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Complex energies from real perturbation series for the LoSurdo-Stark effect in hydrogen
by Borel-Pade approximants
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The resonance energies for the hydrogen atom in an electric field, both the real and imaginary
parts, have been calculated together from the real Rayleigh-Schrodinger perturbation series by Borel
summation. Pade approximants were used to evaluate the Borel transform. The numerical results
compare well with values obtained by the complex-coordinate variational method and by sequential
use of Fade approximants.

I. INTRODUCTION

There have been many calculations of the energy and
ionization rate for the hydrogen atom in an electric field,
the resonances of the LoSurdo-Stark effect. ' Although
it has been known for many years that the Rayleigh-
Schrodinger perturbation theory (RSPT) for this system is
Borel summable, which is of utmost importance in the
definition of the resonances from the divergent power
series, nevertheless this fact has not been exploited compu-
tationally. The purpose of this paper is precisely to cal-
culate the resonance energies by Borel summation of the
RSPT. A main point is that the Borel sum provides the
imaginary part of the resonance energy, as well as the real
energy shift, even though the RSPT coefficients are all
real. In practice this technique is expected to fill the gap
between very small field strengths, for which the simple
asymptotic formula may be used directly, and large field
strengths, for which variational methods work well. That
is, it is expected to be more effective at moderate field
strengths than variational methods.

II. BOREL-FADE METHOD

Let us recall the definition of the Borel sum. From
the given power series, which in this case we denote by

E(N)FN
%=0

the Borel transform is first defined by the series,

if the integral exists. In this specific case, as proved in
Ref. 26, the integral exists for E not on the real axis. This
is because the real axis is a Stokes line of the asymptotic
expansion (l), and to include the real axis here it is neces-
sary to take the analytic continuation of (3):

E (F)=a J e 'B(atF)dt, (4)

where a is some nonreal number with Re(a) ~0, and
whose exact value is not crucial. There are, in fact, two
distinct analytic continuations, depending on the sign of
arg(a). The choice arg(a)&Q makes the sign of the
ImE(F) turn out negative. It is proved in Ref. 26 that the
Borel sums E(F) of Eq. (4) are the actual resonances of
the LoSurdo-Stark problem with the usual sign conven-
tion for the imaginary part. In the calculations described
below we took a to be i '

The practical problem in applying the Borel technique
is to compute the analytic 'continuation of B(F) beyond
its circle of convergence. As suggested in Refs. 32 and 33,
it is possible that this can be done via Fade approximants.
It seems clear from numerical calculations that the series
for the Borel transform (2) is not Stieltjes (which follows
from the signs of certain determinants of matrices of the
series coefficients), but nevertheless the diagonal Fade ap-
proximants for B(atF) do not seem to have poles on the
positive t axis for a=i, which would have been the
major impediment to using the Pade method. That is,
even though we do not have a proof of convergence, the
Pade approximants in the present, practical calculation
work.

E(F)=f e 'B(tF)dt, (3)

B(F)= g E' ~F~/N~
N=0

whose radius of convergence in this case' ' ' ' is

3 n, where n is the principal quantum number. Second,
it is necessary to find the analytic continuation of B(F)
for I' outside the cricle of convergence. Then the Borel
sum is obtained from the Borel transform via

III.- COMPUTATIONAL DETAILS

For the RSPT coefficients E~N' we used the standard
method described earlier. ' 3' For the ground state (and
for any state for which the parabolic quantum numbers
n, and n2 are equal) the series is even. [It is possible (but
not proved) that the series (I) is Stieltjes as a function of
—F .] We computed the Borel transform using the diag-
onal and [N+. I/N] Pade approximants on the series in
(atF) to avoid the zero terms. The calculation used the
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continued-fraction formula (see Refs. 33—35) for the di-
agonal Pade approximants. A big advantage was that the
coefficients were computed only once, and evaluation of
the continued fraction at specific values of atF took al-
most no computer time. In principle it would have been
possible to use E' ' through order 150. However, there
was a loss in significant figures involved in calculating the
higher-order determinants that enter into the formula for
the continued-fraction coefficients, and in practice one
could not go higher than N =100 in double precision on a
Control Data Corporation CDC-7600 computer before all
significance disappeared when the E' ' were calculated in
single precision. We remark that the continued-fraction
coefficients were not all positive, which means that the
series (2) for the transform was not Stieltjes. We also re-
mark that one could solve explicitly for the zeros of the
Pade denominators and then evaluate ImE(F) analytically
via the residue theorem. For very small field strengths
(e.g., less than 0.03 a.u. for the ground state) at which
ImE(F) becomes exponentially small, such an analytic
procedure would be particularly effective.

For excited states with n& not equal n2, the even and
odd terms behave as if they belong to two distinct series
(cf., for instance, Refs. 14, 20, and 29—31). For this

reason we decided not to compute the Borel sum of the
series (1) as described above, but instead to take the two
subseries separately,

E(2N)F2N ~ E(2N+1)F2N+1
N=0 N=0

which clearly is permissible because of the linearity of the
Borel method. Of course in computing the Pade approxi-
mants for the Borel transforms, we eliminated the alter-
nating zero terms from each of the series. The results at
appropriately scaled field strengths were comparable to
those for the ground state (for which there are a larger
number of calculations by other methods for comparison),
and so the results for excited states have been omitted
here.

