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Dipole interaction of a multilevel system with a, continuous-wave or Gaussian-pulsed laser
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An algorithm [Ci. F. Thomas and W. J. Meath, J. Phys. 8 16, 951 (1983)] for evaluating the evo-
lution operator of a multilevel system dipole interacting with either a continuous-wave or Gaussian-
pulsed source, based on its Riemann product integral representation in conjunction with Frazer's
method of mean coefficients, is appraised and extended. Our extension allows for the inclusion of
spontaneous decay or a dissociation (or ionization) channel and useful relations are derived for the
eigenvalues of the evolution operator for both the continuous wave and the Gaussian pulse. For the
latter we now admit an arbitrary phase in the field and we derive a simple relation for cascading the
state amplitudes of the system over the duration of an arbitrary number of identical phase-coherent
pulses. As part of our appraisal, improvements in the implementation of the algorithm are provid-
ed. For a two-level system, the evolution operator is given as the chronologically ordered product of
readily computed 2&2 matrices while for multilevel system it is conveniently evaluated using a
resolvent method based on Leverrier's algorithm for computing the Bateman. matrices. The asymp-
totic behavior of the evolution operator and the fluence in the direction of propagation for both the
continuous-wave and the Gaussian-pulsed sources are explored. Applications to model two-level
systems illustrate the influence of the source's phase and interaction duration on resonant and non-
resonant transition probabilities, respectively. The saturation of a two-level system by a train of
resonant phase-coherent Gaussian pulses is demonstrated.

I. INTRODUCTION

The dynamics of multiphoton processes induced in
atomic and molecular systems through their interaction
with intense laser-light sources continues to receive much
attention from both theoretical and experimental perspec-
tives. ' lt is usual to assume that the Hamiltonian opera-
tor is periodic in time, this periodicity being determined
by the dipole interaction of the system with a classical os-
cillating laser field, operating in either the continuous-
wave mode or as a pulsed source, with such long duration
pulses as to validate a slowly-varying-amplitude approxi-
mation in which the field is taken to be monochromatic
and of fixed amplitude. The periodicity of the interaction
limits the time interval over which one has to integrate
the dynamical equations of motion and, when coupled
with Floquet analysis, ' allows one, for instance, to inves-
tigate the time-resolved and long-time-averaged behavior
of a diatomic or an anharmonic bond mode of a poly-
atomic subject to vibrational or rotational-vibrational
multiple-photon excitation. With the assumption of a
constant-amplitude field, such expedients as the rotating-
wave approximation, various perturbative approxima-
tions, the Magnus approximation ' and rotating-frame
transformations can be exploited to advantage. For
nanosecond pulses, the number of optical cycles occurring
throughout the pulse's duration is —IO —10 in the in-
frared region and the assumed slowly varying amplitude
approximation, with its consequent simplification in the
description of the dynamics of the underlying processes,
may be justified. However, with the quest for increasingly
shorter pulses —which have now entered the femtosecond
domain' —the number of optical cycles sustained during

the pulse is accordingly smaller and the modulating en-
velope associated with the pulse will vary rapidly with the
period of oscillation of the field and must therefore be ex-
plicitly considered in any attempt to simulate the dynam-
ics on such ultrashort time scales.

Recently, " an algorithm for evaluating the evolution
operator for a multilevel system dipole interacting with ei-
ther a continuous-wave or Gaussian-pulsed source, based
on its Riemann product integral representation' in con-
junction with Frazer's method' of mean coefficients, was
presented. After applying the algorithm to model two-
level systems, it was apologetically concluded that while it
represented a viable alternative to other methods of con-
structing the evolution operator for a continuous-wave
source, it was restricted in pulsed-source applications to
those cases where the number of optical cycles occurring
during the pulse's lifetime is small. The objective of this
paper is to reappraise and extend this algorithm.

In Sec. II A, the algorithm is extended to allow for the
phenomenological inclusion of spontaneous decay or a
dissociative channel by admitting a non-Herrnitian Hamil-
tonian to describe the "isolated" system and, without in-
voking the notion of unitarity, useful relations are derived
for the eigenvalues of the evolution operator for both
continuous-wave and Gaussian-pulsed sources. We now
include an arbitrary phase in the specification of the
Gaussian-modulated field and a simple relation for cas-
cading the state amplitudes of the system over the dura-
tion of an arbitrary number of identical phase-coherent
pulses is derived. Following our appraisal of the algo-
rithm in Sec. IIB, improvements in its implementation
are described for both the two-level and the multilevel sys-
tem; for the former, the evolution operator is constructed
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as a time-ordered product of 2&2 matrices while for the
latter, multiple use of a resolvent scheme affords an effi-
cient method of evaluation. The asymptotic behavior of
the evolution operator and the fluence in the direction of
propagation for both the continuous-wave and the
Gaussian-pulsed sources are briefly explored in Sec. II C.
Section III details the results and attendant discussion of
some illustrative applications to model two-level systems.
The paper closes with some concluding remarks in Sec.
IV.

