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An analysis of infrared radiation in the potential scattering of a Dirac electron was presented by
Bloch and Nordsieck [Phys. Rev. 52, 54 (1937)], in their now classic work, to illustrate how diver-

gence difficulties are removed by nonperturbative treatment of the radiation of soft photons. It is
shown here how an improved low-frequency approximation can be obtained which provides a small
correction to the Bloch-Nordsieck sum rule for the scattering cross section, while still requiring as
input only physical (on-shell), ,values of the amplitude for scattering in the absence of the radiation
field. The calculation is based on a variational determination of the radiative amplitude with trial
functions chosen in accordance with the Bloch-Nordsieck approximation. An extension of the
model scattering problem is introduced which allows for potentials with a Coulomb tail. The appli-
cability of the approximation procedure to the analogous problem of relativistic scattering in a low-

frequency external field is pointed out.

I. INTRODUCTION

The infrared divergence problem was resolved many
years ago by Bloch and Nordsieck' (BN) in the context of
a relatively simple model. They considered the scattering
of a Dirac electron by a short-range potential and allowed
the electron to interact only with low-frequency
photons —those with frequencies co &co„with fico, small
compared to the electron rest energy. In order to simplify
the problem while still retaining its essential features, BN
introduced the following two low-frequency approxima-
tions.

(i} Interaction with the radiation field is accounted for
only in asymptotic states, that is, before and after the col-
lision, not during the collision.

(ii) The asymptotic states, modified by the radiative in-
teraction, are determined nonperturbatively, but in the ap-
proximation in which the Dirac matrices n and 13 are re-
placed by the constants v/c and (1—u /c )', respective-
ly, where v is the appropriate (initial or final) electron
velocity.

The cross section, summed over all final photon states,
which was calculated by BN on the basis of these approxi-
mations, was shown to be identical to the cross section for
scattering with no interaction with the radiation field.

The removal of divergences was, of course, the main
objective of the BN calculation. In view of the fundamen-
tal importance of this problem, however, it seems
worthwhile to pursue the calculation one step further. We
shall do so here, examining the leading terms which pro-
vide small corrections to the BN approximation. That
progress along these lines should be possible, in the gen-
eral context of relativistic collision physics, was suggested
by Brown and Goble in the course of their study of the
relation between soft-photon approximations and the clas-
sical limit. While the present analysis is confined to the
BN model, techniques and insights developed here might
well prove useful in more realistic scattering problems. In

this connection we note that infrared radiation in the pres-
ence of long-range Coulomb forces is a subject that has re-
ceived proper mathematical treatment only relatively re-
cently, and few applications of the theory have appeared.
Explicit treatment of' this problem in a simple model may
be of some heuristic value and for this reason we have
generalized the model to allow for scattering potentials
with a Coulomb tail, i.e., V(r)-g/r as r~ oo. It should
also be mentioned that problems involving scattering in an
intense, low-frequency external field (a laser field, for ex-
ample} can be treated as a special case of the formalism
and this provides additional motivation for attempting to
improve the accuracy of the BN approximation. The
external-field problem is discussed briefly later on, in Sec.
IV.

We have previously studied a nonrelativistic version of
the BN model and have derived corrections to the analog
of the BN approximation. There are two main sources of
complication in a relativistic extension. Firstly, with u/c
no longer treated as a small parameter, electron recoil ef-
fects, arising from the transfer of momentum to the field,
must be dealt with more carefully. This can be done, as
will be shown, although one is left with expressions for
the correction terms which are rather cumbersome and
difficult to evaluate explicitly compared to the nonrela-
tivistic version. A second complication arises from the
fact that the BN asymptotic states are only approximate
solutions of the Dirac equation, the Dirac matrices having
been replaced by constants [approximation (ii) mentioned
abovej. An iterative procedure for improving on this ap-
proximation was suggested by BN, but even if that were
implemented. there would still remain approximation (i)
which introduces errors of comparable magnitude. We
have found it more convenient to deal with both sources
of error at the same time by employing a variational pro-
cedure. The BN approximation is now used as the basis
for the choice of trial functions; long-range Coulomb ef-
fects can be included at this stage by imposition of the ap-
propriate asymptotic boundary conditions. The variation-
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al principle provides an estimate of the transition ampli-
tude which corrects for first-order errors in the trial func-
tion, leaving errors of second order. The transition ampli-
tude obtained in this manner [see Eq. (3.19)] is of a simple
product form. One factor contains effects of the radiation
field. The other factor is similar in form to the matrix
element for single-photon bremsstrahlung. A low-
frequency approximation for this latter matrix element,
sufficiently accurate so as to maintain the level of accura-
cy of the original variational approximation, can be ob-
tained by an asymptotic evaluation in configuration space,
as described in detail previously. The variational con-
struction of the transition amplitude is presented in Sec.
III; this is then used to obtain a low-frequency approxi-
mation for the cross section summed over final photon
states. Our results are discussed and summarized in Sec.
IV. %'e begin, in Sec. II, with a brief review of the BN
method in order to introduce notation and prepare for
later developments.

