1.0 0
h, q

).0 2.0

FIG. 2. Optical nutation signal for weak pump fields tuned
to the Stark-shifted resonance h~ ——0. The relaxation rates are

y2 ——0.03, y3 ——0.77, y2) ——0.1, y23 ——0.5, and y)3 ——0.49. The
pump field intensity is such that

( V2~
~

=0.1&
~ Yz~ —Yz ~

/4.
All rates in nsec

responsible for the major features of the asymptotic tran-
sient behavior.

In Fig. 2, we show the probe gain profile as a function
of the delay time in a three-dimensional plot for a weak
pump field

I Vzl I
&( IY2 YziI/4 [seep»nt (c) above&

Neither oscillations (those introduced by $3 and s6 are
short lived and of small magnitude) nor any trace of Stark
splitting is visible in the spectra The t.ransient consists of
a superposition of two signals: the first, due to the two-
photon coherence p2~, reaches its maximum rapidly and
decays at the two-photon relaxation rate y2j, while the
second, essentially a population type contribution, reaches
its maximum later and decays at the population rate y2
towards the steady-state value.

In Fig. 3(a), we show the time dependence of the probe
gain pz3(t) for a case where the two-photon Rabi oscilla-
tions dominate over the atomic decays. Figure 3(b) gives
the corresponding contour plot. For short delay times,
there is no visible signature of Stark splitting. It builds up
only in times of the order of the inverse relaxation rates.
Once the splitting is established, the gain profile mainly
reflects the features of the s3 4 contributions as discussed
under (c). Figure 3(b) also shows that for some range of
time delays, the Stark splitting is clearly better resolvable
than in steady state. Such features are well-known in
high-resolution spectroscopy and have been used in other
contexts to achieve subnatural spectroscopy. '

B. Strong-field limit

As a second example, we consider the limit of small de-
cay constants, especially the case where the phase relaxa-
tion rate y2~ of the p21 coherence is much smaller than the
Rabi frequency Vzi. In the general case 5'i&0, the La-
place transform oz3(s) of the matrix element pz3(t) is

i V23 I
V»

I
(s +Y3)

a23(s) = 2 I—
sDzi (s)Dz3(s)

('+»3 '~3)(s+»i)+('+»)('+»i+'~i)
s +f3

(14)
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where D2iis) an 23 s a( ) d D ( ) are the fourth- and second-order polynomials

7z»()=( +ri) ( +y»[( +r»+~ ]+ I »I2~V ~' 2+ (s+rqi) (15a)

and

(15b)D23(s) =(s +y23+ «')(s+» —«3)+
I V» I'.

the oles may beseven oles. Similarly to (11),approximate expressions for the poThe Laplace transform o.z3(s) has therefore seven poles. imi ar y o
obtained by reexpressing D21(s) as

D21(s)=(s+y3) (s+r&)[(s+rpi)'+~1 +4I V21I']+4 y21—
I

V2i
I

' +~
I Vzi I'r2(r21 r3)2

and assuming the last term to be small, so that it can be
treated as a small perturbation. This approximation is

b sed on our assumption of a lang-lived upper state.again ase on
The expressions for the poles s; obtained r

1 sis are quite complicated, and w e do not re roduce
merical ex-

p
them here. Rather, we directly discuss the nume

'

amples of the strong-field regime.
Figure 4(a) shows the time-dependent gain spectrum. or

&1——0, b' = & =7.74 nsec ', so that the effec-the case 5& ——0, &
——cg, » ——

d
' 6' is due only to the Stark shift. The corre-

sponding contour plot is shown in Fig. 4(b). For ong e-

lay times, i.e., as eth system approaches steady state, it
consists o two ines: one ar 1' . ne at the unshifted line center reso-
nance A2 ——0, and the other at the Raman resonance

h the detuning is due to the power s i t.
The two eaks(For a more detailed analysis, see Ref. 15.) The two pea s

become resolved after a time about the inverse of the aver-

uiation ine appr1
' 1' oaches its steady-state value rom below

d th R man line from above. The tempora osci a-
tions occur at the frequency (4I V21 I

+
short-time behavior is characterized by a broad, single-
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P ROBE GAIN
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0 0

-4.0 - 2.0 0
h, g

2.0 4.0 -4.0 4.0
b, p

8.0 12.0

MIN = -0.490 MAX = 1.78
= - 0.079 T =3.770 h, p =-0.969 T = 4.921

MIN = 0.0254
3.822 T = 1.021

0 I I

MAX= 0,158
=- 0.230 t =14.529

taI
X

12
LLI
C3

W 8-
LU
C3

gjc

20
2.0 4.0-4.0 -2.0 0

h, p

FIG. 3. (a) Transient probe gain following the switch on of a
pump field with

I V» I
=1 &

I y» y2 I
and tuned to the

Stark-shifted resonance Aq ——0. Relaxation rates as in Fig. 2.
(b) Corresponding contour plot.

