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We review the proposal that relationships between physical spectra of certain atoms can be con-
sidered as evidence for a phenomenological supersymmetry. Next, a comparison is made between
the supersymmetric and the hydrogenic approximations. We then present the calculation of low-Z
alkali-metal-atom transition probabilities between low-n states, using supersymmetric wave func-
tions. These probabilities agree more closely with accepted values than do those obtained with use
of the hydrogenic approximation. This shows that, in simple radial Schrodinger theory, supersym-
metry is a concept providing insight into the true, fermionic, many-body physics of these atoms.

I. INTRODUCTION

Supersymmetry is a theoretical concept which has been
applied to many fields of physics. ' The application that
received the first emphasis was in elementary particle
physics. There, the implication is that there exist boson-
fermion partner elementary particles; for instance, there
will be a bosonic "squark" partner to the fermionic
"quark. " Unfortunately, to date no supersymmetric
partners of the known particles have been found. One
place where it has been proposed that evidence suggests
the presence of supersymmetry is in nuclear physics.
There, supersymmetry would relate the properties of cer-
tain different nuclei to each other.

Recently, we suggested that distinct spectra of certain
atoms and ions can be viewed as manifesting a
phenomenologicaI quantum-mechanical supersymmetry.
That paper demonstrated that the phenomenological su-
persymmetric potential has the effect of modeling a closed
inner orbital, yielding the same spectrum as the "hydro-
genic approximation" but with the ground state removed.
Thus, for an atom with a closed inner shell, supersym-
metry partially models the effects of the inner electrons
and the associated Pauli principle in a simple Schrodinger
picture.

However, as a matter of principle, the supersymmetry
does more than this. The supersymmetric wave functions
are not the same as the hydrogenic ones. The supersym-
metric wave functions are a complete set of states for the
supersymmetric potential, whereas the hydrogenic wave
functions are an incomplete set of states for the hydrogen-
ic potential. The states excluded by the Pauli principle
are needed for a complete set.

Thus, it is a pertinent question to ask which wave func-

tions (supersymmetric or hydrogenic) yield better transi-
tion probabilities. The answer, which we present in this
paper, is that for low-Z alkali-metal atoms the supersym-
metric wave functions do.

In Sec. II we review supersymmetry in quantum
mechanics, specifically emphasizing its application to this
problem. We proceed in Sec. III to discuss the properties
of the supersymmetric model in atomic physics. The
differences between the supersymmetric and the hydro-
genic pictures are stressed.

In Sec. IV we present the results of transition probabili-
ty calculations, demonstrating the interesting differences
between the supersymmetric approximation for the low-Z
alkali-metal atoms and the hydrogenic approximation.
The supersymmetric case is found to be superior. We
comment on the physical implications of the supersym-
metric picture as a useful model for viewing atoms, and
we stress the importance of electron-electron interactions.
A phenomenological model that seeks a calculationally
useful approximation to the effects of these interactions
will be the subject of a separate paper.

We emphasize that our aim in this paper is to investi-
gate the conceptual validity of the elementary physics as-
sociated with the supersymmetric approximation. We do
this by comparing our results and those of another simple
approach, the hydrogenic model, with the accepted values.
It should be clear that we are not trying to get precise pre-
dictions with this approach. By incompletely incorporat-
ing the effects of the electron-electron interactions, we
forfeit any possibility of obtaining accurate transition
probabilities. Nonetheless, it is interesting to determine
whether this amusing alternative provides a better approx-
imation to the many-body physics of the alkali-metal
atoms than does the simple hydrogenic model.
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II. SUPERSYMMETRY IN ATOMIC QUANTUM
MECHANICS

d' 1 l (l +1)
, —&„——+, X„~(y)=0,

dy y y
(2.8)

The Hamiltonian for supersymmetric quantum mechan-
ics may be written as H„=H+EpH, where H+ and
H are given by

where E„=—1/4n, y =(2lje /A )r:pr, —n &l+1, and
Xnl(y) &+nl(yln). If p=y/n, then

dH+%'+„—— — + V+ (x) 0'+„——e„%'+„.
X

(2.1)

' 1/2
1 P I (n —l)

n2 2I (n+l+1)

V (x)=(—,
' U') + —,U", (2.3)

where the prime means d/dx. Equation (2.2) automati-
cally guarantees that the ground state of H+ is normal-
ized to zero energy, since a solution to Eq. (2.1) using H+
1S

)II+o=No exp( —
2 U)» e'o=0 . (2.4)

Thus, we see that U-ln++o, where %'+o is the ground
state.

