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We study the discrete eigenvalues E„I of the Schrodinger Hamiltonian H = —
2 5+ V(r), where

V(r)=g( —1/r) is an increasing concave transformation of the Coulomb potential, and n is the
principal (radial) quantum number. It is demonstrated by the method of potential envelopes that

upper bounds are provided by the simple formula E„t & min, &v I 2 s+ V{(n +l)/s'~ ) I, where s is a

real variable. Numerical results are compared with previous work for two specific screened
Coulomb potentials. In the case of the Yukawa potential V(r) = —(U/r)exp( —A,r), it is shown that
the inequality ( n +I) 1,/v & 2/e is sufficient to guarantee the existence of the eigenvalue E„I. In the
case of S states, sharp upper and lower bounds are also provided by a different method.

I. INTRODUCTION

We study the discrete spectra of Schrodinger Hamil-
tonians of the form

V& ( r ) = (v /r )[1—r—k( 1 —1/Z ) /( 1+rA)],
and the Yukawa potential

V2(r)= —(v/r)exp( —Ar) .

(1.2)

(1.3)

In the atomic physics applications the coupling constant U

and the range parameter A, for the non-Coulomb factor
are given by

U =cxZ, X=A,pcxZ (1.4)

where a=(137.037) ' is the fine-structure constant and
Z is the atomic number. In terms of our notation the
values of ko used in the two potentials in Refs. 1 and 2
are, respectively, 0.98 and 1.13.

Since our methods may still be unfamiliar, it is neces-
sary to make it quite clear how we proceed from the for-
mulation to the results quoted in keV. We take care of
this detail immediately. Since for Z=1 and A, =O both
potentials lead to the hydrogenic spectrum

E„t= a /2( n +—l )

it follows in general that the energies in keV are obtained
by the relation

Energy =(2&(13.6047/1000m )E keV

=510.969E keV . (1.6)

It is straightforward to show that both V&(r ) and Vz(r)

H = ——,b, + V(r ), V(r ) =g( —1/r ),
where the smooth transformation function g(X) is in-
creasing and concave for X=—1/r & 0. Various screened
Coulomb potentials used in atomic and nuclear physics
have this representation. Two examples which we shall
look at and for which there are recent comparable stud-
ies' in the atomic physics literature are given by

have the representation V(r) =g( —1/r) where g(X) satis-
fies g'(X) &0 and g"(X)&0 for X&0. What we now
have to say. applies to this whole class of potentials of
which V, (r) and V2(r) are simply illustrations. The sig-
nificance of this representation for the potential is that
V(r) is the envelope of a family I V'"(r) I of "tangential"
Coulomb potentials each of which has the form

V'"(r)=&(t)+v(t)( —1/r) & V(r) . (1.7)

The potential inequality in (1.7) is a consequence of the
concavity of the transformation function g and it allows
us to find upper bounds to the eigenvalues E„t of H. In
fact, these upper bounds may be written in the simple
compact form

E„t & min I —,s+ V{(n+l)/s'~2) I,s)0 (1.8)

where n = 1,2, 3, . . . , is the radial quantum number and l
is the angular momentum quantum number (the upper
bound has identical degeneracies to those of the pure hy-
drogenic spectrum). The approximation (1.8) reduces the
Schrodinger eigenvalue problem to an exercise in the cal-
culus of a function of a single real variable s which equals
the mean kinetic energy. Even the transformation func-
tion g has vanished and all that remains is the original po-
tential V(r) carrying with it the dependence of the eigen-
values on all the potential parameters. Most of the results
of this paper are obtained from this single equation.

The method of potential envelopes was introduced in
1980 as a technique for approximating the eigenvalues of
the many-body problem. The method applies equally well
to envelopes of arbitrary soluble potentials. %'hen g is
convex, the method yields energy lower bounds. The
theory has been extended to allow for sums of soluble po-
tentials and the formulation has been streamlined by the
introduction, refinement, and application of the concept
of "kinetic potentials. " However, in order to make the
present article essentially self-contained, we give in Sec. II
below a brief derivation of the principal special result (1.8)
used in this paper.

This simple upper bound is particularly appropriate for
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the screened Coulomb potentials of atomic physics be-

cause of the close relationship in these cases of V(r) to the
hydrogen-like potential. This general observation is sup-
ported by our specific results for the potentials V, (r) and
V2(r) which are discussed in Secs. III and IV.

For the Yukawa potential V2(r) our upper bound (1.8)
allows us to determine the following sufficient condition
for the existence of the discrete eigenvalue E„~..

(n+I) A, /u & Q=2/e =0.7357 . (1.9)

We now present a brief argument leading to Eq. (1.8)
which is the key result used in this paper. A more com-
plete discussion of this geometrical theory may be found
in Refs. 5 and 6.

We suppose that we can solve Schrodinger's equation
for the discrete eigenvalues when the potential is vh(r)
and we wish to estimate the eigenvalues when the poten-
tial is changed to g(h(r)) where g is monotone increasing
and concave. We summarize this situation by the rela-
tions

——,5+vh (r )—& 8'„i(u ),
,' S+g(h(—r)—) E„, .

