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Network representation yielding the evolution of Brownian motion
with multiple particle interactions
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A network representation is used to derive nonlinear evolution equations for Brownian motion.

The classical analysis of diffusion neglected inertial ef-
fects, exchange of momentum between diffusing particles,
and cross diffusional effects. These approximations are ap-
propriate for the range of visible Brownian motions con-
sidered and for infinite dilution. Extensions of the diffusion
equation in the Smoluchowski's form2
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have been given by Murphy and Aguirre and by Wilemski, ~

in which the diffusion constant D is (rigorously) replaced by
a second-rank tensor which reflects the frictional interac-
tions between diffusing particles. If the internal force on
the particles, E, is found from the gradient of the internal
energy U and the particle distribution is denoted by P, the
resultant equation of motion is

'~= V D eJ+P~U
BE AT

This equation has been utilized by Berkowitz eE al. to ob-
tain a variational formula for the steady-state coordinates of
a diffusion controlled process in which there are internal
reaction coordinates of the form described by Kramers. 6

These systems are homologous to the Brownian motion
problems and- -have been described for reaction, diffusion
convection, and diffusion convection reaction by the au-
thor~ " in terms of resistive networks which serve to for-
mally connect the manifold by means of an equivalent po-
tential. This basic analogy between the Brownian motion

problem'2 and the further homology with other network
properties is used here to extend the analysis of process
evolution to the nonstationary case with interacting particles
and path dependent momentum transfer between the n

diffusing species.
The network formalism is not used here as a modeling

technique, but as a convenient and powerfu1 approach to
obtain and summarize covariant equations' utilizing
Kirchoff's laws' ' and the connectivity of the potential en-
ergy manifold. ' The following results are stated without
proof, because they are simple exercises in network
representation'~' and do not add anything substantial in
themselves: (1) Einsteinian diffusion of n species is iso-
rnorphic to a disconnected n-resistance network in which the
"voltage" across the resistance is the driving diffusional
force for the given species; the resistance is the frictional
diffusion coefficient, and the conjugate through "current"
is the flow of solute [(Fig. 1(a)]; (2) the introduction of
inertial delays, with no particle interaction' adds an induc-
tor (Newton's second law) in the path of each previous
resistance, as shown in Fig. 1(b); (3) the further inclusion
of Onsager-type cross diffusional terms —i.e., the introduc-
tion of a symmetric diffusion tensor —leads to a connected
resistive network with input inductors denoting inertial ef-
fects [Fig. 1(c)]; and (4) the transfer of momentum among
the various diffusing species is naturally included by allow-
ing mutual inductances (the conserved "magnetic field"
flux is analogous to the conserved momentum).

The last network, given in Fig. 1(d) is the one of interest,
because it includes inertia, dissipation, and momentum
transfer. The manifold coordinates xI, which describe the
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FIG. 1. (a) Einsteinian diffusion is represented by disconnected resistances (friction coefficients). (b) Inertial effects are added by means
of serious inductors; in the range of Brownian motion observable under the light microscope, the inductors dissapear and the network
reduces to (a). (c) A diffusional tensor is introduced by means of a connected resistive network whose measurable frictional tensor, f, is

related to the (diagonal) resistance matrix by f= T AT, in which T is the tie set matrix for the network graph. Input inductances account
for inertial effects. (d) The introduction of time varying mutual inductances whose fluxes are identified with the momentum exchanged
between different species completes the representation of the n-species diffusional system with inertia, dissipation, momentum exchange,
and Qnsager-type cross frictional effects.
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In the absence of external forces this yields the geodesic
equatio'n (with dissipation)

path, s, followed by the evolving Brownian motion are the
input "charges" in the network, while their time variations
(we assume the path has been time calibrated) are given by
the input currents x;. Tellegen's theorem' readily yields
expressions for the dissipated energy, ~R»x;x& —in which

R» is the inverse diffusional, or friction tensor —and the
internal kinetic energy, ~L»x;x& —in which L;; are masses
and L~ are interaction coefficients reflecting average effec-
tive cross-sectional areas for momentum transfer between
two species at a given time —once the constitutive equations
for the diffusional (resistive or frictional) steps (f~=R;kxk)
and the inertial and momentum exchange steps (p; = L;kxk)
are given.

Tellegen's theorem, with some rearrangement of vari-
ables' finally leads to Lagrange's equation for the system
containing dissipation and kinetic energy (inertia and
momentum exchange):"

in which the Christoffel symbol can be physically defined by

~Lmk 1 ~Lm.
gxn 2 gxk

rather than in its more familiar differential form. Equation
(3) underlies the evolution of the Brownian motion with
dissipation when there are no external forces acting on it;
otherwise, the right hand side becomes equal to the force
acting on component n. If the mass of a diffusing species
remains constant in the motion and the average cross-
sectional areas for momentum exchange remain constant,
the connection coefficients and, clearly, the curvature van-
ishes and the equations reduce to their linear form.

Although this approach to obtaining evolution equations
is extremely simple minded, the resultant equations are free
from the restrictions of stationarity previously imposed. A
more elegant derivation would completely ignore the net-
work as an intermediary step, but the advantage of includ-
ing the network view is the clear separation of the various
forms of energy and clear identification of which are dissipa-
tive steps and which are energy storing steps. The concep-
tual economy should also be clear by comparing this analysis
to the typical statistical mechanical approaches. 0

px~+L px~+I p~ ~ x =0 (3)
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