The Hamiltonians H+ and H can be written as

H+ ——A~A, H =AA ~,

In terms of a function U(x), whose significance will be
demonstrated shortly, the supersym metric potential
partners V+ and V are related by

V~(x)=( —,
' U') ——,

' U",

(2.9)

is the solution to the usual radial equation. ' Here, the as-
sociated Laguerre polynomials I.J' '(z) are defined by

( )
1 ( —x)~ I (j+~+ I)

q! I (q+a+1)l"(j—q+1) (2.10)

V+&=[2(i +1)]-'——+1 ll+1
y

(2.11)

=—(U') /4 —U"/2, (2.12)

%'e will mainly use y instead of the standard variable
p=y/n No.te that y differs from atomic units by a factor
of 2.

Equation (2.8) can be rewritten in the supersymmetric
form (2.1) for H+ by setting

a= —i(a„+-,' U'), W'=i( —a„+-,' U'), (2.5) E„~e„——) —,(l + 1) —,n— (2.13)

A 0
L

0
0 0 (2.6)

The supersymmetric Hamiltonian is then

H+ 0
H-=Q Q+QQ =

0 H (2.7)

The charges and ~ have the supersymmetric proper-
ties Q =(Q ) =0 and satisfy ['Q,H»] =[Q,H„]=0.
The two Hamiltonians have the same spectra, except for
the ground-state eigenvalue. Only the bosonic Hamiltoni-
an H+ has a normalizable ground state with eigenvalue
eo=O

This procedure can be applied to any separable
Schrodinger-type equation. Consider a three-dimensional
Schrodinger equation with a central potential. Removing
the angular variables yields a term '-[l(i+1)/r ] This.
leaves an equation in one variable, r, upon which the su-
persymmetric procedure can be used.

In particular, consider the radial equation of the hydro-
'gen atom. It can be written as

[A,At]=U" .

Note that if V+(x) is the harmonic-oscillator potential
x —1 then in this convention 2 = i V Za —and
At=i' 2at, where a and a are the standard harmonic-
oscillator lowering and raising operators.

The Hamiltonians H+ and Hin (2.5) are the '"boson-
ic" and "fermionic" supersymmetric partners. This can
be seen by defining a two-component wave function and
writing

The potential V+~ is defined so that el+) I is normalized
to zero.

To obtain the supersymmetric partner of the hydrogen
atom Hamiltonian for a fixed l one must solve for U.
This can be done either by solving (2.11) and (2.12), or
more easily by writing X~+) ~ in the form (2.4). The solu-
tion is

U(y) =y/(l + 1)—2(l + 1)lny . (2.14)

[2(l 1)] 2 1 (l + 1)(l +2)
y

(2.15)

In Ref. 4 we considered possible applications of these
potentials to atomic and ionic systems. We found many
pairs of atoms and ions that have spectra satisfying super-
symmetric orderings.

The first and simplest case occurs when l =0 (s orbi-
tals). The hydrogen s levels are described by the potential

1 1
V+0—

4 y
(2.16)

The partner potential V o models the lithium atom, the
spectrum of which starts at the 2s level. This potential is

1 1 2
V —— —+

y
(2.17)

Next, we can consider the case l = 1 (p orbitals). In
Ref. 4 we pointed out that V+ ~

could model the p orbitals
of the boron atom. However, it also can model the p orbi-

Therefore, the supersymmetric partner V ~ to the poten-
tial V+I is
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tais of the lithium atom, since we are considering a fixed
l. The potential is

1 1 2
V+) ——

16 y y
(2.18)

Then, the supersymmetric partner potential for the p lev-
els of aluminum or sodium atoms is

1 1 6
16 y y2

+ (2.19)

V'"'t = V'+'t+ 2(l +k +1)/y

Operationally,

(k) (k+1) (k)~—1~~+1 ~i+k+2, l ~

where

en' =
4 [(i+k+1) n~j —.