[v (p, —eA)+(1 —U')'~'m+HF]W
I

n )
I p)

=E„,Wln) Ip) .

The total energy is represented as

En p=En+Ep+~p .

(2.7)

(2.8)

Conservation of total momentum implies, quite generally,
that

(2.9)

([H~, W] —v [pF, W])
I
n) =(ev A+4~)W

I
n) . (2.10)

Let us write

[P„W]= —[ps, W],
with pF ——g,. k;a;a; representing the field momentum.
Using this commutation relation, the eigenvalue equations
satisfied by

I
n ) and

I p), and the relation
Fz vp+——(1—U )' m, we see that Eq. (2.7) is equivalent
to

II. BLOCH-NORDSIECK APPROXIMATION —ev A= g,. g;p;(a;e ' +a;e ' ), (2.11)

The time-independent Dirac equation, in the absence of
the scattering potential but including the radiative interac-
tion, is written, in units such that A=c =1, as

with g; =co; —v.k; and

(2.12)

[~ (p. eA)+Pm+—Hr]
I 0& =E

I
0& .

Here p, is the electron momentum operator,

(2.1) It is then easily seen that Eq. (2.10) will be satisfied if the
commutation relations

S

A(r) = g ( ) '~'a; (a;e ' +a; te
0 CO. O

(2.2)
[a;,W]= —pe ' W,

[a;,W]= —p e ' W

(2.13a)

(2.13b)
represents the soft-photon contribution to the vector po-
tential, and

hold and the level shift is chosen as

2b, = —g,. g,p; . (2.14)
HF ——+co;a; a; (2.3)

is the soft-photon energy operator. (The quantization
volume 0 will eventually be allowed to become infinite, in
the usual way. ) In the absence of the electron-field interac-
tion the solutions are of the form

I
n)

I p), where the
photon states, labeled by a collection of occupation num-
bers n = (n nD&, . . . , n, j, satisfy H~

I
n ) =E„

I

n ), with
F„=g,. m;n;, and where

I
p) (we suppress spin indices)

satisfies

(a p, +f3m )
I p) =Ep

I p) .

We have E~=(p +m )'~ and

(rip) =(2 ) '~'e'~'y(p),

(2.4)

(2.5)

with y representing a four-component spinor. (Actually,
such plane-wave states do not provide an adequate basis in
the presence of Coulomb fields. The appropriate modifi-
cation will be introduced in Sec. III.)

With the radiative interaction included we look for a
solution of the form

IC„,)=WI &lnp&, (2.6)

where 8' is a unitary wave operator. As shown by BN, an
approximate solution, valid for co, &~m, can be obtained
by replacing Eq. (2.1) with

Writing W= W( [pJ ), where [p[ represents the set
[PQ,P&,

. p, ], one readily verifies that

W((p])=exp g,. p;(e ' a; —e ' a; ) (2.15)

W ( tp ] ) W( tp] ) = W( tp —p'i ) . (2.17)

This leads us to consider the matrix element
(n'I W([p —p'[)

I
n). To proceed we observe that the

identity

ik; r. PF PFae ' =e ae
which follows directly from the basic commutation rela-
tions, can be used, along with its adjoint, to derive the use-

provides a solution of Eqs. (2.13) and hence of Eq. (2.7).
If (following BN) we treat the scattering in Born ap-

proximation the transition amplitude to a particular final
state

I

n')
I

p') can be written as

M„~p.„p——(@„p I
v

I c&„p)

