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Nonrelativistic Wentzel-Kramers-Brillouin eigenvalues of the Thomas-Fermi
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The Wentzel-Kramers-Brillouin eigenvalue condition is developed in an expansion in Z ' to
lowest order in the limit in which the atomic number Z becomes very large. The energy levels are
studied explicitly for finite orbital angular momentum l quantum numbers. The nature of the re-
sulting level spectrum is illustrated and its connection with the solutions of Schrodinger's equation
by Latter, for a closely related potential, is briefly discussed. It is pointed out that to get the com-
plete level spectrum near the continoum, for large Z, the case of l of order Z' will eventually re-
quire consideration. Finally, a few general results are established, one of which predicts the max-
imum value of l for which a bound state can occur for a given value of Z.

I. INTRODUCTION

d 2y y3/2

GX X
(1.3)

with boundary conditions appropriate for the neutral
atom

P(x)=1+0(x) as x~0,
P(x)~144/x +O(x ~) as x~ao,

where

A, = —,[(73)'/ —7] .

(1.4)

The potential energy V(r) defined by Eqs. (1.1)—(1.5)

The Thomas-Fermi theory of heavy atoms was the
forerunner of modern density-functional theory. ' It
remains of considerable interest for first-principles theory
and, in particular, its connection with the important 1/Z
expansion ' was established by March and White. "

The total energy of atoms is usefully approximated by
the semiclassical Thomas-Fermi method, provided suit-
able corrections are applied. ' In the present work, we
have been encouraged by the utility of the above-
mentioned formula for total binding energies to attempt a
more detailed study of the level spectrum in the self-
consistent Thomas-Fermi potential for neutral atoms.
This, as is well known, can be written in the form

Ze
V(r) = — P(x),r

where the dimensionless measure of length x is related to
rby

r=bx, b =aZ ' ao, a= 4 (9m /2)' =088534,

(1.2)

with ao, the Bohr radius, equal to fi /me . The "screen-
ing" function P(x), again dimensionless, satisfies the di-
mensionless Thomas-Fermi equation

will be used in the present work to study the level spec-
trum of neutral atoms in the statistical limit in which the
atomic number Z becomes very large. In this limit, it
seems clear that the asymptotic distribution of eigenvalues
will be correctly given by the semiclassical Wentzel-
Kramers-Brillouin (WKB) method. In particular, for the
orbital angular momentum quantum number l, the WKB
condition from which to determine the one-electron non-
relativistic eigenvalues e,I say, is '

+e,rn2Z -4"

—2/32
Z 2/3

X
' 1/2

(1.6)-

where xq and x2 denote the classical turning points of the
motion in dimensionless units and the energy is in Ryd-
bergs.

In the work described below, all attention is focused on
the development of this condition (1.6) by expansion to
lowest order in Z ' for large Z, in order to explicitly
determine the eigenvalues e,t for the Thomas-Fermi po-
tential in terms of the pair of quantum numbers s and l.
Specifically, we shall study here finite, and usually small,
values of the orbital angular momentum quantum number
I, even when s is a very large integer; in an example we
study below, s —10 .

The outline of the paper is as follows. In Sec. II we ob-
tain a functional relation for e,t/(21+ 1) in terms of Z, s,
and l which is a valid representation of the WKB condi-
tion (1.6) in the limit of large Z and with l and e,t finite,
of order Z . In Sec. III examples are given to illustrate
the use of this relation when varying Z. Section IV de-
scribes the relation of the present work to the numerical
solution by Latter of Schrodinger's equation for Z in the
range of the Periodic Table, for a potential closely related
to that of Eq. (1.1). In Sec. V, finally, a relation is ob-
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tained for the maximum value of I for which a bound
state can occur for a given Z.

t = —,
'

I 1 —[1—(36m) y] (2.8)

II. ASYMPTOTIC FORM FOR LARGE Z
OF WKB EIGENVALUES

FOR THOMAS-FERMI POTENTIAL

In this section we shall utilize the scaling properties
with the atomic number Z of the self-consistent Thomas-
Fermi potential for neutral atoms, as summarized in Sec.
I, to develop analytically the WKB condition (1.6) by ex-
pansion in Z ', as Z becomes very large. In order to
do so, we need first of all to determine the behavior of the
turning points of the classical motion x~ and x2 in the
limit Z~oo and with e,~ and l finite, of order Z . The
turning points are determined by requiring that the WKB
integrand in (1.6) vanish, which in terms of the screening
function P(x) reads

xg(x)=[(l+ —,
'

) Z / —x e,~a Z /3]/2a . (2.1)

x, =(I+—') Z /2a+O(Z ), (2.2)

and

It is found that the two roots x& and x2 tend to infinity
and zero, respectively, as Z goes to infinity. By using the
asymptotic form of P(x) for small and large x given in
Eqs. (1.4), one readily obtains for large Z,

By utilizing Eqs. (2.4)—(2.6) in the WKB condition (1.6),
one gets the asymptotic form of this as

