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Finite-nuclear-size corrections to the Uehling potential
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A study is made of finite-nuclear-size corrections to the Uehling potential for the ground state of
hydrogenlike atoms (Z=1 and 80). The exact relativistic correction is compared to the results of
perturbation theory and to nonrelativistic results based upon the approximations of Zemach. Per-
turbation theory and the nonrelativistic approximation are consistent with the exact calculation at
Z = 1, but not at Z =80. In the nonrelativistic approximation, this size correction is

2 a(Za) (R /k, ) mc, where R is the rms radius of the nucleus.

I. INTRODUCTION

There have been calculations of finite-nuclear-size
corrections to the self-energy and vacuum polarization of
various atoms. These size corrections are more important
at high Z and must be included to avoid singularities at
Za-l. ' In the case of high-Z muonic atoms, there
have been calculations of self-energy and vacuum polari-
.zation that include nuclear size, some of which include
higher orders in the external potential. Nuclear size has
also been included in the calculation of self-energy and
vacuum polarization for high-Z electronic atoms. Oth-
ers have calculated these size corrections for low-Z muon-
ic atoms.

In contrast to the above-mentioned cases, size correc-
tions to the self-energy and vacuum polarization for low-
Z electronic atoms are much smaller, and therefore re-
quire a more precise analysis. Boric, using a nonrelativis-
tic approximation, has recently considered the size correc-
tions to the lowest order self-energy and vacuum polariza-
tion in hydrogen. Lepage, Yennie, and Erickson have ar-

gued that Boric's result is an overestimation as it is not
valid to treat these size corrections nonrelativistically.

The present paper describes the calculation of the
nuclear-size correction to the Uehling potential correction
for the ground state of an electronic hydrogenlike atom
with Z =1 or 80. The main focus is not so much on the
results —for they are not within the limits of experimental
accuracy' —as it is on the comparison of the exact results
with the results of two approximate methods. The ap-
proximate methods are perturbation theory up to and in-
cluding second order and a nonrelativistic treatment as
described in Sec. IIIB. In this manner, the accuracy of
perturbation theory and the nonrelativistic approximation
is determined. A method suitable for calculating size
corrections to the Uehling potential could serve as a guide
to the calculation of size corrections to the self-energy for
low-Z electronic atoms.

In Sec. II, the exact calculation, determined by numeri-
cally solving the Dirac equation, is described. Approxi-
mate methods are described in Sec. III. In Sec. III A, the
numerical calculation in perturbation theory is discussed.
The unperturbed eigenfunctions and energies are those
determined from the Dirac equation for the Coulomb po-

tential. In Sec. III B, the results of the nonrelativistic ap-
proximation are determined analytically with the aid of
the approximations of Zemach. " All present calculations
are based on a model in which the nuclear charge distribu-
tion is spherical and uniform.

II. EXACT CALCULATION

The radial Dirac equation can be written in the form'

1+V(r) E —— —r+ — f((r)1 d K

rdr r
(2.1)=0,1 d a.r+rdr r

G( )
—2K 2(r)

fi(r (2.2)

one has

dG(r)
dr

—2~ 1 dfz(r)+r f, (r) dr

df i(r)

f, (r) dr

(2.3)

Eliminating the derivatives off&(r) and f2(r) which occur
in (2.3) with the aid of (2.1), yields

dG(r) =[V(r)+1 E]r——2K

dr

—[—V(r)+1+E][r"G(r)] (2.4)

—1+V(r) E f (r)—
where f~(r) and f2(r) are the upper and lower com-
ponents of the radial eigenfunction, respectively; E is the
energy eigenvalue and —x. is the eigenvalue of the opera-
tor K =/3(o L+ 1)..' Since only radial potentials are con-
sidered here, the angular part of the Dirac equation can be
factored as already has been done to obtain (2.1). The
units chosen are those for which A'=m, =e =1. The
values a ' = 137.035 963 and A,, =0.386 15905 X 10
cm are used.