=&n'
I

&I'I W'([p'])I'W([pj) ln& lp&,
where the prime on the p; parameters indicates the re-
placement of v with v'. The expression (2.16) can be sim-
plified by noting that V and 8' commute, and by making
use of the identity
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ful representation

with

' ~'o(Ia —s'I) (2.19)
[C'„-", &=W[n& [p'+-'&, , (3.1)

which have the Coulombic form g/r for large r the plane
waves must be modified; we define states

Wo(Ip —p'I)=exp y(p; —p,')(a; —a; ) (2.20)
where, for r~oo,
& r

~

p'+—~

&
—(2m) exp[ip r+i(g/v)ln(pr+p. r)]y(p) .

(3.2)
The matrix element of interest may now be expressed as

&n'I ~(IO V'I)—ln&=e '" '"' &n'I ~0(IS —S']) ln&

(2.21)

Consider now the Dirac equation-

(+) (+)~+~ p =En p+n p

with Hamiltonian

(3.3)

V(q)=(2~) jd r e '"'V(r),

we obtain

(2.22)

=V(P+P ' —P —P )& 'I ~o(IS —V'I)
I

(2.23)

where p„= g,. k;n; is the eigenvalue of pF in the state

~

n &. Assuming for simplicity that the potential is local,
central, and spin independent, and defining

H=a. (p, eA—)+Pm+HF+ V, (3.4)

and with solutions satisfying outgoing-wave (+) or
incoming-wave ( —) boundary conditions at infinity.
Such solutions may be represented formally as

%„~p'——lim ~'„p(E„p+ie) (3.5)
p —+O+

This amplitude vanishes in the limit of infinite quantiza-
tion volume, corresponding to vanishing probability for
emitting only a finite number of soft photons. To obtain
a physically meaningful and useful result one may com-
pute the cross section, summed over final states of the
field; this is of the form

4
der= Q J d p'5(E„' ' E„)~M„' '.„—~, (2.24)

n

p(E) =(E H) '(H E—» p)~-'p—

The S matrix element is given by

S, p', ,p= (2~0&(E„—p E„p)M„p—

with

p pp: limis&N„' ~ '~4 (E +js)&.

(3.6)

(3.7)

(3.8)

with M, in the present approximation, replaced by M
If we ignore the small shifts E„E„and p„——p„corre-
sponding to energy and momentum transferred to the
field during the collision we can easily perform the sum
over n ' using the unitary property

2 I &'I ~.(IS —S'I)
I

& I'=I
n'

This leads to the BN sum rule

d o- d 0-("

dQ dQ

(2.25)

(2.26)

III. VARIATIONAL APPROXIMATION

The variational method provides a straightforward and
convenient procedure for improving on the calculation
outlined in Sec. II. If the scattering potential is of short
range the BN wave functions may be adopted as the
asymptotic states which form the basis for the construc-
tion of trial functions. To allow for potentials V(r)

where do' '/d0 is the field-free differential cross section.
The restriction to the Born approximation can be re-
moved, as first shown by Nordsieck in the context of a
nonrelativistic formulation. In the following a generaliza-
tion of the sum rule is obtained which allows for poten-
tials which are Coulombic at great distances and which
includes corrections of first order in the cutoff frequency
cos.

M„' p.„p——lim is&4&„' ~ '
~
@„p.,(E„'+is)& .

c—+0+
(3.9)

The variational approximation (a generalization of that
first derived . by Kohn ) then takes the form

awU~n'p';n p=~&& pf p 'z p with

(Here and in the following we make use of results—
formulation of the scattering problem and derivation of a
variational principle —previously obtained for scattering
in the presence of long-range Coulomb interactions. The
formal generalization of those results to allow for the
presence of a radiation field introduces no real complica-
tions and is incorporated in the present discussion without
further comment. ) The outgoing wave & r

~ 4„p & will, for
r~ao, consist of a superposition of terms, each corre-
sponding to a "channel" In "p"

I specified by a collection
of photon occupation numbers In" ] and by a momentum
p", with E„p E„p. If the righ——t-hand side of Eq. (3.8)
is to be nonvanishing the spatial integration must be
divergent, and it is sufficient, in evaluating this singular
integral, to consider only the contribution from the
asymptotic domain. Closer analysis along these lines re-
ve»s that M„p.„p may be identified with the amplitude
of the outgoing-wave component of + —

p in channe
In'p'I

Let us now introduce trial functions ~'„'p'. , =4'„p
+ P„p.g, with II& p p defined by a limiting procedure
analogous to that shown in Eq. (3.5), and a trial scattering
amplitude
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Mn p'', np™np'', n p+ (+n'p';t I
H Enp I

+n p;t & (3.10)

First-order errors in the tria1 functions will lead to errors
in the estimate (3.10) which are only of second order.