Unless otherwise indicated, atomic units are used
throughout this paper.

II. RIEMANN PRODUCT INTEGRAL
REPRESENTATION

OF THE EVOLUTION OPERATOR

A. Theory

The evolution of the state amplitude matrix a(t) of a
multilevel (N, for example) system is governed by

a(t) = A(t)a(t) . (2.1)

Here a(t) is an N-vector whose components ak(t) are the
probability amplitudes for the stationary eigenstates

I

k ), k = 1,2, . . . , N of the isolated system and
A(t)= —iH(t), where H(t) is an N&&N matrix represen-
tation of the system's Hamiltonian operator. (In general,
throughout the paper lower-case boldface letters refer to
vectors, capital boldface letters to matrices. ) For an N-
level system dipole interacting with a classical electric
field E(t), arbitrarily polarized along the z axis,

A(t) = —i[A —E(t)p, ]

in the Schrodinger picture while

det[U(t, tp)]=exp f, ds Tr[A(s)] (2.3)

a consequence of which is that U(t, tp) is nonsingular for
all t ) I;o. For to & t' & t, the integral matrix has the group
property

U(t, tp)=U(t, t')U(t', tp) . (2.4)

It has been shown' that U(t, tp) is bounded from above in
the sense that

U(t, tp) & I+N 'II
I exp[NC&(t, tp)] —1I, (2.5)

where 0 is the Vandermonde matrix,

4 (t, tp)= f, ds
I
IA(s)

I I,

I I AI
I

is the Tschebyscheff norm of the operator A, and
the caret on U(t, tp ) signifies that we take the modulus of
its matrix elements. The Tschebyscheff norm' of the N-
vector a(t) is defined as

I
fa(t) II =max~ &k&& I

ak(t)
I
. For

the Hamiltonian operator of interest here, A(t) = —iH(t)
is continuous and hence bounded and integrable on [tp, t].
The operator A(t) is bounded if for all a(t) in its domain
there exists a constant K such that

I I
A(t)a(t)l

I

&K. The
greatest lower bound of all possible E's is the norm of
A(t), i.e.,

f I
A(t)

f I
=sup

I I
A(t)a(t)

I I /f I
a(t)

f I
.

The Tschebyscheff norm of the N XN matrix A(t) is
N

IIA(»ll= max X f~kl I1&k &EI

For arbitrary A and B,
I I

A+BI
I
(

I f Al f+
I IBI I,

The field E (t) is assumed to be of the form

A(t) =iE (t)exp [i0( t —tp )]p,exp[ i Q(t —tp ) ]— E(t)=E f(t)cos(copt+P), (2.6)

a(t) =U(t, t, )a(t, ), (2.2)

where the evolution operator U(t, tp) is the integral ma-
trix' for Eq. (2.1), i.e., the solution of Eq. (2.1) corre-
sponding to the initial conditions U(tp, tp)=I. The in-
tegral matrix satisfies the identity

in the Dirac picture, where tp is the time the field is
switched on. The N&N matrices p, and 0 have com-
ponents pt~ = (l

I p,, I
m ) and

fit~ =(co~ i) ~ /2—}5(~,

respectively, where p~ is the dipole transition matrix ele-
ment coupling the levels

I
l) and

I

m ), p, being the z
component of the dipole moment operator, and m~ is the
eigenenergy of

I
m ) with corresponding phenomenologi-

cal natural width y . If y =0 for m=1, 2, . . . , N —1

and is nonzero for m =N then the non-Hermitian Hamil-
tonian g &Q~ I

m ) ( m
I

in the
I
m ) basis admits a

dissociation (or ionization) channel through the upper-
most level. For convenience we take pi
I,m =1,2, . . . , N tobe real.