With the aid of (2.1), a differential equation is obtained
for the ratio of the upper and lower components of the ra-
dial eigenfunctions. By defining

32 1303 1985 The American Physical Society



1304 D. J. HYLTON 32

Q5/3( r2) 1/2
(2.5)

Equation (2.4) can be solved numerically for the energy
eigenvalue E for a given potential V(r) and appropriate
boundary conditions.

For the potentials of interest, the fourth-order Runge-
Kutta method' is used to numerically integrate (2.4). As
r approaches the origin, the potential for an extended nu-
cleus approaches a constant. The free-particle solutions
are also solutions for a constant potential. Therefore, the
free-particle solutions substituted in (2.2) is employed to
yield the initial condition G(0}=0 for x &0. Starting at
the origin, (2.4) is integrated outward. Equation (2.4} is
integrated inwards starting at r &12, where the Uehling
potential is 12 orders of magnitude smaller than the
Coulomb potential, so that G(r) can be initialized using
the Coulomb solutions. Both integrations are carried out
to a convenient meeting point to 10-figure accuracy. The
10-figure accuracy is chosen so that E is sensitive to the
nuclear-size effect. At the meeting point, the two in-
tegrated values for 6 are equal only at the correct energy
eigenvalue. A Newton search is employed to find the zero
of the difference of the two integrated values for G. The
level of accuracy is determined from the convergence of
the numerical results as the mesh size is made smaller.
The accuracy of the eigenvalue search is determined from
the difference of the two integrated values of G. The sen-
sitivity of the integrated value of G to the chosen eigen-
value is also a factor in determining the reliability of the
search.

Only the 1S&/z state (~= —1) is considered here. The
shift in the energy eigenvalue (from the Coulomb energy)
due to the extended nucleus in the absence of the Uehling
potential is calculated first. The potential for the extend-
ed nucleus and energy shift are labeled V, (r) and 5E, .
The Uehling potential for the extended nucleus V„(r), is
then added to V, (r) and the corresponding energy shift
5E» is obtained. The difference, 5E„=5E» 5E„ is the-
energy shift due to the Uehling potential of the extended
nucleus (size-Uehling potential). The size corrections due
to the Uehling potential is determined by subtracting
from 5E„ the energy shift due to the Uehling potential for
a point nucleus (point-Uehling potential).

The charge distribution normalized to unity

where (r )' =0.86 fm for Z =1 and (r )'/ =5.2 fm
for Z =80, yields a potential

V (r)=
3 (r —3rp)8(rp —r) —8(r —rp)

CX 2 ZQ

2ro r
(2.6)

The outward integration is carried to r =r p for
V(r) = V, (r) in (2.4). For r & rp, G (r) is determined from
the known Coulomb solutions regular as r~ oo given by'"

Cf2(r) =,/, [(~+ylc) W, &/2 g(2cr) W—+)/p g(2cr)],

where

y=Zu, A, =(x —y )'/, c=(1—E )'/, v=
C

(2.8)

and W ~(z) is the Whittaker function. An integral rep-
resentation'

e z—z/2 A, —1/2
W„+,n x(z}=

I (A, —v+ —+ —')
—x( / )A, —v —1/2+&/&

0

+ (1+ / )k+v —1/2+1/2dx

Re(A, —v+ —,+ —) & 0 (2.9)

is employed to numerically calculate G(r) for r &rp.
However, for x = —1, the integral representation for
8' + &/2 ~ must first be analytically continued to
Re(A, —v) & —1 by adding and subtracting e (x/z)
in the integrand to obtain

1+Ef&(r) = 3/2 [(~+y/c)W„~/2 ~(2cr)+ W~+~/z ~(2cr)],r
(2.7)

A, —1/2

W„+»2 x(z}=e ' z"+' + e "(x/z) '[(1+x/z) + —1]dx, Re(A, —v) & —1 .
1 (g —v) p

(2.10)

(2.11)

/

Equations (2.9) and (2.10) for W &/z ~ are numerically calculated to 12-figure accuracy by Gaussian quadrature. The
value of G (rp) from the outward integration is matched to the value of G (rp) from the known Coulomb solutions to ob-
tain 6E„which is tabulated in Table I.