Now let up
—+'(r) represent incoming- and outgoing-

wave solutions of the Dirac equation

(a p, +Pnt + V)up ——Epu p
—'(r), (3.11)

, ) = 8'I n)u' —'(r), (3.12)

which retains the factorized form of the BN wave func-

appropriate to scattering in the presence of the potential V
but with no interaction with the radiation field. As trial
functions we choose

tions but improves on it through inclusion of the effect of
the potential. With this choice of trial function the trial
scattering amplitude M„' p.„p vanishes for n'&n. This
follows from the fact that p' and p are unequal for n'&n,
a consequence of energy conservation, and in that case the
spatial integration in Eq. (3.9) will be nonsingular. ' The
expression (3.9) then vanishes in the limit 8~0. A
nonzero result, which is easily evaluated, is obtained for
n'=n but we shall eventually take the continuum limit
(quantization volume 0—+ oo ) and sum over final photon
states. Then a single state n'=n, makes negligible contri-
bution and we need not include it. (The situation is dif-
ferent in the case where the field is external and the pho-
ton states are discrete, as discussed in Sec. IV.) The varia-
tional approximation then becomes, for n'&n,

M„"
p

.„p——( u p
'

I
( n '

I
W"( {p' } )(H —E„p)8'( {p } )

I
n )

I

u p+ ) . (3.13)

(H E„,)W({p—})In& fu,'+'&

=(a—v) P8'({p})
I
n) up+'), (3.14)

with

p= —eA —p +W({p})pF~t({p}). (3.15)

straightforward calculation, making use of Eqs.
(2.g)—(2.10), along with the commutation relations (2.13)
and the eigenvalue equations satisfied by

I
n) and up+,

gives

be obtained from Eq. (3.13) using an integration-by-parts
procedure; it is of the same form as (3.19), but with v re-
placed by v' in Eq. (3.20) and p; replaced by p,' in Eq.
(3.16).

As remarked earlier, useful results are obtained by sum-
ming the cross section over final states containing unob-
servable soft photons. Thus, generalizing the procedure
which led to Eq. (2.26) we examine the expression (2.24)
for the cross section with M replaced by the variational
approximation (3.19), and with the initial state

I

"n )
chosen for simplicity as the photon vacuum

I
0). Let us

write

The commutation relations (2.13) may be used to rewrite
this as M„"p.op

——(n'
I

U IO), (3.21)

P= —eA+g, . k;p;(a;e ' +a;e ' +p;) . (3.16)

Since P is a sum of terms, each proportional to either
ik. r —ik r.

aie ' or a; e ' it follows, as in the discussion leading
to Eq. (2.19), that U=mp p(pF ) Q (3.22)

where, with k„replaced by the photon momentum opera-
tor in the argument of mp p we have

~'({p'}»~({p})=e Qe '
where

Q= ~'({p'j)P~({p})i.=

(3.17)

(3.18)

The approximation procedure of Ref. 5 leads to a repre-
sentation m~ ~=mp p+mp p where m& z rovides a first-(0 (i) (1) ~

order correction to the leading term m~&. Correspond-
ingly, we have U=U' '+O'". The leading term takes
the particularly simple form

The variational expression then simplifies to

M„" p.„p ——mp p(k„„) (n'
I Q I

n ),
with k„„=p„—p„and

mp p(k)=(2m) 3 fd r [up '(r))t(a —v)up '(r)e

(3.19)

(3.20)

An equivalent version of the variational expression may
I

(n'
I

U
I
0) =(n'