The solution of Eq. (2.1) for the initial stationary state
population a(tp) is

where E is amplitude, cop is the carrier frequency, and P
is the phase. The time-dependent pulse envelope f(t)
modulates the sinusoid. When f(t)=1, Eq. (2.6) is the
ideal representation of a continuous-wave source of con-
stant amplitude, fixed frequency, and fixed phase with a
coherence time that is at least as large as the characteristic
relaxation times for the N-level system. If, for example,
one is interested in the multiple-photon excitation or dis-
sociation of polyatomics' through use of intense fields or
in the short-time-scale ( (1 ps) molecular dynamics and
rate processes' in condensed phases, the light source must
be pulsed. Both theoretical' and experimental evidence
suggest that, ideally, the output from a perfectly mode-
and phase-locked pulsed laser consists of a train of
gaussian-amplitude sinusoids, each with a modulating
pulse envelope f (t)=exp( —t /rz), where wz is the ap-
proximate duration of the pulse. The pulse train
originates from the beating of a fixed number of cavity
modes (usually —10 ) having synchronized phases but os-
cillating at different frequencies and amplitudes. In prac-
tice, the individual pulses in the train, which are separated
from each other by the cavity round-trip time (usually —5
ns), vary in their characteristics (duration, spectral band-
width, peak amplitude, and modulating envelope) from
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the beginning to the end of the train. It is technically pos-
sible to isolate a suitable pulse from the train having suffi-
cient power and well-defined parameters such as the peak
amplitude E, mean carrier frequency mo, and a Gaussian
modulating envelope f (r) =exp( t —/~z) with an approxi-
mate epochal duration ~z. The tradeoff in using pulsed
lasers is the nonzero spectral bandwidth associated with

. the pulses. For frequencies co-coo, the Gaussian pulse,
which has a full width at half maximum (FWHM) tem-
poral bandwidth b, t =2(ln2)'~ rz, transforms to a Gauss-
ian profile

a ( E(t) J
= ,'Eo—ver/'~ exp[ (co —a)0)—rq/4 iP]—

with a FWHM spectral bandwidth b.co=4(ln2)' /~& so
that the bandwidth uncertainty product ' for the pulse is
Amht=sln2. In contrast, if ~&~oo then Aco~o and
At~oo so that the continuous-wave source sustains a
monochromatic output at a constant amplitude over an
arbitrarily long duration. For a continuous-wave source,
the phase P is not well defined and within the interval
0 & / & m the field E(t) initially ranges between adiabatic
and sudden switchon. It is standard practice' ' to aver-
age computed physical properties of an S-level system in-
teracting with a continuous-wave source over this arbi-
trary phase, a procedure that is equivalent to initial-time
averaging. '"' Pulsed light sources, however, by their epo-
chal nature, are switched on suddenly, as in the case of a
"rectangular-shaped" pulse, or are switched on adiabati-
cally, as in the case of a "bell-shaped" pulse. In principle,
the phase of a pulsed source is well defined and computed
properties of the system interacting with the pulse(s)
should not be averaged over the phase. Although the
phase coherence between successive pulses in a train of
time-delayed pulses can be important, for excitation by a
single isolated pulse one may define the time origin so
that /=0.

To evaluate a(t) as given by Eq. (2.2) for arbitrary
a(to), one may compute the evolution operator U(t, to) us-
ing an algorithm" based on its Riemann product integral
representation' in conjunction with Frazer's method' of
mean coefficients. This involves the discretization of the
interval'[to, t] into a sufficient number nz of subintervals
such that

U(t, to) = T lim Q exp J ds A(s)
"p k=] Ic —1

(2.7)

with the implicit use of the group property of the evolu-
tion operator, Eq. (2.4), at adjacent subintervals. In Eq.
(2.7), T is an operator that arranges the product in chro-
nological order from right to left.

For a continuous-wave source, E(t) is given by Eq.
(2.6) with f ( t) = 1 and A(t) = A(t +2r~/coo). Consequent-
ly, in the variable 0 & 8=coot +P & 2n, the solution of Eq.
(2.2) for arbitrary initial conditions a(0) is given in Flo-
quei form ' by

ik=(r ro)«„+rk /—
for /(; = 1,2, . . . , nz and t„=t and the evaluation of the
time-ordered product of matrix exponentials

a(8+ n 2m ) =L(8)exp[id, (8+n 2n)]bo(P)

for n =0, 1,2, . . . . In Eq. (2.8), the Lyapunov matrix

L(8)=U(8, 0)Z exp( i—48)

and is of period 2m in 8,

bo(p)=Z 'U(0, $)a(0),

(2.8)

and U(2m, O) =ZAZ ', where A in a diagonal matrix con-
taining the eigenvalues of U(2n. , O) and whose correspond-
ing orthonormal eigenvectors constitute the columns of Z.
The eigenvalues of U(2n. ,O) may be written as

I

~kk I ~kk I
exp(/~kk2'/r» & =1» . » (2.9)

where the Akk's are the entries in the diagonal characteris-
tic exponent matrix h. Using Eqs. (2.3) and (2.9) one can
easily show that

N

g (~k+~o~kk) =0
k=1

(2.10a)

N

g (~)'k+~oln I ~kk I
) =o

k=]
(2.10b)

[ [~/ (i/2))'/1&—/ (8k 8k /)—-
—2p/ &'»n[ —,'(8k 8k —1)l

«os[ & (8k+8k -/)]] (2.11)

for i, m =1,2, . . . , ¹

In the case of a Gaussian pulse, E(t) is given by Eq.
(2.6) with f(t)=exp( r lrz). Th—e solution of Eq. (2.2),
in the variable 8=coot +/, for arbitrary initial conditions
a(80) is formally

a(8) =U(8 8o)a(8o) .