- 4.0 ,4.0 8.0 12.0

FIG. 4. (a) Transient probe gain under excitat'r excitation at the
Stark-shifted resonance hi ——0. In this case, the pump detuning
h~ ——7.74 nsec is cause

' =7.74 ' is caused by Stark shifts. (b) Correspon ing
contour plot. Relaxation rates as in Fig. 2.
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(7) and (8). An interesting feature is the oscillatory decay
of the Stark splitting due to b,z&0.

The contribution of the population'term pz2(to) in the
second term of Eq. (17) is illustrated in Fig. 5(b). At
t = to it is zero, then starts growing around A2 ——0, reach-
ing a maximum at a delay time

ln(y23/y2)T =t —to ——
'V23 —T2

(18)

V. GAUSSIAN PUMP PULSES

%'e now turn to the more realistic case of Gaussian
pump pulses, for which new effects can appear because of
the time-dependent Rabi frequency, and also because of
the temporal sweeping of the ac Stark shifts. We have
solved Eqs. (2) numerically in this ca'se, and will discuss
some examples for two different regimes: the strong
pump limit, where the maximum Rabi frequency is larger

3
x )0-1

2

0

4.0 4.0
h, 2

12.0

FIG. 6. Gain spectrum following pumping at the two-photon
resonance h~ ——0. The uncompensated Stark shift equals
Aq ——7.74 nsec '. Relaxation rates as in Fig. 2.

Thereafter it decreases at the population decay rate yq.
The contribution of the last term in Eq. (17) is of the

order of y2/y3 smaller than the second term, and is there-
fore negligible in our limit of the long-lived upper level.
The total gain spectrum is plotted in Fig. 5(c). Because of
y3 »y2, we have yz3 & (y2+y3)/2 & y2, implying that the
long-time behavior is determined by the pz2(to) contribu-
tion, whereas for short delay times, the free decay of
p23(to ) dominates. The contour plot Fig. 5(d) further il-
lustrates the relaxation of the Stark split spectrum to a
Lorentzian. The maximum of the total gain spectrum is
approximately reached after the delay time given by Eq.
(18).

Figure 6 shows the gain spectrum when pumping at
6 ~

=0 i.e. 5j =co ~I &
. After reaching a maximum, the

population signal decays at the rate yz, while the Raman
line, centered at A2 ——h~, relaxes as the p23 coherence at
the assumedly much faster relaxation rate y23. If the
probe were absent, no gain signal would be present at the
atomic frequency. Through the interaction with the probe
field, we have now the additional possibility of collecting
information about the upper-state population and its re-
laxation rate.

than the relaxation rates and rapid transients dominate,
and the opposite case where the coherence relaxation rates
are larger than the Rabi frequency and the polarizations
are able to follow adiabatically the field variations.

A. Strong pump field

We consider first the case where all decay rates are
small compared to the maximum effective two-photon
Rabi frequency Vo ——

~

Vq~'"
~
. The probe field is taken to

be constant, and the corresponding Rabi frequency
~

Vqq
~

much smaller than Vo. Figure 7 shows gain profiles for
(a) resonant and (b) detuned pumping, with the corre-
sponding contour plots. Here, the ac Stark shifts have
been arbitrarily set equal to zero. This simplification al-
lows to distinguish effects due to sweeping of the two-
photon pumping rates from those due to the ac Stark shift
modulation.

At resonance, the maximum gain appears at the atomic
frequency coz3 (b,2

——0) and occurs after the pulse is over
(t=16.67 nsec). This maximum is closely related to the
population transient of free-induction decay found in Sec.
IV. The gain maximum has a long tail decaying at the
rate y2. During the pump pulse, the gain spectrum is
reminiscent of the optical nutation signal. We observe
Rabi oscillations as well as the buildup of a Stark split-
ting.

As an example of detuned pumping, we show in Fig.
7(b) the probe gain profile for 6& ——8 nsec ', with its cor-
responding contour plot. The Raman gain, centered at
h2 ——h~, and the population line centered at 62 ——0, are
well separated in the time-frequency plane. The Raman
gain is larger than the population signal by about a factor
of 1.5. As expected, it exists only during the pump pulse,
in contrast to the gain at the atomic frequency, which per-
sists and reaches its maximum after the pump pulse is
over, around t=16 nsec. This behavior is related to the
free-induction decay and off-wing pumping of population
to level

~

2).
When Stark shifts are included, the gain spectra become

more complicated. In Fig. 8 we show results obtained for
(a) resonant and (b) detuned pumping. The maximum ac
Stark shift is chosen as co»IP'"=7.74 nsec '. At the un-
shifted two-photon resonance (6& ——0 and b,

& co»I~), we-—
observe a strongly oscillating signal during the pump
pulse, as well as a population signal centered around
b.2 ——0 reaching its maximum after the pump pulse. The
rapidly varying signals are hard to analyze and would
probably be smeared away in experiments. The popula-
tion signal resembles that of Fig. 7(b). This is expected,
since the population contribution depends mainly on the
population of the upper state at the end of the pulse.