The Uehling potential for an arbitrary nuclear charge distribution p(r) is given by

V (r)= — dt(t 1)' —+— —d r'e
3~ & t2 t4 ~r —r'~

For the charge distribution (2.5), the r integral is carried out to give
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V„(r)= 3 f dt
3

—z+ —
4 I[4rt —(2rot+1)(e

—Za ~ (t —1)'i 2 1 —2(ro —r)t

16mrr p
t' t' t'

—2(ro+r)t—e )]e(ro —r)

+[(2rot —1)e +(2r Ot +1)e ]e "'e(r ro) I
—. (2.12)

For r )ro, (2.12) is numerically calculated by Gaussian quadrature; however, for small vot the expression in the first set
of square brackets is expanded in a power series in rot to avoid cancellations in the evaluation of the integrand. The can-
cellations are more severe for r & ro, so the integrand in (2.12) for r (ro is rewritten to obtain

—Z 2
V(r)=

3 f dt
167Trr p

1— 1 1

2t' st4
+

(1—1/r') 'i' —1+ 2t' 8t4
t2

2 1—+-
t4

—2(ro —r)t —2(r+ro)t
&& [4rt (2r, t+—1)(e —e )], r & ro . (2.13)

—Zcx
V„(r)=

16mrr p

The first term within the first set of parentheses in (2.13} is reduced to an integral of the type e "/t by successive in-
tegration by parts, and the second term has enough inverse powers of t, so that the expression within the last set of
square brackets can be expanded for small rot and small rt to 0 (t }. The result for r & ro is

16rp —24rrp+8r 12rp —70rr p+168r rp —210r rp+140r rp —42r rp+2r
3 105

x f,
"'—2(ro —r)t

16r p +24rr p
—8r

3

12rp+70rrp+168r rp+210r rp+140r rp+42r rp —2r

105

—2(ro+r)t 153rrp —83r
dt+

436rr p 160r rp 3 '1 3rr p +38r r p
—55r

15 12

136rrp+120r rp —64r rp 61180rrp+105980r rp —56364r rp —8396r

9 11025.

8r3
rp—

3
21I12—35

24
32 3 91 3rrp r rp

4

64rrp 64r rp
15+ 9

35 m'

24 2+ 2rrp 3 4 2r rp
6 5 2

+2r rp+
2r
105

(1—21n2)+ ', r &ro

(2.14)

TABLE I. Energy shift for the 1S&i& state calculated exactly and in perturbation theory. The entries
are explained in the text and are in units of m, c2.

Energy
shift

M,
5E,„

5E„=5E,„—5E,

Z=1
Exact

0.000938 188 3 X 10
—0.173206430 5 X 10
—0.174 144618 8 X 10

Z =80

0.988 994 132 1 X 10
0.111 153 576 1 X 10

—0.877 840 5560 X 10-4

g~(1)
gE(2)
g~(&)

gE(2)

Perturbation theory
—0.174 143 891 1 X 10
—0.0000007494X10-"
—0.174 143 911 3 X 10
—0.0000007494 X 10-"

2.188X 10

—0.887479 99X 10
—0.001 570 54 X 10
—0.893 096075 4X10-'
—0.001 678 9664 X 10—'

0.02206 X 10—'
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where the set of large square brackets is the expansion of
the second term. The remaining integral in (2.14) is
evaluated with the aid of the expansion'

f;(x), s;F;(x)= A, (A, + —,
' —yx )+—'

7' 2

f "dt' ( —~)"= —y —inc —g, ~
argo~ &m,

&
n(n!) '

(2.15)

e 2@x(1—t)

0

where y =O. 577. . . is Euler's constant. Using
(2.12)—(2.15), V„(r) is numerically calculated to 12-figure
accuracy.