I

W ({p—p'j) 0)t(p', p;p), (3.23)

where t is the (field-free) scattering amplitude associated
with the solution up+' of Eq. (3.11). We put aside until
later (Sec. IV) a discussion of the derivation of Eq. (3.23)
and make use of this result here to simplify the expression
for the total cross section. Thus, as the leading approxi-
mation to the cross section we have, with U replaced by
U(0)

p

2n. 4
do' '= $fd p'

f
t(p', pp) f

(0
I Wo({p—p'j)

f
n')5(Ep Ep+E„)(n'

I
8'0({p—p'j)—I0) . (3.24)
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(The level-shift difference A~ b.—z has been ignored in the
argument of the 5 function since it is a quantity of higher
order than terms ultimately retained. ) The sum over
states could be performed using closure were it not for the
small photon energy E„contributing to the energy con-
servation condition. It is easily verified, however, that
with terms of second order in the soft-photon energy ig-
nored E„may be replaced by the average value

Rp ~
= (o

I ~o(Ip —p'I )HF ~0( Ip —p'I )
l

o &

= X~ (p p')'— (3.25)

This expression, when evaluated in the continuum limit in
which 0 'g, . is replaced by (2m) fd k, is just the en-

- ergy which the electron would radiate classically in an in-
stantaneous collision changing its momentum from p to
p'. ' Equation (3.24) then leads to the sum rule

4
da"'= fd'p'S(Zp Zp—+Rp p) ~

t(p', P;p)
~

'.

This differs from the BN appro»mation (2.26) in the re-

placement of the Born amplitude by the exact t-matrix
element and in the inclusion, to first order, of the energy
loss due to radiation in the energy conservation condition.

An improved sum rule is obtained by including the
correction term mp p in the bremsstrahlung matrix ele-
ment mz &

which appears in Eq. (3.22). One finds that, to
first order,

4
do -=fd p'5(Ep EF+Rpp) —

i
T

~

(3.27)

The vacuum expectation value is now readily evaluated
with the aid of the commutation relations (2.13). With
the sum over modes performed in the continuum limit Eq.
(3.29) becomes

T=t —2e ( )co,mp'p(0). v .
3m

(3.30)

The correction term is seen to be proportional to e u„

where

T=«P',P p»)+«I K(Ip p'])—m,",'(pF) QI0.& .

Since the photon momentum operator appears nonlinearly
in the amplitude mz'~(pF), evaluation of the vacuum ex-
pectation value in Eq. (3.28) is not trivial and additional

approximations would be required to put the result in
more explicit form. Rather than enter into such a calcula-
tion at this time let us examine the form of the result in
the approximation in which the field momentum pF is ig-
nored altogether in the correction term; the electron is
then permitted to exchange energy but not momentum
with the field, as would be appropriate in the nonrelativis-
tic limit. Then, with m~&(pF) —am~&(0) Eq. (3.28) be-
cornes

T=t+m~&(0) (0
~

Wo(Ip] )[—eA(0)]8'0(IpI )
~

0& .

(3.29)

confirming the BN identification of the small parameter
in the problem. Here we have obtained an expression for
the coefficient function in an approximation which
neglects the electron recoil momentum. An evaluation of
m~'~(0) in terms of the on-shell t-matrix element and its
derivatives has been given previously. In the following
section we review the main features of that calculation
and include some additional remarks bearing on the rela-
tionship between that study of single-photon bremsstrah-
lung and the infrared radiation problem of present con-
cern.

a=t [H„r] (4.1)

where Hq ——a p, +pm+ V. Then, using the Dirac equa
tion (3.11) and the relation [Ho, e '"']=a ke —'"' we ob
serve that a in Eq. (3.20) may be replaced by
tr(Et, E~+a k). The ad—ditional power of r introduced
by this substitution allows us to obtain a higher-order
correction using only asymptotic properties of the wave
functions. There is an additional integral in Eq. (3.20),

IV. REMARKS ON THE LOW-FREQUENCY'
APPROXIMATION

The simplifying feature of the approximation (3.19) is
the appearance of all multiphoton effects in a single factor
( n

~ Q ~

n & depending only on the radiation field. The
remaining factor mz z(k) is similar in form to the matrix
element for single-photon bremsstrahlung and a number
of approximation techniques are available for the estima-
tion of such matrix elements. In particular, a low-
frequency approximation developed earlier5 can be ap-
plied, with only minor changes, to the integral (3.20). We
shall not reproduce the details of this calculation here but
several general remarks are in order.