(2.21)

(2.22)

(2.23)

For instance, k =1 can correspond to the sodium s levels
being the supersymmetric partners of the lithium s levels,
which themselves were previously taken to be the I =0 su-
persymmetric partners of the hydrogen s levels. We shall
use this example below.

The effect of supersymmetry is always to increase the
effective angular-momentum barrier of V'+t by one unit
in going to V'

&, i.e.,

(1+k)(l +@+1)/y —+(1 +@+1)(i+k+2)/y . (2.24)

The extra 1/y dependence is a repulsive potential that
prevents the valence electron of the fermionic partner
atom from attaining the ground state present in the bo-
sonic atom. The fermionic Hamiltonian therefore has a
built-in approximation to the effects of the Pauli princi-
ple. We shall discuss this further in Sec. III.

III. COMPARISON OF THE SUPERSYMMETRIC
AND THE HYDROGENIC MODELS

Any precise calculation of atomic systems has to take
into account the Pauli principle and the many-body forces
that exist among the electrons. Nonetheless, one may ask
whether, in a simple Schrodinger-picture model, some of
the complex features of atomic systems can be seen as

This allows only a 3p ground state.
Similarly, the first possible d-orbital supersymmetry

among the alkali-metal atoms could appear between po-
tassium and rhubidium, since the 3d orbitals of rhubidi-
um are filled. This d-orbital supersymmetry will not play
a role in the remainder of this paper, however, as we shall
only be concerned with the alkali-metal atoms hydrogen,
lithium, and sodium.

In Ref. 4 we also considered extensions of the above, to
supersymmetries of k orders. Up to a zero-point energy,
a fermionic partner potential was used as the bosonic po-
tential for a new supersymmetry, and then the new fer-
mionic partner potential was found. In equation form,
the kth-order supersymmetry potential is

V'+"', ——[2(i+k+1)] '—1/y+(1+k)(i+k+1)/y',
(2.20)

manifestations of a symmetry. This is the question we
answer positively with supersymmetry.

In this section we focus on hydrogen and lithium. Ow-
ing to the relatively small number of electrons in these
atoms, the physical evidence for supersymmetry would be
best here.

The lithium ground-state configuration of 1s 2s' con-
sists of a filled inner ls shell with the ground state of the
valence electron being the 2s state. Physically, the effec-
tive principal quantum number (as used in quantum-
defect theory) of the 2s electron is 1.6, not 2.0. This is be-
cause the inner three protons and two electrons, with a to-
tal hydrogenic charge of one, do not have the same net ef-
fect as a central charge of one. The electrons interact,
and the orbitals are quantum-mechanical "clouds. "

The Schrodinger hydrogenic model has to treat this by
hand. " The hydrogenic model would still give a ground
state n p= 1 if the Pauli principle were not put in by hand
to give no ——2. In contrast, the supersymmetric model
gives no ——2 directly. It automatically takes care of the
Pauli principle via its effective potential. Granted, the ef-
fective potential overcompensates, since np =2 instead of
1.6, but it heads in the correct direction.

So, the first thing supersymmetry does for a simple
Schrodinger theory is to incorporate the effects of the
Pauli principle automatically, ' instead of having to do it
by hand. The reader might think that, although this is in-
triguing, it is not really significant since the spectra of the
supersymmetric and hydrogenic models are the same.