With the substitution V(r) = V, (r)+ V„(r), (2.4) is nu-
merically integrated to obtain the energy shift 5E,„. The
outward integration is stable; however, the inward integra-
tion is unstable and small errors in the initial condition
grow rapidly. A'meeting point of r =0. 1 is chosen to
minimize errors and to obtain 10-figure accuracy for
5E». The results are tabulated in Table I and are accu-
rate to the values given. The energy shift,
5E„=5E» 5E„w—hich is the energy shift due to the
size-Uehling potential, is also tabulated in Table I. The
energy shift due to the point-Uehling potential is then
subtracted from 5E„ to obtain the size correction part of
the Uehling potential energy shift. Because of singulari-
ties at the origin, the energy shift due to the point-Uehling
potential is calculated in perturbation theory as discussed
in Sec. III.

III. APPROXIMATE METHODS

A. Perturbation theory

The perturbing potential 5 V(r) =5 V, (r)+ V„(r) is treat-
ed in perturbation theory, where 5V, (r)= V, (r) —V, (r);
V, (r) is the Coulomb potential. First- and second-order
energy shifts are calculated for V„(r), and the second-
order energy shift is calculated for the cross term between
5V, (r) and V„(r).

First- and second-order energy shifts AE"' and AE' '

for the 1S~~2 state are given by the equations

b E'"= f dr r [ff(r)+f&(r)]5V(r), (3.1)

bE' '= —f dr, f drzrfrz5V(r&)5V(r2)
2

f'(r2)G —1(r2 rl EO)fj (~1)'

s gr2i1 —1e2yx(1 t)—
I (3.4a)

f(x), s;
G;(x)= A(A, + —, —yx)+ —+g(1)—ln(2yx)y' 2

00 2A,

+e x dg e —2yxt ~ g~2A, —1+l t —1

(3.5)

The results labeled AEz„" and AEz„' are also listed in
Table I. Although the point-Uehling potential is singular
at the origin, the integration in perturbation theory can be
carried out because there are enough powers of r in the in-
tegrand of (3.1) and (3.2).

The second-order cross term between 5V, (r) and Vz„(r)
is calculated from (3.2). The two contributions to the
cross term, 5V, (r&)V&„(r~) and Vz„(r&)5V, (r2), give equal
results, because the rest of the integrand is symmetric
under the interchange of the indices 1~2. The integral is
numerically evaluated by Gaussian quadrature and the re-
sult labeled AE,'„' is tabulated in Table I. All entries in
the tables are numerically accurate to the values given.

s; = ( —1)', Eo ——A, . (3.4b)

For 5V(r)~V„(r) in (3.1) and (3.2), one obtains the
st- and second-order energy slufts b,E„"' and bE„' ' f

the size-Uehling potential. These are calculated numeri-
cally by Gaussian quadrature and the results are listed in
Table I. The numerical evaluation of the radial reduced

Dirac Green function is discussed in Ref. 15. The first-
and second-order energy shifts for the point-Uehling po-
tential Vz„(r) are treated similarly. The point-Uehling
potential, as obtained from (2.11) with p(r) =5 (r), is

/

V~ (r) = — dt(r' —1)'~' —+-
3m 1 g2 q4

(3.2)

valid for spherically symmetric potentials. In (3.1) and
(3.2), f;(r), i =1,2, are the radial eigenfunctions for the
Coulomb potential' and G'J &(r2, r&,Eo) is the radial re-
duced Dirac Green function for the Coulomb potential for
the 1S&~2 state, which can be written in the form'

O'1
) (x2,x ),Eo)= [ff(x ) )F (x2)+f; (x2)GJ(x) )]e(x) —x2)

p2

2
+ V, (r)+ Vp„(r) P(r) =Ep(r) . (3.6)

8. Nonrelativistie approximation

The nonrelativistic results are obtained using the ap-
proximations of Zemach. All size corrections are treated
in first-order perturbation theory, where the unperturbed
Schrodinger equation is

r

where

+ [f;(xg)FJ(x ) )