The calculational method developed in Ref. 5 for ap-
proximate evaluation of integrals of the form (3.20) is
based on the fact that at low frequencies the dominant
contribution to such an integral comes from the asymp-
totic domain. With the aid of asymptotic expansions of
the wave functions up+' and u p

' this dominant contribu-
tion may be evaluated analytically. As opposed to other
procedures (such as Low's") this method is applicable
even when the scattering potential has a Coulomb tail; one
simply takes proper account of the logarithmic distortions
of the asymptotic form of the wave function which arises
as a result of the long-range Coulomb interaction.

By retaining the first two terms in the asymptotic ex-
pansion, rather than just the leading term, one includes a
correction of higher order in the frequency. This addi-
tional accuracy is in fact required for consistency since
our chief motivation for adopting the variational formula-
tion was precisely to retain such higher-order corrections.
One might be concerned that by including an additional
term (of order 1/r compared to the leading term) in the
asymptotic form of the wave functions appearing in Eq.
(3.20) one would be required to introduce a cutoff radius
R in the radial integration to avoid a divergence at the
origin. However, the contribution from the interior re-
gion r &R may be suppressed, thereby allowing us to ob-
tain results independent of R. Thus, we may write

1
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not present in our previous calculation, involving v rath-
er than a. Analogous suppression of the interior contri-
bution to this integral may be achieved by invoking the
orthogonality of the wave functions to allow the replace-
ment of e '"' with e '"'—1. This in turn may be writ-
ten as

1

e '"'—1=—ik.r e ""*ds . (4 2)
0

One carries out the radial integration first, the extra fac-
tor of r having the desired effect, as described above. The
subsequent integration over s causes no difficulty, the s
dependence being of a very simple form.

Since only the on-shell amplitude for scattering in the
absence of the radiation field appears in the asymptotic
form of the wave function it is evident that not only the
leading term but also the first-order correction term in the
low-frequency approximation for the bremsstrahlung ma-
trix element can be expressed in terms of the physical
scattering amplitude. If, following Rose, ' we denote this
field-free amplitude as X' A (p',p;p )X, where X and X'
represent initial and final two-component spin states, then
the field-free differential cross section is given by

I

—(2m. ) X' A(p'P;p)X=Ept(p', p;p) . (4.3)

If we keep only the leading term in the asymptotic ex-
pansion of u~+' and of u ~

' we obtain a first approxima-
tion for the amplitude mz &(k) and hence of M„~.„~
from Eq. (3.19). The calculation of this first approxima-
tion, which is straightforward and will not be reproduced
here, makes use of the integration techniques described
above. In addition Eq. (2.10), rewritten with the aid of
Eq. (3;15) as

( v.P +HF ) W
I

n ) =(E„+A~) W
I

n ), (4.4)

is used along with the symmetry property mentioned in
the sentence immediately following Eq. (3.20). We find

I

X' A (P',P;p )X I
and the amplitude of the "large"-

component projection of the outgoing-wave part of
uz+ (r) is given by A(r, j;p)P. The low-frequency ap-
proximation derived in Ref. 5 was expressed in terms of
g'~A+ and its angular derivatives. We note that the rela-
tion between this amplitude and the conventionally de-
fined t-matrix element is

M„.„=(p—p') '&n'
I

W ([p'J)(E„+5 —H ) W (jpI) I
n )(E /p')t(p)8(p', p)

—(p —p') '&n'I Wo(IP'll(E„+& HF)WO(IP])—I n)(E /p)t(p')8(p p') . (4 5)

Here we have suppressed the angular dependence of the t
matrix. The function 8(p',p), defined in Ref. 5, can be
represented here to the required accuracy as

8(p',p)=1+iy5ln( —,
'