However, there is more. The supersymmetric model
uses a comp/ete set of states, which as a matter of princi-
ple is different from the incomplete set of states of the hy-
drogenic model. The eigenfunctions of V+~ are R„~,
n + 1 +1, so those of the hydrogen s levels are R„p, n + 1.
However, for the hydrogenic model of lithium, the s-
orbital eigenstates are R„o, n &2. This is not a complete
set of states, since the ground state R ~p, excluded by the
Pauli principle, is needed for a complete set of states.
Contrariwise, the supersymmetric eigenfunctions of V
are R„ l+~, n &2, which do form a complete set of states,
in particular for the lithium s levels.

Note that the hydrogenic eigenfunctions do form a
complete set whenever all the levels for a fixed value of I
are accessible to the valence electron. In such cases, the
supersymmetric and hydrogenic models coincide.

Thus, the wave functions of the two models are dif-
ferent, even if the spectra are not. Although the eigen-
functions +„~ (y, 8,$) of the hydrogen atom remain

4+„t (y, 8,$)= Yt (8,$)R„t(y /n), (3.1)

Similarly, the eigenfunctions of the kth supersymmetric
pair are

0'+ t (y 8 P)=Yt (8 P)R, r+t (y/n) (3.3)

and

'P'-"t (y 8 0)= Yt (8 0»., t+t, +i(y/n) . (3.4)

where Y~~(8,$) represents the spherical harmonics, the
supersymmetric partner eigenfunctions are

(3.2)
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Observe that the node structure of the eigenfunctions
(3.2)—(3.4) is unusual. Normally, the number of nodes in
the radial eigenfunction of a state designated (n, l) is'
n —l —1. Thus, for fixed l, the ground-state eigenfunc-
tion n =l +1 has zero nodes. However, the ground state
of the first member of a supersymmetric pair has
n —l —k —1 nodes, while its supersymmetric partner has
n —l —k —2 nodes. For instance, the 2s level in lithium
has one node in the hydrogenic approximation but none in
the supersymmetric picture.

Intuitively, one might expect such a radical change in
the structure of the wave functions to be in conflict with
experimental data, e.g., on transition probabilities.
Indeed, the eigenfunctions (3.1)—(3.4) can be used to cal-
culate transition probabilities for the valence electrons of
the alkali-metal atoms. These predictions and those' of
the simple hydrogenic approximation can then be com-
pared to the accepted values. ' We shall demonstrate in
Sec. IV that the phenomenological supersymmetry pro-
vides greater overall accuracy than the hydrogenic ap-
proximation for low-Z alkali-metal atoms. Note that it is
for low-Z atoms that one expects both the supersym-
metric and the hydrogenic approximations to be most
applicable. In such cases, there are fewer electrons to give
large noncentral forces. Also, for low Z, relativistic (spin)
effects are negligible.

A final observation is that the supersymmetric and hy-
drogenic pictures have different viewpoints. The hydro-
genic picture is motivated by the physically reasonable as-
sumption that in sufficiently excited states the valence
electron of certain atoms feels forces approximating those
in the hydrogen atom. Although, as we have shown, the
supersymmetric picture incorporates this idea, it goes a
step further in that the supersymmetric partners are treat-
ed as components of a single theory rather than as two
separate systems.

Thus, for example, hydrogen and lithium are viewed in
the supersymmetric scheme as complements, without
which the scheme fails. The presence of supersymmetry
admits the existence of lithium, given the existence of hy-
drogen. In contrast, the hydrogenic model treats the two
systems independently, even though a relationship be-
tween them is physically expected in one-body
Schrodinger theory.

IV. TRANSITION PROBABILITIES

a=e /Pic, v~ ——pe /(4+6' ) .

The l-dependent quantity F~, given by

I;/(2l;+ 1), lf =l; —1

(l;+1)/(21;+1), lf =l;+1

(4.2)

(4.3)

The transition probability T/~ for the transition from a
level (n;, l;) to a level (nf, lf) is'o

3

Tf — ~ +R+I, —,
I &R. j I x I Rn, i, & I

' (4.1)
6 nf n;

"ff

where the fine-structure constant e and the Rydberg fre-
quency vz are given by

arises from the contribution of the angular part of the
eigenfunctions. Using Eq. (4.1), we have computed select-
ed transition probabilities of lithium and sodium, with su-
persymmetric eigenfunctions and with hydrogenic eigen-
functions. We emphasize that the exact hydrogenic ener-

gy eigenvalues, not the experimental values for each atom,
were used in all calculations.