+fJ (x, )G;(x2)]e(xz —x i ), (3.3) (3.7)

where

The size correction from first-order perturbation theory is

hE = f d rP'(r)5Vf, (r)P(r),
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5 Vf, (r) = V, (r) V—,(r) + V„(r) V—p„(r) . (3.8)

Following the procedure of Zemach, " P(r) is approxi-
mated by

P(r)=P, (r) —f d s V~„(s)P,(s)
1 3 1

Since 5V, (r) vanishes for r ) ro, 5$(r) is approximated by
its value at the origin, which is evaluated as follows:

r

Z~2 oo
2 1/2 2 1 e —2st

5$(0)= 2 p, (0) f dt(t —1)'iz —+—, f d3s

=—P, (r)+5/(r), (3.9)

Za ~ (t —1) i
P, (0) f dt

3m' 2 t4

where P, (r) is the known Coulomb eigenfunction. Substi-
tuting (3.9) into (3.7) yields, to the leading order in a

b,E"'= f d r P,*(r)5Vf,(r)P, (r)

+2 f d r P,'(r)5V, (r)5$(r), (3.10)

= —,', Za'P, (0) . (3.13)

EE,"„':b,E"' f—d'r $,*(—r)5V, (r)P, (r)

= f d r(5,*(r)[V„(r)—Vq„(r)]P,(r)

+2 f d r P,'(r)5V, (r)5$(r), (3.11)
where the last step in (3.11) follows from (3.10).

Since the point-Uehling potential is exponentially de-
creasing with a range of —,'k„one approximates the
Coulomb eigenfunction occurring in the integrand of (3.9)
as its value at the origin to obtain the approximation

5$(r) —= $,(0) f d s
6m r —s

—2st

x f dt(t' —1)' ' —+-
t2 t4 S

where the fact that V„(r)—Vz„(r) is of order a smaller
than 5V, (r) is used to obtain (3.10). Since size corrections
in the absence of the Uehling potential are not of interest
here, the quantity AE,"„', the size correction to the
Uehling-potential correction, is calculated from the defi-
nition

With these approximations, (3.11) becomes

hE,"„'=f d r P,'(r)[V„(r)—Vq„(r)]$,(r)

+ —', Za ~P, (0}I f d r5V, (r) . (3.14)

The integral in the second term of (3.14) is evaluated
for an arbitrary nuclear charge distribution p(r) to give

f d r5V, (r)= (r ),
3

(3.15)

where

(r ) = f d rp(r)r, f d rp(r)=1 . (3.16)

The first term in (3.14) is evaluated with the approxima-
tion P, (r)=P, (0)(1 Zar). Her—e it is necessary to retain
the linear term in the expansion of P, (r) since from (2.11)
and (3.5), it can be shown that

(3.12) f d r[V„(r)—Vp„(r)]=0 . (3.17)

1 —2r't —e
4r't4

I

Keeping the term of lowest order in a, the first term in (3.14) is evaluated with the aid of

f d r P,*(r)[V„(r)—Vz„(r)]P,(r)

= —2
i $, (0)

I
Za f d r r [V„(r)—V~„(r)]

T

2a(Za)
i $, (0)

~ f dt(t 1)'i —+—— f d r'p(r') f d r r3' ~r —r'

4a(Za)
~ $, (0)

I

~

f dt(t 1)' —2+——
4 f d r'p(r') +

e
—2rt

(3.18)

where the integration over r is carried out to yield the last
equation in (3.18). Since r is restricted to lie within the
nucleus, the expression in the last set of large parentheses
in (3.18} is expanded in a power series in r't keeping only
the leading term (of order r' It). This expansion, checked
numerically, is found to give three-figure accuracy. With
the aid of (3.13), (3.15), and (3.18), (3.14) becomes

TABLE II. Finite-size corrections to the Uehling potential

for the 1Sii2 state (units of m, c ).

Exact Perturbation theory nr approx.

I

The numerical value is listed in Table II for the 1S&i2
state.