If the system interacts with n =1,2, . . . identical phase-
coherent pulses, then its state amplitude throughout the
duration of the nth pulse is

a'"'(8) =U(8, 80)U" '(+ oo, —oo )a(80) (2.12)

which is the pulse's analog of Eq. (2.8). Using Eq. (2.3)
one can easily show that

y bkk ——,'E ~p1T
' exp(—coorp/4)co—sy y/Mkk

k=1 k=1

(2.13a)

where cok and yk are the eigenenergy and natural width of
~

k ), respectively. The time-resolved expectation value of
an operator 0 of the system over an arbitrary number
n =0, 1,2, . . . of the optical cycles of the field is given by
the usual trace prescription ( 8') =Tr[/p], where

p(8+ n 2~) =a(8+ n 2m )a (8+n 2m )

is the density matrix. The argument of the matrix ex-
ponential in Eq. (2.7) has entries
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gln~kkk
~

=0,
IG =1

(2.13b)

~)~ = V)~E—'~, ~'"(~++tt )m 4 m

)& exp[ (P +i—to) coo&p 8o) /coo&p j

for I,m =1,2, . . . , X, where

' a+ =exp(b+/4coor~) [ erf[(8k —,' b+ )/coo—rp j
—erf[(8k ) —,

'
b+ )—/floor~ jI,

(2.15a)

b+ 2P+——icoorp(no+a)tm ) ~ (2.15b)

(i /2)(y—) —y ) and erf(z) is the error
function at an arbitrary point z in the complex plane.

As is well known, the ad hoc ascription of the width

yk to
~

k ) in an attempt to include spontaneous decay
continues to ignore the fact that the "isolated" X-level
system is continually interacting with the surrounding

, quantized electromagnetic field. Further, the basis
which diagonalizes the "unperturbed" Hamiltonian

,cok
~

k)(k
~

may no longer be appropriate. If the
time-varying field E(t) is of such short duration that
spontaneous emission can be ignored by setting yk =0 for
k=1,2, . . . , X then the Euclidean norm' ~~a(t)~I=1
since H(t)=H (t) and from Eq. (2.2) it follows that
U(t, to) is unitary for all t & to.

B. Constructive criticism

In previous applications+""' of Eq. (2.7) to two- and
three-level systems, typical single-precision execution

where A.kk and Akk are related through Eq. (2.9) but here
the A, 's are the eigenvalues of U(+ oo, —co). As before,
(8') =Tr[/pj where

p(8, 8o) =a(8)at(8)

=U(8, 8o)p(8o, 8o)U (8,8o) .

The argument of the matrix exponential in Eq. (2.7) has
entries

times for evaluating the evolution operator over one opti-
cal cycle with 180 subintervals was -3 s on the Cyber
7300. For multilevel systems, execution times increase
with the number of levels. The consumption of processor
time is attributable to the calculation of exp(A'"') over
k = 1,2, . . . , n& subintervals, the underlying rate-
determining stage in each subinterval being the diagonali-
zation of A' ', in particular, the evaluation of the matrix
Z' ' of eigenvectors (and its inverse) corresponding to the
matrix A'"' of eigenvalues of A' '=Z'"'A'"'(Z'"') '. The
choice of nz is dictated on the one hand by the fulfillment
at any local time t&to of the inequality in Eq. (2.5) and,
if one ignores spontaneous decay, by the unitarity of
U(t, to), and on the other hand by the extent to which the
relations in Eqs. (2.10) and (2.13) are satisfied for the
continuous-wave and Gaussian-pulsed sources, respective-
ly. Of course, for a continuous-wave source, the evolution
operator is required only over the period of the Hamil-
tonian. However, for a Gaussian-pulsed source with an
effective duration of

~

t
~ (4', one must employ the al-

gorithm over each of -8~&(coo/2') optical cycles occur-
ring throughout the pulse's tenure. This severely restricts
the algorithm's usefulness to values of r~ and coo such that
gr~(coo/2~) is not too large, particularly for N&&2. To
further exacerbate matters, one is required to average
the computed expectation values of the X-level system in-
teracting with a pulse over the spectral bandwidth, so that
the evolution operator must be evaluated over the frequen-
cy range

~

to —coo
~

( ,' b, t '. In previou—s applications, the
exponential of A' ' was achieved through

exp( A( k)
) Z(k)exp( A( k) )(Z( k)

)
—1

using the highly efficient diagonalization sequence avail-
able in the EISPAcK library, "although the equivalent
routines in the IMSL (International Mathematical and
Statistical Library) package ' ' could also have been used.
Fortunately, one can significantly expedite the use of Eq.
(2.7) by adopting different approaches to the calculation
of exp(A'"'), k =1,2, . . . , n& for N =2 and N & 2.