Table I contains the results for lithium. As noted
above, the s-orbital spectrum of lithium may be interpret-
ed as the supersymmetric partner of the s-orbital spec-
trum of hydrogen. However, the p orbitals of lithium
cannot be related to those of hydrogen by a supersym-
metry, since in both atoms the 2p orbitals are accessible to
the outermost electron. Thus, for this atom, the
phenomenological supersymmetry occurs solely in the s
orbitals. We have therefore calculated only the s~p and
p ~s transition probabilities for lithium, using the super-
symmetric radial eigenfunctions R„~ for both the s and
the p orbitals. For other transition probabilities, the hy-
drogenic and supersymmetric eigenfunctions are identical,
as we discussed in Sec. III.

Table II contains the results for sodium. As we have
already discussed [Eqs. (2.20)—(2.24)], the sodium s orbi-
tals are the supersymmetric partners of the lithium s orbi-
tals. Their radial eigenfunctions are therefore R„2 in the
supersymmetric picture. Also, from Eq. (2.19), the sodi-
um p orbitals are supersymmetric partners of the lithium

p orbitals, because the sodium ground-state configuration
has the 2p orbitals filled. It follows that the appropriate
radial eigenfunctions for the sodium p orbitals are also
R„2. The d orbitals of sodium, however, remain unaffect-
ed in the supersymmetric approximation, since the 3d or-
bitals are accessible to the valence electron. Thus, for
sodium, the phenomenological supersymmetry is expected
to appear in the s and p orbitals alone. We have therefore
calculated s ~p, p ~s, p ~d, and d ~p transition proba-
bilities in this case, using R„2 as the radial eigenfunctions
for the s, p, and d orbitals.

For purposes of comparison, we have included in
Tables I and II the accepted values' for the transition
probabilities and also the results obtained using standard
hydrogenic radial eigenfunctions. Note that in Ref. 13
the majority of the quoted values are obtained calculation-
ally rather than experimentally. Typically, these values
are expected to be accurate to within about 10% in the
lithium case and to within about 25% in the sodium case.

At this point, we turn to a discussion of the results. We
begin by examining the data for lithium, given in Table I.
For all levels the supersymmetric approximation yields re-
sults closer to the accepted values' than the hydrogenic
approximation. However, both approximations are ex-
tremely poor for certain levels. This is only to be expect-
ed, since neither approximation correctly takes into ac-
count the effects of electron-electron interactions. For in-
stance, both predict zero transition probabilities for
np~ns, although these are nonzero in the real lithium
atom.

Turning to the results for sodium, we see several
noteworthy features of Table II. First, the supersym-
metric predictions for the s~p transitions are all better
than the hydrogenic ones, typically by a factor of 2.
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TABLE I. A comparison of accepted values (Ref. 12) of lithium transition probabilities with those
calculated using the hydrogenic approximation and using the supersymmetric model.

Transition

3$ ~2p
4s —+2p
4s ~3p
Ss ~2p
5s ~3p
Ss —+4p
6s —+2p
6s ~3p
6s ~4p
6s —+5p

3p —+2$

4p ~2s
4p ~3s
5p ~2s
Sp —+3s
5p ~4s
6p —+2s
6p ~3s
6p —+4s
6p —+5s

Hydrogenic approximation
(1O' Hz)

0.063
0.026
0.0184
0.0129
0.0091
0.0065
0.0074
0.0051
0.003 58
0.002 68

0.2246
0.0967
0.0307
0.0495
0.0164
0.007 38
0.028 60
0.009 56
o.oo446
0.002 43

Supersymmetric approximation
(10 Hz)