(2 9)

having defined a new quantum number n=s+l+1 by
analogy with the hydrogenic problem. Relation (2.9) can
be formally inverted to give, finally, the energy spectrum
in the scaled form

e /( 2l +1) =f '[(KZ'/ n)/—(21+1)] . (2.10)

As we anticipated, the relation above gives e/(21+1) as a
unique function of Z, i, and n (or. s). Moreover, such a
function depends only on a particular combination of Z,
l, and n. We discuss the main features of the energy spec-
trum embodied in Eq. (2.9) in Sec. III. However, we
stress here that while the present method of calculation of
the WKB levels is certainly valid for finite I and e and
sufficiently large Z, caution is of course needed in that
the WKB levels only become precise in Bohr's correspon-
dence principle limit of large quantum numbers. Some
check of this latter point is possible by comparison with
numerical solutions of the Schrodinger equation for a po-
tential closely related to the Thomas-Fermi potential uti-
lized in the present paper.

1/2
(36m )

(2l+ 1)

1/2

2e - Z'/3

+O(Z —1/3 —il,
) (2.3)

I(z, l, e) =nK+xi(l, e)z '/ + (2.4)

where the ellipsis represents higher-order terms. Here
1/2

K=m f dx 2a =1.6566,(x)
0 X

(2.5)

i (l, e) = —(l+ —,
'

) 1+2f (2l+1)' (2.6)

The function f (y) above, which is explicitly evaluated in
the Appendix, has a simple expression in terms of com-
plete elliptic integrals of the first and second kinds as fol-
lows:

Above, we have now dropped the subscripts of e. We
shall do the same in the following when there is no danger
of confusion.

Our task now is to evaluate the asymptotic form of the
integral on the right-hand side of Eq. (1.6) when Z~ oo

and when x~ and x2 are given by Eqs. (2.2) and (2.3),
respectively. It can easily be verified that I(Z, l, E) goes to
a finite limit when Z —+ oo. Moreover, one can prove (see
Appendix) that, for large Z,

III. EXPLICIT WKB ENERGIES
FROM THE ASYMPTOTIC FORMULA

KZ'/ n' —l/2) 0—.25 . (3.1)

The existence of a maximum n tells us that, for each fi-
nite i, there is a finite number (of order Z'/ ) of bound
states. This is consistent with what one would expect on
the basis of the fast decay, at large distances, r of the
Thomas-Fermi potential. Besides, the particular function-
al relation (2.10) between e, l, Z, and n implies another
great simplification in classifying the levels as a function
of Z. Since the energy depends only on the difference
KZ'/ n, for giv—en i, it turns out that a change of KZ'/
by an integer is just equivalent to relabeling the levels with
quantum numbers n shifted by the same integer. Thus it
is sufficient to plot the energy levels as a function of the
fractional part of KZ'/ defined as

g=KZ'/3 —[Kz'"] (3.2)

The asymptotic spectrum of energy levels in the
Thomas-Fermi effective potential is easily obtained, for
given large Z, by solving numerically' Eq. (2.9). The en-

ergy levels depend on the two quantum numbers I and n
(or s). It is apparent from Eq. (2.9) that, for given Z and
i, there is a maximum allowed value for n, that we denote
here by n* This is. a consequence of the properties of the
function f in Eq. (2.9), which is positive and which de-
creases with increasing energy. By using the fact that
f(0)=0.25 one finds

f(y) =(1—2t) '/'[2E(t) —K(t)]/2~,
with

(2.7)
with the square brackets [ ] indicating the integer part.
This is done in Fig. 1, where energy levels are shown for a
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FIG. 3. Comparison of the asymptotic WKB energy formula
(2.10) for the Thomas-Fermi potential and numerical solutions
of the Schrodinger equation by Latter (Ref. 8) for three values
of Z in the range of the Periodic Table. The full curve gives Eq.
(2.10) of the text while Latter's results are given by +, -Z =26;
g, Z =65; and ~, Z =92.

this paper. Nonetheless, they are seen to follow the
asymptotic relation (2.10), at least qualitatively.

Because of the difference between Latter's potential and
a true Thomas-Fermi potential, we have studied under
what conditions the WKB levels could be changed by the
Coulomb tail in Latter s potential (4.2). This is readily
achieved by studying the turning points of the classical
motion in such a modified potential, in a similar manner
to that used in Sec. II. One finds that the levels are
changed, with respect to the true Thomas-Fermi potential,
if the energy violates the following conditions:

—e&2[1—(21+1) /8a(144)'~ ]/(144)'~ a if 1 (2,
(4.3)

e& 4/(21+ 1—) if 1 & 2 .
This means that the Coulomb tail is seen, within the
WKB approximation, only if the energy level is very close
to the continuum, the closeness being accentuated as the
angular momentum quantum number l increases. Only
Latter's levels satisfying Eq. (4.3) have been plotted in
Fig. 3.