For a two-level system the conjugate eigenvalues
ak+pk of A'"' are readily determined as the roots of the
characteristic equation, and use of the Sylvester-Lagrange
theorem' ' " ', ' gives the exponential of A' ' as

(3 ')&' —ak )sinhpk /pk +cosh pk
exp(A "

) =( IG)

3 2, 'sinhpk /pk

3 Iq'sinhPk /Pk

( A p2
—ak )sinhpk /pk +cosh pk

(k) ~ exp(ak) . (2.16)

Thus, for %=2, Eqs. (2.7) and (2.16) give the evolution
operator explicitly as a chronological product of nz 2)&2
matrices. Evaluation of erf(z) = 1 —exp( z)o)(iz), for-
complex z, occurring in Eq. (2.14a) for Cxaussian pulses,
can be accomplished using the Gautschi algorithm for
the probability function ~ which is available as subroutine
MERRCZ of the IMSL package. ' ' Because of its rela-
tionship to the Voigt function, there are a number of effi-
cient nonproprietary rational approximants available for

the evaluation of co(z) over the entire z plane. Thus, for a
two-level system dipole interacting with either a
continuous-wave or Gaussian-pulsed source, the Riemann
product integral algorithm for the evaluation of the evolu-
tion operator is readily implemented on any of the popu-
lar 16-bit microprocessors equipped with adequate
memory and storage capacities.

When N & 2 one can conveniently compute' ' " '"' the
exponential of A ' as
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N
exp(A' ')= +exp(A, I ')NI ',

1=1
(2.17)

where the A.
' 's are the nondegenerate eigenvalues of A'"'

and the N'"'s are XXX Bateman coefficient matrices '

with the projection, idempotant, and sum-rule properties

and

NI 'N' '=0 if 1&m,
(NI"') =NI"' for m any positive integer,

(2.18a)

(2.18b)

g N', "'=I,
1=1

(2.18c)

respectively. The eigenvalues of A'"' can be computed
using proprietary software available on main-frame
machines. The Bateman matnces are expeditiously
evaluated using Faddeev's modification' "of Laverrier's
algorithm as

N

g (g~k~)~+ ~~Z~k~ +(g~k~ g~k~) (2 19a)
m=1 m&l

where the X&X matrices Zm
' are obtained recursively for

m =2, . . . , %as

(2.19b)

the method. In an unrelated context, the method has been
applied to the point nuclide first-order kinetics of the
three species system H, H, and He in a thermal neutron
flux. One can readily implement the Leverrier algorithm
within the memory and storage constraints of a personal
16-bit microprocessor for a system with X-3—5 levels,
provided the eigenvalues of A' ' can be computed. The
symmetry of the dipole-transition matrix p, for a given
(2—5)-level system is usually such that one can exhaus-
tively provide a convenient expression for the characteris-
tic equation of A'"' from which the eigenvalues can be
computed using the efficient algorithm due to Jenkins and
co-worker.

C. Fluence and the asymptotic behavior
of the evolution operator

The Poynting vector of the classical field E(t) propa-
gating in the z direction is

S=ceoE (t)k,
where c and eo are the velocity of light and permittivity of
free space, respectively. If E(t) is viewed as characteriz-
ing the statistical properties of an underlying stationary
and ergodic stochastic process, one may formally define
the average value of S as

with Z'1 ' ——lL, and the scalar 0' 's are given for
m =1,2, . . . , N as

00

( S) =ceo—f dt exp( t lr)E (t)—k,
0

(2.21)

m e'"'= —Tr( A'"Z'"') (2.19c)

A' 'ZN +ON1=0 (2.19d)

are fulfilled serve to gauge the numerical performance of

One recognizes Eq. (2.17) as deriving from the residue
theorem, where the k's are the unique poles and the Bate-
man matrices are the corresponding residues of the resol-
vent of A'"'.

In particular applications it is unlikely that A' ' will
exhibit degeneracies in its eigenvalues; thus, the generali-
zation of the foregoing scheme to allow for such degen-
eracies, which results in formulas that while trivial to
derive are problematic to code, will probably not be re-
quired. The method is inherently faster than that based
on spectral decomposition for computing the exponential
of A' ' and although both methods are computationally
laborious, the resolvent scheme based on Laverrier's algo-
rithm avoids the time consuming tasks of generating the
matrix of eigenvectors 9f A' ' and its inverse. Further,
the extent to which the conditions on the Bateman ma-
trices given in Eq. (2.18) and the relation

where the integral is the Laplace time average of E (t).
Time averages of this type were introduced by Golden and
Longuet-Higgins in studies of quantum ergodicity and
more recently Kay, in connection with the formulation
of a semiclassical ergodic theory, has shown the
equivalence of time averages

lim —f dt exp( —tlat)E (t) = lim —f dt E (t) (2.22)
00

2 1 '
2

T~ao T 0

T
whenever the limit on the right exists and T ' dt E t
is finite for all 0~ T ~ ao. Using either of the averaging
processes in Eq. (2.22) for the continuous-wave source
gives the well-known result