The integral indicated in Eq. (4) was evaluated numeri-
cally by first truncating the interval [0, ao ) at t = 100,
then subdividing [0,100] into as many as 101 subintervals
concentrated between 0 and 20, and finally using the
CERN (European Organization for Nuclear Research,
Geneva) library subroutine CGAUSs to evaluate the in-
tegral over each subinterval. Ct AUSS is based on the
Gauss-Legendre numerical integration method and uses a

TABLE I. Comparison of complex eigenvalues for the hydrogenic 1s state in fields of 0.03—0.10 a.u. as determined by the Pade-
Borel method versus complex-coordinate variational calculations and versus the sequential Pade-Pade method.

Computational method

Borel-Pade [13/12] (max. RSPT order 50)
Sequential Pade-Pade [12/12] (Ref. 21)
Complex coordinate (Ref. 22)
Complex coordinate (Ref 20}

F=0.03 a.u.
—0.502 074 272 607 1

—0.502074272 6
—0.502 074 272 6
—0.502 074 272 60

E(F) (a.u. )

—i 0.111876 462 X 10
—i 0.11190X 10
—i 0.111881 X 10
—i 0.111880 X 10

Borel-Pade [18/17] (max. RSPT order 70)
Complex coordinate (Ref. 20)

F=0.04 a.u.
—0.503 771 591 0137-
—0.503 771 591 00

—i 0.194634 999 5 X 10
—i 0.194635X 10

Borel-Pade [23/22] (max. RSPT order 90)
Complex coordinate (Ref. 20)

F =0.05 a.u.
—0.506 105 425 362 6
—0.506 105 425 35

—i 0.385 920 828 X 10
—i 0.385 9208X10-4

Borel-Pade [25/25] (max. RSPT order 100)
Sequential Pade-Pade [12/12] (Ref. 21)
Complex coordinate (Ref. 22)
Complex coordinate (Ref. 20)

F=0.06 a.u.
—0.509 203 450 879
—0.509 203 60
—0.509 203 45
—0.509 203 450 87

—i 0.257 538 747 X 10
—i 0.257 545 X 10
—i 0.257 538 9 X 10
—i0.25753874X10 '

Borel-Pade [25/25] (max. RSPT order 100)
Sequential Pade-Pade [13/13] (Ref 21)
Complex coordinate (Ref. 22)
Complex coordinate (Ref. 20)

F=0.08 a.u.
—0.517 560 617 1

—0.517 559 5
—0.517 560 62
—0.517 560 61700

—i 0.226982 88 X 10—'
—i 0.226 865 X 10
—i 0.226 982 7.X 10
—i 0.226982 877 X 10

Borel-Pade [25/25] (max. RSPT order 100)
Sequential Pade-Pade [12/12] (Ref. 21)
Complex coordinate (Ref. 22)
Complex coordinate (Ref. 20}

F=0.10 a.u.
—0.527 418 176
—0.527 425
—0.527 418 173
—0.527418 175 09

—i 0.726 905 6 X 10
—i 0.727 062 X 10
—i 0.726 905 7 X 10
—i 0.726 905 676 X 10
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minimum of 16 points per interval. The continued-
fraction implementation to calculate the diagonal Pade
approximants, as described above, was used by cGAUsS at
each point of the numerical integration. The truncation
point (t=100) and the subdivision of [0,100] were not
completely optimized, but were determined by numerical
experiment to guarantee the precision of the results as re-
ported in the table up to but not including the last digit.

We report in Table I the real and imaginary parts of the
resonance energies for the ground state for field strengths
of 0.03—0. 10 a.u. Also reported in Table I for compar-
ison are values computed by other methods. It is immedi-
ately apparent that the most accurate values at the smaller
field strengths listed in Table I are given by the Borel-
Pade method. At the next to highest field (0.08 a.u.), the
Borel-Pade value falls between the two complex-
coordinate values, while at the highest field (0.10 a.u. ) the
complex-coordinate method gives the best result. It is pos-
sible that the Borel-Pade value at F=0.10 a.u. could be
improved by going to a higher order, but that was not
possible with the precisi'on available. The sequential
Pade-Pade values, which are the easiest to obtain, seem
less accurate. That may be in part because they were not
taken to as high an order. [In the light of the usefulness
of the sequential Pade-Pade method, it would be very in-
teresting if it could be proved that the RSPT series (1) is

Stieltjes, which would guarantee the convergence of that
method. ]

IV. REMARKS

The calculations reported above demonstrate two main
points. (i) The RSPT series, all the coefficients of which
are real, already contain all the information to get the
imaginary part of the resonance eigenvalues. ' s 3' (ii) By
calculating the Borel transform via Pade approximants,
the Borel method applied to the perturbation series gives
both the real and imaginary parts of the resonances to
high accuracy —i.e., the Borel-Pade method is an effec-
tive, practical computational tool.
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