~&su= 2~a(Za)
~ Q (0)

I
(r ) (3.19)

1

80
4.19X 10
1.69X 10

4.21 &&
10-"

2.78 X 10
3.74X10-"
4.49 X 10
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IV. CONCLUSIONS

The two corrections to the Coulomb potential included
here are the Uehling potential and the change from the —-

Coulomb potential due to an extended nuclear charge dis-
tribution (size potential). Furthermore, the Uehling po-
tential depends on the nuclear charge distribution. Hence,
one distinguishes between a point-Uehling potential and a
size-Uehling potential in the obvious way. The purpose of
the present calculation is to determine the nuclear-size
correction to the Uehling potential correction, and also to
determine the validity of approximate methods of calcula-
tion. The basic idea is to isolate the combined effects of
the finite nuclear size and Uehling potential from the ef-
fect of each considered separately.

The results are summarized in Table II. The exact en-

ergy shift due to the Uehling potential for a finite nucleus
is determined by subtracting the energy due to the size po-
tential from the energy due to the size-Uehling plus size
potentials. The difference is denoted 5E„ in Table I. To
isolate the effect of nuclear size on the Uehling potential,
the energy shift due to the point-Uehling potential is sub-
tracted from the previous difference and the result ap-
pears under the heading "exact" in Table II. It should be
noted here that the exact point-Uehling energy shift is as-
sumed to be the same as the point-Uehling energy shift
calculated in perturbation theory (bE~„" and AEz„' of
Table I). To the accuracy of the present calculation, the
convergence of perturbation theory for the point-Uehling
potential is rapid enough to validate this approximation.

Since the main objective of this exercise is to check the
methods of approximation, no contribution beyond
second-order perturbation theory is included here even
though it may be important. Therefore, to isolate the ef-
fect of nuclear size on the Uehling potential, the energy
shift due to the size-Uehling minus the point-Uehling is
calculated up to and including second-order perturbation
theory. To the desired accuracy, the only other second-
order effect that must be added to this result is the cross
term between the point-Uehling and size potentials. The
total result appears under the heading "perturbation
theory" in Table II. The nonrelativistic results are ob-
tained from (3.19).

In comparing these results, it is found that at Z =1,

perturbation theory is a valid method of calculation and
the nonrelativistic approximation agrees with the exact re-
sults within 11%. At Z =80, neither approximation is
valid. It is not surprising that perturbation theory is not
valid at high Z, since at high Z, perturbation theory con-
verges slowly for the size potential in the absence of the
Uehling potential. If third-order perturbation theory were
included in the present calculation, then the results of per-
turbation theory at Z =80 would better agree with the ex-
act results. The agreement (within 11%) of the nonrela-
tivistic results with the exact results is a check of
Zemach's approximation for Z = l.

Equation (3.19) disagrees with the nonrelativistic calcu-
lation made by Boric. The present result is smaller by a
factor on the order of the rms radius of the nucleus divid-
ed by A, Boric s starting point is based on an approxima-
tion which is valid in evaluating the point-Uehling correc-
tion, but is not valid in calculating size corrections to the
Uehling-potential correction as the present results indi-
cate. One step in the nonrelativistic calculation is to ap-
proximate the wave functions by their values at the origin.
For the present problem, this approximation is valid only
if the change in the wave function due to the Uehling po-
tential is first calculated. This corrected wave function at
the origin is then used to calculate in perturbation theory
the energy shift due to the nuclear size. Approaching the
problem in the reverse order is found not to be valid, i.e.,
taking the corrected wave function due to the size correc-
tion evaluated at the origin to calculate the energy shift
due to the Uehling potential. This is due to the different
effective ranges of the two perturbations. The size poten-
tial has an effective range on the order of the charge ra-
dius of the nucleus, while the Uehling potential has an ef-
fective range on the order of the Compton wavelength of
the electron. Both approaches, of course, are identical if
the corrected wave functions are not approximated by
their values at the origin.
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