( S)=c~,—,
' (E')'k, (2.23)

where —,(E ) is the mean value of E (t) over many opti-
cal cycles, and one notes that (S) is independent of the
phase of the field. In the last section we remarked that,
like any quasimonochromatic source, the Gaussian pulse
has an epochal existence only during a finite time interval,

~

t
~

(4~~, say. For the G.aussian pulse, Eq. (2.21) yields

1

(S) (Eo)2 1 ~ I (2l+1)
(

2 I ~I~) ) exp(i2$)
—1 ~ 21 +1(r —i2coo)

(2.24)

which vanishes as ~~ oo unless one also admits ~&~ oo.
This is not an artifice but is a result of the finite pulse
duration r~; if r~ becomes arbitrarily large so that the
pulse evolves into a continuous-wave source then (S) is
given by Eq. (2.23) as r~ oo. As r~0+ it readily follows

i

from Eq. (2.24) that

( S)=ceo(E ) cos Pk, (2.25)

and one can eliminate the explicit dependence on the arbi-
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oo

p'(tp ) = —f dt exp[ —(t tp)/r]—p(t, to ),
'0

(2.26)

trary phase of the field by averaging over the interval
0 (P &n. to yield Eq. (2.23). One usually rationalizes the
applicability of Eq. (2.23) to Gaussian pulses by invoking
a slowly-varying-envelope approximation. The fluence or
energy output per unit cross-sectional area in the direction
of the beam is r/ (S), where rt is the duration of irradia-
tion at intensity (S).

In the foregoing use of the Laplace time average, and
the equivalent long-time average in Eq. (2.22), implicit al-
lowance has been made for the fact that, for the fields of
interest here, E(t) =E( t) —Mo. re generally, for the den-
sity operator p(t, to) we define ' its Laplace time-average
by

given in Eq. (2.8) and require U(t, O) only over the period
of the Hamiltonian, 0&t &2m. /o/p. To obtain the time-
resolved, time-averaged, and long-time-averaged transition
prObabilitieS Pkk(COp, p, r, —co ), Pkk(COp, p, —Oo ), and
Pkk (coo,p, —oo ), respectively, for the Gaussian-pulsed
source requires the evolution operator U(t, —oo ) over the
entire temporal range and this ultimately raises the ques-
tion as to the existence of the limit

U(+ oo, —oo ) = lim U( t, —oo ) . (2.29)

Following Dollard and Friedman, ' " one can establish
the existence of the limit in Eq. (2.29) by using the
Riemann product integral representation of the evolution
operator to show that U(t, t, ) fulfills the Cauchy
criterion' ' ' on [tp, t]. For tz- & t /,

IIU«»to) —U«/ to) II &
I
IU«2 t/) —II I I

IU«/, to) II

and

lim p'(to)=p(to~to)
v~0+

(2.27a) (2.30)

where we use the group property given in Eq. (2.4). Now,
from Eq. (2.7),

lim p'(to)=p( m, tp) .
'P~ 00

(2.27b)

Physically, ~ may be viewed as a uniform relaxation time
for processes that effectively interrupt the dipole interac-
tion of the N level syste-m with the field E(t), for exam-
ple, through the collisions between members in an ensem-
ble of X-level systems at reasonable densities. For a short
relaxation time, Eq. (2.27a) expresses the fact that the sys-
tem is essentially unperturbed from its initial state p(tp, tp)
by the field while Eq. (2.27b) formally defines the asymp-
totic state p( oo, tp ) of the system.

The Laplace time-averaged value of the transition prob-
ability

Pkk(&p 0 t to)=pkk(t to)

for excitation to
I
k) of an N-level system prepared ini-

tially in the state a(to) is

oo

Pkk(o/o 0 to) =— dt exp[ —(t to,)/r]—0

P k
ll«t to)II=T»m +exp f, ds A(s)

n —+co, k ] - k —1

'k(T 1lm exp y f dsllA(s)ll
n ~co k —1

=exp f dsllA(s)l
f

Formally integrating the first-order system

U(t, to) = A(t)U(t, tp)

subject to the initial conditions U(tp, tp) = I gives

I
IU(t, tp) —I

I I

= f ds A(s)U(s, tp)

( f ds
f f

A(s)
I f I fU(' to)

I f

(2.31a)

XPkk(o/o 0 t to) (2.28a)
& exp f, ds

I I
A(s)

I I

—1, (2.31b)

or from Eq. (2.2),
where we have used Eq. (2.31a). Using Eq. (2.31) in Eq.
(2.30) gives