0.225
0.097
0.0435
0.0495
0.0228
0.0124
0.0286
0.0132
0.007 31
0.004 54

0.0749
0.0322
0.0145
0.0165
0.0076
0.004 13
0.009 53
0.004 40
0.002 44
0.001 51

Accepted value
(10 Hz)

0.349
0.101
0.0746
0.0460
0.0276
0.0225
0.0250
0.0144
0.009 22
0.008 48

0.0117
0.0142
3.69~ 10-'
0.0107

2.07 && 10
0.006 97

8.38 ~ 10-'
1.72 &&

10-'

However, they are still in disagreement with accepted
values by a factor of 3 or so. Second, for p~s transitions
the supersymmetric predictions, , although perhaps slightly
superior, alternate with the hydrogenic predictions in ac-
curacy. Third, the bydrogenic approximation agrees
better with accepted. values of low-lying p~d and d~p
transitions that are available in the literature.

%"e have also computed transition probabilities for po-
tassium. As the reader might anticipate, the situation for
potassium is less clear. It appears impossible to draw any
precise conclusions concerning the relative merit of the
two approximations from the potassium data. The matter
is further complicated by the accuracy of the accepted
values, which is believed to be only within 50% for many

TABLE II. A comparison of accepted values (Ref. 12) of sodium transition probabilities with those
calculated using the hydrogenic approximation and using the supersymmetric model.

Transition

4s ~3p
Ss ~3p
5s —+4p
6s —+3p
6s —+4p
6s —+5p

Hydrogenic approximation
(10 Hz)

0.018
0.009
0.0065
0.0051
0.0036
0.0027

Supersymmetric approximation
(10' Hz)

0.035
0.017
0.0116
0.0094
0.0066
0.0044

Accepted value
(1O' Hz)

0.251
0.072

0.0330
0.0173

4p ~3s
5p ~3s
5p ~4s
6p —+3s
6p ~4s
6p ~5s

4p ~3d

0.0307
0.0164
0.0074
0.009 S6
0.00446
0.00243

0.003 48

0.0117
0.0057
0.0039
0.003 13
0.002 20
0.001 47

0.023 47

0.0292
0.0060
0.0074
0.002 26
0.002 31

0.001 57

4d —+3p
Sd —+3p
Sd ~4p
6d ~3p
6d —+4p
6d ~5p

0.070
0.034
0.0149
0.0188
0.0086
0.0045

0.014
0.007
0.0047
0.0038
0.0026
0.0018

0.131
0.050
0.0260
0.0257
0.0130
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levels.
Taken overall, the data in Tables I and II allow certain

conclusions to be drawn. First, for low n-transitions, the
supersymmetric approximation is superior in the case of
the lithium atom. We take this as evidence in favor of the
phenomenological supersymmetry. Further, despite their
unorthodox structure, the supersymmetric eigenfunctions
yield transition probabilities for the low-. Z alkali-metal
atoms that are better overall than those from the hydro-
genic approximation. Therefore, intuitive arguments
against the phenomenological supersymmetry based on
the unusual effective potentials and wave functions are
not compelling a priori.

We conclude that the simple supersymmetric descrip-
tion of the lighter alkali-metal atoms does indeed seem to
be in closer agreement with nature than the simple hydro-
genic picture. As expected, the more complex electron-
electron interactions occurring in the heavier alkali-metal
atoms cause the breakdown of both the supersymmetric

and the hydrogenic approximations. It is clear that any
application of supersymmetry that would be calculational-
ly useful to the practicing atomic physicist would necessi-
tate the incorporation of the effects of these interactions.
Work on this is currently in progress.
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symmetry algebra, osp(1/4). Note that field theory in zero
space dimensions is equivalent to quantum mechanics in one
space dimension. It is thus reasonable to conjecture that su-

persymmetry is useful in mocking the Pauli principle because
the Pauli principle is the quantum-mechanical remnant of the
Fermi-Dirac statistics of field theory.
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