The signal behavior can be understood as follows: at
the leading edge of the pulse, -the intensity is too small to
considerably shift the levels. The gain spectrum has a sin-
gle maximum near 62——0. As time elapses, the pump in-
tensity increases and the levels are pushed away, with the
appearance of a Raman signal around A2 ——5&. Contrary
to the case of Fig. 7(b), the Raman signal remains smaller
than the population contribution at the end of the pulse.
This is not surprising. By setting the Stark shifts equal to
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zero, one keeps the atomic levels fixed so that the pump
detuning is constant. In reality, however, the pump of
course pushes the levels away and back producing a time-

maxdependent detuning which varies from zero to co,2I]
Figure 8(b) shows the gain spectrum as a function of

time when a finite pump detuning is present in addition to
the Stark shift. Its structure is clearly closer to that of
Fig. 7(b). The Raman line with maximum around b,2

——b, '&

can clearly be distinguished from the population line at
hq ——0. This is because in this case, the maximum Stark
shift does' not anymore dominate over the fixed detuning
6]. Indeed, as would be expected, as the fixed detuning is
further increased, the role of the time-dependent Stark
shift becomes less important, and can be neglected for

] ~~~»I].

B. Fast decay rates

As already mentioned, when the decay rates are much
larger than the maximum Rabi frequency and the inverse
of the pulse duration, the transients are effectively
damped out. In Fig. 9 we show the Stokes gain for
transversal decay rates much larger than the two-photon
effective Rabi frequency. The Craussian pump pulse is

also shown in dashed line. The Stokes gain does not ex-
hibit oscillations any longer, as the system has now time
to reach steady-state values during the pump pulse: the
off-diagonal density matrix element IG2~ follows adiabati-
cally the pump. Even the gain growth after the pulse due
to the population term p22 becomes less spectacular here,
because the delay time needed to reach its maximum is
now very short [see Eq. (18)j. The gain maximum turns
out to be quite close to the corresponding calculated
steady-state value. Only the long tail decaying at rate yz
reminds us of the transient character of the population
signal.

VI. DISCUSSION

Our study of two-photon —pumped three-level systems
opens up new possibilities to measure Rabi frequencies
and decay rates, especially those connected with the two-
photon coherence between states of same parity. The
time-frequency method employed here provides a way to
follow the onset of Stark shifts and splittings.

In order to simplify the analytical work, the assumption(j 23 p ]3 was made. In this case, we found that
Raman-type processes have their maximum in the optical



32 TIME-DELAYED PROBE SPECTROSCOPY IN TWO-PHOTON —PUMPED SYSTEMS 1539

x10

PROBE GAIN 6) =0
~1 = +s& t1

1.0

0.8-

—0.6-K

LU

o~ 0.4
CL
CL

0.2-

I
I

\

t

l

I

1

I

I

l

I

Q) =-5.47
&2=0

0 10 20
t (ns)

30 40

/

/

0
0 10 20

t (ns)
30

4.0- PROBE GAIN
FIG. 9. Temporal shape of the probe gain for fast relaxation

rates. The Stark shifts have been included, and y2 ——0.1, y3 ——I,
2]—f23 —g ]3—10 (in nsec ' ). The pump pulse (dashed line) is

the same as in Fig. 7.

10 20
t (ns)

30
I

40

FIG. 8. Probe gain spectrum when Stark shifts are included,
i.e., co, ~I~

'"——7.74 nsec '. (a) h~ ——0; {b) A~ ——8. Other parame-
ters as in Fig. 7.

nutation regime and quickly die out as the pump field is
switched off. The "free-induction decay" regime is dom-
inated by the presence of a population-type line.

Further relevant features found are the following: (a)
The buildup of Stark splittings occurs in times of the or-
der of the inverse coherence relaxation rate of the inter-
mediate level; (b) the resolution of the Stark splittings ob-
tainable in the optical nutation regime is better than in the
steady state; and (c) the highest Raman and population
signals are obtained during the transients —the first in the
optical nutation, and the second in the free-induction re-
gime.

The study of the probe gain for Gaussian pump pulses
/

yields additional, more realistic information which can be
applied, e.g., in analyses of the dynamics of optically
pumped lasers. For resonant pumping and in the case of
slow decay constants, both the optical nutation and the
population transient in the free-induction decay regime
contribute to the probe gain. A clear tempora1 distinction
between population-type and Raman-type lines is seen for
large pump detunings. While the Raman line exists only
during the pump pulse, a strong population line with a
long tail due to the slow population decay appears after
the pump pulse is over.

Finally, we point out that the study of transients for
Gaussian pump pulses leads to results complementary to
those obtained in steady state, ' which do not provide the
full picture. In particular, while the steady-state gain is
maximum at the atomic frequency even for off-resonant
pumping, in the case of a Gaussian pump the Raman line
gain can be maximum at the leading edge of the pulse.
This is a consequence of optical nutation in the case of re-
laxation rates small compared with the Rabi frequency.
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