Pkk(p/0 0 to) y +/ (to)e/ (to)

oo

X —f dt exp[ ( t t p )/r]——
0

IIU(t2 to) —U(t/ to)ll & exp f,
t'1

)&exp f ds
I f

A(s)l
I

(2.32)

/ U/, /(t, to)U/, (t, to) ~

(2.28b)

For a continuous-wave source we have previously"'
dealt in detail with the evaluation of the various transition
probabilities: time-resolved Pkk(coo, p, t, O) and Pkk(o/o, t, O),
time-averaged Pkk(coo, $,0) and Pkk(o/p, O), and the asymp-
totic long-time-averaged Pkk(coo, p) and Pkk(o/o). These
are evaluated through use of the Floquet form of a(t) as

If one assumes the existence of

f, dsllA(s)If= 1~~ f, dsllA(s)ll & ~

then f dsllA(s)ll can be made arbitrarily small by
choosing t3 to be large and t&, t2 ~ t3. Now since the first
factor on the right in Eq. (2.32) can be made arbitrarily
small and the second factor is finite by virtue of Eq.
(2.33), it follows that U(t, tp) is Cauchy on [tp, t/], provid-
ed Eq. (2.33) is true. Consequently, the limit on the right
in Eq. (2.29) exists. Since
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A t) =iE (t)exp[i Q(t —rp) jp,,exp[ i—Q(t —rp j
then A t &

/

E t
/ / /p, / /

so that for a Czaussian-
modulated sinusoidal pulse, E . (2.33) i

r[ r j & f(A(t)
f f

it follows from Eq. (2.3) that the
validity of Eq. (2.33) ensures that U(+ oo, —ao) is non-
singular. Note that the use of th Re o e iemann product in-

2.
egra representation of the evolution

( .31) allows one to define U(t, tp) for all r sub'
o u ion operator in E .

in q. . j~, without recourse to the usual adia-
batic switching of interactions.

I—2 +2'

III. APPLICATIONS AND DISCUSSION
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evident from Fig. 4, such phase averaging smooths out the
undulations and when further time averaged, the transi-
tion probability is insensitive to phase at near-resonance
frequencies but off resonance, the phase dependence be-
comes more pronounced. ' Similar considerations apply
to the Gaussian pulse, as indicated in Fig. 3 for the on-
resonance interaction. At off-resonance frequencies the
influence of the phase of the pulse on the transition prob-
ability is somewhat academic in view of the fact that at
such frequencies the Gaussian-pulsed source is not very
efficient at creating a desirable population inversion, espe-
cially at ultrashort interaction times.

Finally, we consider the case in which the two-level sys-
tem interacts with a train of phase coherent identical
Gaussian pulses whose time delays are sufficiently short
to arrive before spontaneous decay becomes established.
Figure 5 shows the variation in Pzz(cop, 0, —oo) as a func-
tion of n, the number of pulses in the train, within the
range 1—10 at the near-resonance frequency cop=co2& and
with ~z ——0.625 ps, E =5X 10 ', and /=0 for each
pulse. Initially, P22(up, 0, —oo) =0 but following the first
pulse, P22(cop, 0, —ao )—0.55 as shown yn Fig. 3(a). Thss
now becomes the initial condition for the incoming second
pulse and continuing in this fashion one cascades the tran-
sition probability over an arbitrary number of identical
pulses in accordance with Eq. (2.12) once the evolution
operator has been determined for the first pulse in the
train. As depicted in Fig. 5, the system saturates over the
duration of the train of pulses at the near-resonance fre-
quency with the transition probability averaging to 0.5,
exactly as happens when the system absorbs a single pho-
ton from a near-resonant continuous-wave source. How-
ever, in contrast to the continuous-wave case, the transi-
tion probability oscillates near zero at the off-resonance
frequency co=0.5~2& no matter how many pulses there
are in the train. The dynamics of the interaction of a
two-level system with a train of pulses will reflect the
ability of a single pulse's duration to encompass sustained
Rabi nutations at specific frequencies.

IV. CONCLUSIONS
In this paper some generalizations and improvements in

implementation of an algorithm" for evaluating the evo-
lution operator of a multilevel system dipole interacting
with either a continuous-wave or Gaussian-pulsed laser
were presented.

The generalizations in the algorithm include allowance
for spontaneous decay or a dissociation (or ionization)
channel, the inclusion of an arbitrary phase in the specifi-
cation of the Gaussian pulse, the provision of useful rela-
.tions for the eigenvalues of the evolution operator, and a
simple scheme for cascading the state amplitudes over the
duration of an arbitrary number of identical phase
coherent pulses. The dependence of the laser fluence on
the phase of the field was briefly explored as was the
asymptotic behavior of the evolution operator for a
Gaussian-modulated source.