I
5

I ) (4.6)

t(p) —= t(p)+ —,(p —p')
Bp

(4.7)

with 5=(p —p')/p and y = —gE~/p. It should be noted
that we have not ignored the radiated momentum k„„ in
deriving Eq. (4.5). This momentum appears initially ih
nearly singular denominators of the form
(p —p+p'k„„) and (p —p —p' k„„),so that its
neglect is not justified at the outset, but it drops out of the
final result. Equation (4.5) may be simplified by introduc-
ing the approximation

where p=(p+p')/2, with a similar expansion for t(p').
Then, if we ignore the logarithmic corrections in the func-
tions 8(p',p) and 8(p,p'), as well as terms of still higher
order we find, using energy conservation along with the
relation (E& E~ )Ez—- (p —p'—)p, the form

(4.8)

[Of course t(p) could be replaced by t(p), as in Eq. (3.23),
if one were not interested in keeping track of higher-order
corrections. ] It might be supposed that the leading correc-
tion to the lowest-order approximation (4.8) originates
from the logarithmic term in Eq. (4.6). It turns out, how-
ever, that this correction cancels, to order 5, in the con-
struction of the cross section. Thus, the effect of the loga-
rithmic correction is to replace Eq. (4.8) by

M„~.„~=&n'
I Wo(IP —p'I )

I
n )t(p)+(tyE~/p )ln( —,

'
I
5

I
)I„.„ t(p),

where

I'p;.p=—&n'I Wo'(tp I)(~p+b&+E +E, 2Hz)WO(IPI)
I

n)—
(4.9)

(4.10)

is a quantity of first order in the soft-photon frequency.
Matrix elements of 8'o are real so that the cross term
vanishes in taking the absolute square of the amplitude
(4.9). This leaves a correction of order (51n5) . The net
result of these considerations is that with corrections of
order 6 ignored the only effect of the Coulomb tail in the
scattering potential is to modify the t-matrix element in
the approximation (3.26) for the cross section.

The formalism described above may be applied to the
problem of scattering in the presence of a low-frequency
external field; one simply chooses photon occupation
numbers defining the initial and final states to be suffi-
ciently large. With spontaneous emission ignored and, for
simplicity, with only a single mode assumed to be occu-
pied one has
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exp[pj(aj —aj )]
~ nj )-=g Jt(2pz~nz)

~ nj —l) .

(4.11)

M', , =Jc(2(PJ —pj )~n~ )t(p', p;p)5, (4.12)

where we have replaced (n~ ~
Wo

~ n~ ) by the zeroth order
Bessel function in line with the approximation (4.11). The
analog of Eq. (4.8) in the external field problem is

M, , =J, (2(p~ —pj )~n~)tP(',P;p), (4.13)

This result is established by expanding the exponential,
neglecting the commutator [aj,aj ], and ignoring photon
depletion effects, so that, e.g.,

a,
~
n, —I )-=~n, ,

~
n, l—+ I );

one also makes use of the series expansion of the Bessel
function J~. In establishing the variational approximation
(3.19) we neglected the trial amplitude M„' ~.„~ since it is
nonvanishing only for n'=n and omission of a single
state in establishing the cross section sum rule gives negli-
gible error in the continuum limit. In the external field
problem, on the other hand, the amplitude for scattering
to a particular photon state is nonvanishing arid physical-
ly meaningful. We must therefore complete the variation-
al approximation (3.19) by adding the trial amplitude.
One finds, using the form (3.12) for the trial function
along with the definition (3.9), the result

valid for all nz'. For n~ =nJ it is only the trial amplitude
(4.12) which contributes; the external-field analog of the
variational correction term (3.19) vanishes for nj' —n—j T. o
verify this let us write the field-dependent factor in the
analog of Eq. (3.19) as

q I n, ) = —e (n, I
W,'( I p'] ) A(0) Wo( I p I )

I
n

(4.14)

Here we replaced P by —eA since, according to Eq.
(3.15), the difference arises only from commutators of
field operators and these are neglected in the present ap-
proximation. For the same reason the right-hand side of
Eq. (4.14) may be written as

e(n
~

A(0)8' (Ip —p'I)
i

n ) .

Then, inserting the expansion (2.2) for A(0) and using the
approximation (4.11) this latter matrix element is seen to
be proportional to the vanishing quantity J&(x)+J &(x),
x =2(pj —pj )~nz. The approximation (4.13) for the
stimulated bremsstrahlung amplitude can be improved
through a more . accurate treatment, along the lines
described above, of the single-photon bremsstrahlung ma-
trix element mz z(k). '
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