(2.1)

(2.2)

Of course, discrete eigenvalues may not exist for all values
of the coupling u but we assume, for u sufficiently large,
that there are some. Because of the concavity of g, the
tangent lines to g (as a function of h) all lie above g and
we can immediately find by calculus that

For the Yukawa potential Vz(r) we are also able to find
(by an independent method) simple explicit recipes for
upper and lower bounds to the 5-state eigenvalues. In
these cases we get the stronger critical binding result Eq.
(1.9) with Q= 1.

II. THE METHOD OF POTENTIAL ENVELOPES

For our very specific application we have h(r)= —1 jr
and we therefore know that the corresponding "energy
trajectory" function 8'„t(u) is concave and is given expli-
citly by

h(r) = —1jr~ 5'„i(v) = —v /2(n+l) (2.7)

E„t & min [8'„t(u)—u8'„t(u)+g(S"„t(u))I .
u&0

(2.8)

This formulation of the method is actually interesting for
it tells us (approximately) how the eigenvalues E„t derived
from the potential V(r)=g(h(r)) depend on the energy
trajectories 8'„i(u) corresponding to the potential uh(r).
The final step to Eq. (1.8) is made by a (further) I.egendre
transformation defined by

—,
' s = 8'„t(u) —v 8'„'i(v), h„~(s ) = 8'„'i(v) (2.9)

which leads to the result

E„t & min I —,s+g(h„t(s))I .
s&0

(2.10)

The functions h„i(s) are called kinetic potentials and for
our particular problem where h(r) = —1/r we have from
(2.7) and (2.9) that the Coulomb kinetic potentials are
given by

h„t(s)= —s' /(n+1) . (2.1 1)

Now we see that (2.10) and (2.11) immediately lead to
(1.8) because V(r) =g(h(r ))=g( —1 jr ) so that g(h )
= V( —1/h). A table of kinetic potentials may be found
in Ref. 5 and a formulation of the problem starting with
an abstract definition of kinetic potentials may be found
in Ref. 6.

This concavity property of energy trajectories is actually
true much more generally (see Ref. 5, theorem 2). We can
therefore use (2.6) to recast the minimization of (2.5) in
the new form

g(h(i )) & A+uh(r),

where

A =g(h (t) ) —h (t)g'(h (t) ) and u =g'(h (t )),

(2.3)
III. THE SCREENED COULOMB POTENTIAL V~(r)

The potential studied by Mehta and Patil' is given by

t H (0, oo ) (2.4) V, (r) = —(u/r)[1 —ri((1 —I/Z)/( I+rA, )] (3.1)

E„i & A (t ) + 8'„t(u(t) ) . (2.5)

We now minimize the right-hand side of (2.5). We can
work now with the variable h since the upper bound is a
function of h.

The necessary condition for a minimum is obtained by
differentiation with respect to h and cancellation of the
factor g"(h) &0 (by hypothesis, g is concave). This yields
the critical point

h =8'„'t(v) . (2.6)

and h(t) is the point of contact of V(r)=g(h(r)) with its
"tangential potential" V'"(r) =A (t)+v(t )h (r).

Since the Hamiltonians we consider are self-adjoint and
bounded below, we can employ the variational characteri-
zation of the eigenvalues to derive the comparison
theorem" of quantum mechanics which tells us that the
potential inequality (2.3) implies the spectral inequality

with

v =aZ and A, +0.98nz' (3.2)

It is a matter of personal taste whether one keeps the ves-
tigial factor of —, in front of the Laplacian in the
Schrodinger Hamiltonian. In the present paper we have
chosen to keep this factor so that we can relate our work
to Refs. 1 and 2 within a common framework. Mehta
and Patil choose to absorb this factor and also the fine-
structure constant into the units they use. Anyway, with
the potential defined by (3.1) and (3.2) and the keV factor
given in (1.6) it is evident that we are discussing the same
problem.

The potential (3.1) is almost Coulombic everywhere for
it is like —u/r for small r and like —u/Zr for large
values of r. This makes our present approach based on
Coulomb envelopes very appropriate. The simplest way
to obtain results is to use Newton's method to find the
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TABLE I. Some energies E„i (in keV) corresponding to the
screened Coulomb potential V&(I") with A,0=0.98. Our envelope
results are upper bounds. Variational results are from Ref. 1. U =aZ, 1,= 1.13eZ 'i (4.2)

z
ElO

Envelope Variational
E20

Envelope Variational

14
19
24
29
34
39

49
54
59
64
69
74
79
84

—1;952
—3.786
—6.254
—9.364

—13.12
—17;53
—22.59
—28.30
—34.67
—41.70
—49.39
—57.74
—66.76
—76.43
—86.77

—1.94
—3.77
—6.20
—9.28

—13.1
—17.4
—22.5
—28.3
—34.6
—41.6
—49.4
—57.7
—66.6
—76.3
—86.6

—0.187
—0.423
—0.779
—1.262
—1.879
—2.633
—3.528
—4.566
—5.748
—7.078
—8.556

—10.18
—11.96
—13.89
—15.97

—0.161
—0.394
—0.745
—1.22
—1.82
—2.59
—3.44
—4.50
—5.67
—7.01
—8.46

—10.1
—11.8
—13~ 8
—15.8

critical point and consequently the minimum in Eq. (1.8).
We display some results for Z = 14—84 (by increments of
5) in Table I. These results by the method of potential en-
velopes are of course upper bounds and it turns out that
they are in every case lower than the corresponding varia-
tional results of Ref. 1 which are also displayed in the
table.