The improvements in implementation of the algorithm
accrue from avoiding the repetitive complete spectral
decomposition of potentially large NXN matrices. For
the two-level system, the evolution operator is, evaluated
as the product of 2x2 matrices while for a multilevel sys-
tern one may apply a resolvent scheme in conjunction
with Leverrier's algorithm for evaluating the Bateman
coefficient matrices. We have not belabored the computa-
tional aspects of the algorithm as these are essentially
straightforward. The main difficulty one encounters is
exponential underflow or overflow in the evaluation of
Eq. (2.14) using Eq. (2.15), but this is easily overcome by
due attention to how the various factors are combined in
affecting the evaluation. For both two-level and multilev-
el applications, the algorithm is easily implemented on ei-
ther a main-frame or personal computer. Of course, for
personal microprocessor implementation one is restricted
to N-2 —5, for example, and one must provide the code
for evaluating the error function in the complex plane
when considering Gaussian pu1ses, in addition to the code
to generate the roots of the characteristic polynomial. In
this paper the numerical demonstration of the algorithm

I
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FIG 5. The variation of the steady-state induced transition probability P22(coo, o, —ao ) with the number (n) of pulses in a train o
1 & n & 10 phase-coherent identical pulses, each at the on-resonance frequency coo ——

A@2~ and with v~ =0.625 ps.



1524 GERALD F. THOMAS 32

has been restricted to a two-level system. The calculations
were performed on a 16-bit microprocessor and they com-
plement previous calculations" carried out on a main-
frame machine on the same model two-level system. In
the case of the Gaussian-pulsed source calculations, a
comparison between the computed results and those given
analytically" "within the rotating wave and second order
Magnus approximations will be reported elsewhere.
Like the recursive-residue-generation method given re-
cently by Nauts and %"yatt, the resolvent scheme pro-
posed here for tackling multilevel systems should be high-
ly efficient and enjoys the additional advantage of allow-
ing one to gauge its numerical performance through Eqs.
(2.18) and (2.19d). We reserve discussion of the applica-
tion of the scheme to particular multilevel systems for a
forthcoming paper in which such issues as the inclusion
of spontaneous decay or a dissociation (or ionization)
channel through a non-Hermitian Hamiltonian
operator, "the averaging of induced transition probabil-
ities over the laser-pulse bandwidth, and the effects of in-
cluding an additional static electric field will be addressed.
Baker ' ' has generalized the procedure of Armstrong
and Baker "for the systematic construction of an ap-
propriate effective Hamiltonian for an ionizing and/or de-
caying multilevel system. George and coworkers ' have
emphasized the importance of the pulse's time-varying en-
velope with the finding that the collision cross sections in
a multimode laser field can be considerably different from
those in a single-mode field with the same average high
intensity. Any investigation of bandwidth averaging on
the transition probabilities should incorporate a descrip-
tion of the laser statistics, fluctuations, and mode
structure, such as the classical field treatments
given by George " and Mittleman. ' ' " Both
theoretical' ' " and experimental '"' evidence suggest
that an additional static electric field enhances multipho-
ton processes in atoms and molecules. An upper limit on

the number of states to be included in a simulation of the
dynamics of a multilevel system with an intense laser field
must be set, especially as the density of states generally in-
creases quite rapidly with energy. Thus, use of the resol-
vent scheme we have proposed (or indeed any equivalent
algorithm) may become impractical, ' particularly if the
temporal variation in the field amplitude has also to be
considered.

The illustrative applications presented reveal some of
the differences in the dynamics of interaction of two-level
systems with a constant amplitude field or a Gaussian
time-varying-amplitude field. The most dramatic differ-
ence between the two is the failure of the latter, for the
short interaction times considered here, to allow the estab-
lishment of steady state Rabi oscillations of the induced
transition probabilities at off-resonance or multiphoton
frequencies. Only with the advent of sources delivering
ultrashort pulses have the effects of amplitude variation
on multiphoton processes begun to receive attention.
Thus, Lompre et a/. have reported the absence of multi-
photoionization in rare gases irradiated by picosecond
pulses although such phenomena were observed with
nanosecond pulses at the same carrier frequency, the
difference being attributable to a decrease in the time
available for the absorption of the requisite number of
photons. With the availability of pulses now extending
down to the femtosecond domain, ' the nature of the rap-
idly varying pulse envelope and the consequences for the
dynamics of the interaction of atomic and molecular sys-
tems with intense ultrashort-duration sources will un-
doubtedly be of importance. On resonance, the phase of
the field shifts recurring undulations in the time-resolved
induced transition probability without affecting its
asymptotic behavior. Under the action of a train of
phase-coherent on-resonance pulses, the two-level system
saturates although the train is less successful in affecting
a population inversion at off-resonance frequencies.
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