V. BOUNDS ON ORBITAL ANGULAR MOMENTUM
QUANTUM NUMBERS 1

FOR BOUND STATES OF GIVEN Z

Starting with the work of Fermi, numerous authors
have considered the level schemes in Thomas-Fermi-like

FIG. 4. Thomas-Fermi screening function. The arrow indi-
cates the maximum of xP(x) as function of x.

potentials. For example, reference can be made to the
table in the paper by Abrahamson. '

Our aim here is to give the maximum of 1 for which the
WKB condition (1.6) has two turning points xt and xz.
It is clear from Eq. (2.1) that the WKB integrand becomes
zero, in terms of the screening function P(x), when xP(x)
intersects a parabola which is increasing with x from the
value (1+—,

'
) /2aZ ~ at x =0. Figure 4 shows a plot to

scale of xP(x), and it can be seen that when
(1+—,') /2aZ ~ exceeds the maximum value of xP(x),
there are no real turning points, even for vanishingly
small energy. In fact [xg(x)],„=0.48635 and thus one
must satisfy, for bound states calculated from the WKB
criterion

1+—,
' ((0.9727a)' Z' (5.1)

This condition, while derived somewhat differently, is of
the same form as that proposed by Abrahamson. ' Nu-
merically the inequality (5.1) yields

Z & 0.15641(21+1) (5.2)

whereas Abrahamson gave the approximate value —,
' for

the factor multiplying (21+1).

VI. SUMMARY AND CONCLUSION

For the Thomas-Fermi potential for neutral atoms, it
has proved possible to express the WKB nonrelativistic
eigenvalues in the universal form of Eq. (2.10), which is
valid for sufficiently large Z and for finite energy and or-
bital angular momentum quantum number l.

This condition, used in conjunction with Fig. 3, turns
out to contain within itself a rich variety of level spectra
for large Z. Examples, showing the level ordering coming
down from the continuum level, are depicted in Figs. 1

and 2. They must be fully quantitative reflections of the
WKB eigenvalues.

Should further work on the eigenvalue spectrum be
needed subsequently, it would be of obvious interest to
complete the level spectra in Figs. 1 and 2 by adding re-
sults for I becoming large as Z'~ for large Z. Again, the
WKB condition should be the appropriate tool in the limit
of large Z, provided the quantum numbers are also large
enough to lie in the region where Bohr's correspondence
principle holds. We are currently attempting the generali-



I326 G. SENATORE AND N. H. MARCH 32

zation of the present considerations to molecules, using
the known scaling properties of the self-consistent
Thomas-Fermi potentials. ' '
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APPENDIX

Here, our object is to determine the asymptotic behavior of the integral
1/2(I+T)

I(Z, l, e)= f dx 2a —
z Z —a eZ

X) X
(A 1)

when Z tends to infinity and the turning points x i and xz are given asymptotically by Eqs. (2.2) and (2.3).
It is clear that

' 1/2

lim I(Z, l, e)=~K: f dx 2—a (x)
z~~ X

(A2)

We shall show that the correction term to K, for large Z, goes as Z '~ and we want to explicitly calculate the coeffi-
cient of such a correction term. To this end, we consider the limit

lim —Z ~,&i I(Z, I,e)= lim —f dx
z~ oo QZ Z~ oo 1 P(x)

x
(l+ —,

' )'
Z —2/3 2&Z —4/3

X

(~+ —' pZ —i ~'/x ~+ 2&Z
—iaz

(A3)

If the above limit exists and is finite and we denote it then by vari (l, e), then we can write for large Z

I(Z, l, e) =irK+xi (l,e)Z '~ + (A4)

where the ellipsis represents higher-order terms. In order to calculate the integral in Eq. (A3), we divide the integration
range into three regions x& &x &X&, x, &x &x2, and X2 &x &x2 where x& and x2 are a very small and a very large
number, respectively. This is always possible since in the limit Z —+ m, x2-Z', and xI -Z . %e denote the three
integrals by I&, I2, and I3, respectively. By direct inspection it becomes clear that

X~I,= —fX)

(1+—,
'

) Z '~ /x +2' 'a

(l+ —,
' )'

Z 2/3 2~Z —4/3
X2

(A5)

and therefore vanishes as Z tends to infinity. Ii can be calculated by substituting for P(x) the form valid for small x,
P(x) = 1+/'x where P' evidently denotes the slope at the origin. Thus

(l+ —') Z 'i /x +2' 'aXl
I, = f dx . —

(1+—,
' )'

Z —2/3 2~Z —4/3

X

2(x +2/'a—

lim Ii ———m(l+ —, ) .
Z~ oo

Ii can be expressed in terms of elementary functions. Gne finds for Z tending to infinity

(A6)

(A7)

Similarly, we calculate Ii utilizing the fact that xq » 1 and we approximate P(x) with the asymptotic form 144/x . We
then obtain

(I+ ~ )~Z i~~/x~+2/Z

(&+ —,
' )'

Z —2/3 ~2/Z —4/3

X

288m
x4

X~I,= f dx . —
Xp

(A8)

It is found that I3 can be expressed simply in terms of elliptic integrals which become complete elliptic integrals as Z
tends to infinity The resul. t is
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lim I = —(l+ —,
' )[2E(t)—K(t)](1—2t) (A9)

RIld

2
1/2-

1—1 (36m )

(2l+1)' (A10)
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