We do not quote the numencal results obtained by the
analytical method of Ref. 1 because we are not sure how
they relate to the exact eigenvalues. Mehta and Patil dis-
cuss the linear-plus-Coulomb potential in the same paper.
We have also applied our geometrical methods to this po-
tential: in Refs. 6 and 7 upper and lower bounds and a
simple eigenvalue formula are given for this interesting
problem.

IV. THE VUK.AWA POTENTIAL V, (r)

where the radial quantum number n =1,2, 3, . . . . Now
whilst the simple Yukawa-Hulthen inequality

—exp( Ar) /r —& —, A, [e px(A, r ) —1] (4 4)

is valid, it is not tight enough to lead to a useful spectral
approximation. However, we are able to establish the fol-
lowing sharper inequalities:

is applied to atomic physics. Many other things which we
do not refer to here are done in this substantial paper.
Our purpose is simply to offer two simple ways to ap-
proximate the eigenvalues of the Yukawa problem and we
use the results of these authors to provide a comparison.
In Table II we exhibit our envelope upper bounds for the
eigenvalues studied by these authors, along with their
most accurate results under the heading "Numerical. "
Our upper bound has the same degeneracies as the hydro-
genic atom so that we obtain the same bound for each col-
lection of eigenvalues E„I with "the principal quantum
number" (n+I ) constant. This quantity is, of course, not
a constant of the motion for the Yukawa problem and the
numerical results of McEnnan et al. do separate the
eigenvalues. Since our results are so easily obtained from
Eq. (1.8) and they turn out to be good approximations, we
only quote a few results for eigenvalues not mentioned by
McEnnan et al. For these weakly bound states another
approximation obtained by a distinct method seems to be
very useful.

We found this approximation by exploiting the known'
exact solution for the S states of the Hulthen potential.
We write these, first of all, in terms of new range and cou-
pling parameters b and u. Thus we have

——,
' 6—u(e "~ —1) ' —&E„o=—(2ub —n) /8n b

(4.3)

0(f(x)=e /x —e "/sinh(x) (0.056, x &0 . (4.5)

Vq(r) = —(U/r )exp( A, /r ), — (4.1)

In a recent paper by McEnnan et al. the Yukawa po-
tential given by

The left-hand inequality is immediate because we know
that sinh(x) &x. The right-hand inequality is found (in
the modern way, with the help of a microcomputer) by

TABLE II. Some energies E„i (in keV) corresponding to the Yukawa potential V2(r) with ko ——1.13.
Our envelope results are upper bounds. The E lower and E upper are the S-state bounds provided by
our formula (4.7). Numerical results are from Ref. 2.

z
13

36

0
0
0
0
1

0
0

1

0

Envelope

—1.450

—14.16
—1.437
—1.437

—74.80
—12.00
—12.00
—1.559

E lower

—1.508
—0.0718

—14.37
—1.715

—0.214
—75.39
—12.67

—2.474
—0.585

E upper

—1.455
—0.0191

—14.16
—1.510

—0.008 84
—74.80
—12.08

—1.890
—0.001 78

Numerical

—1.488

—14.24
—1.692
—1.566

—74.95
—12.50
—12.25
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general exploration prior to the determination of very ac-
curate specific results by direct numerical methods. For
each upper bound, the value of s specifies through the
equation h„i(s)=h(t) and Eq. (2.3) a particular shifted
potential A (t) + U ( t)h (r ). For the Coulomb envelopes
which we - have studied in this article, we have
h(t)= —I/t and h„i(s)= —s'~ /(n+l), and consequently
r =(n +i)/ s' . Thus, in addition to the eigenvalue
bounds, we also obtain a collection of Coulomb wave
functions (each differently and optirnally scaled) which
can be used either for the estimation of other physical
quantities or as the basis for a Rayleigh-Ritz computa-
tion.

We do not mention the experimental data in this article
nor do we try to choose between the two potentials we
have used as illustrations. The parameters U=a;Z and
A, =Zoo,Z' have been given "physical" values in order to
allow comparison with the literature and also to show that
the results of the geometrical approach are good in
relevant domains. Of course, in addition. .to the solution

of a simple'eigenvalue problem, a full discussion of the
atomic physics involves many other issues not the least of
which is the question of relativistic effects. It is our wish
that the simple tool we offer here will be used to help with
this task. Now that physics is actively engaged in the
world of nonlinear phenomena, it is perhaps more sharply
realized than ever before just how important it is to ex-
ploit to the fullest any exact solutions to important prob-
lems that we are fortunate to have found. Geometrical
methods, of course, are particularly suitable for imple-
menting this program.
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