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Quantum chaos and two exactly solvable second-quantized models
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Two exactly solvable second-quantized models, namely, a one-fermion-one-boson model and the four-
point Hubbard model, are presented. The connection with quantum chaotic behavior is discussed.

A large number of authors (compare Refs. 1—5 and refer-
ences therein) have studied the interrelation between classi-
cal Hamiltonian systems which show chaotic behavior above
a threshold value E, and the corresponding quantum sys-
tem. In most cases the standard quantization has been
used. Various approaches have been applied to "define"
what we understand by "quantum chaos. " Among others,
there are the method of avoiding energy-level crossings, the
study of the sensitivity of energy eigenvalues to perturba-
tions, the statistical analysis of fluctuations in the spectral
sequences, the structure of the eigenvectors, the sequence
of level spacings, and the distributions of nearest-neighbor
spacings. When we consider the method of distribution of
the nearest-neighbor spacings we find that in the regular
case (i.e., the classical case is integrable) the energy eigen-
values are distributed randomly, leading to a Poisson-type of
distribution function. The most important exceptions are
coupled harmonic oscillators. When the classical system is
almost integrable the quantized version also leads to a
Poisson-type of distribution function. A regular spectrum
(quantum chaos) occurs when the energy levels are correlat-
ed, resulting in a repulsion of adjacent levels. The nearest-
neighbor-spacings distribution function peaks at a finite
value and exhibits the typical feature of a Wigner function.
In this case the classical system shows chaotic behavior.
Another approach for studying quantum chaos is to plot
graphs of level spacings 3 E„=E„+~—E„. This approach
was proposed by Hirooka, Yotsuya, Kobayashi, and Saito.
However, Farrelly and Berry demonstrated that this
representation is not unique. They emphasize that the ir-
regularity is in the wave functions and matrix elements.

In the present paper we study two exactly solvable
models. We consider a one-fermion-one-boson model for a
magnetic elastic system9 and the half-filled four-point Hub-
bard model. For both models there is no classical analog.
Nevertheless, we can look for the connection with quantum
chaos.

For the one-fermion-one-boson system we are able to
calculate the spectrum exactly. Consequently, we can study
the distribution of the nearest-neighbor spacings. Owing to
the appearance of Bose operators. the number of the energy
levels is infinite. We are also able to calculate the energy
spectrum exactly for the four-point Hubbard model. Since
only Fermi operators appear, the number of energy levels is
finite. It is known' that in the case of the linear chain with
cyclic boundary conditions, the ground-state energy of

H, = wb b+ Jc'c+ a (b'c+ bc') (2)

This operator commutes with I' and X=c'c+b b. The
eigenvalue problem can easily be solved. We find

I0, J/2+ w/2+ nw + [ 4 (J—w) + a2(n + 1)]'i ]

where n =0, 1, 2, . . . . In Fig. 1 we have plotted the distri-
bution of nearest-neighbor spacings where w= J=0.5 and
a =0.1. We have taken into account the first 4000 levels.
The distribution cannot be identified with a pure Poisson
distribution or with a pure Wigner distribution. However,
the typical feature of a Wigner distribution, namely, that
P(S) 0 as S 0, is not present. Consequently, we do
not identify the system with quantum chaos. Figure 2
shows AE„as a function of n for w =J=0.5 and a =0.1.

For the Hamiltonian (1) we are not able to exactly calcu-
late the eigenvalues. Nevertheless, we can calculate the ma-
trix representation. Then we are forced to truncate the ma-
trix and numerically calculate the eigenvalues of this finite
matrix. For our numerical calculation we take the first 400

the Hubbard model can be calculated exactly for
N~ ~, N, ~ ~, and N, /N = l. (N is the number of lat-
tice sites; N, is the number of electrons. ) Lieb and Wu'o

used the multicomponent Bethe ansatz. For this half-filled
case Takahashi" calculated the thermodynamic quantities
under certain assumptions. If these assumptions hold, then
one calls this model integrable. Recently, Bariev and Kozhi-
nov' demonstrated that the one-dimensional Hubbard
model cannot be understood in terms of the quantum
inverse-scattering method. There are a number of mul-
tisublattice integrable systems, the exact solution of which
can be obtained using the multicomponent Bethe ansatz,
which, however, cannot (yet) be understood in terms of the
quantum inverse-scattering method. Thus it would be in-
teresting to compare with calculations concerning quantum
chaos.

The one-fermion-one-boson model with Hamiltonian
operator

H= wb'b+ Jc'c+ a(b+ b')(c+ c )

cannot be solved exactly (compare Refs. 9 and 13—15). No-
tice that c'=a-+/2 and c=a. /2. It can be proved that H
commutes with the parity operator P = exp[in (b'b + c'c) ].
In the so-called rotating-wave approximation (J=—w,

a &( J), the Hamiltonian operator takes the form
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FIG. 1. Nearest-neighbor-spacings histogram for the energy lev-
els (3) for w =J=0.5 and a =0.1.

FIG. 3. Nearest-neighbor-spacings histogram for the first 400 en-
ergy levels for the Hamiltonian (1) w =J 0.5, a =0.1.

energy levels into account. Figure 3 shows the histogram.
Let us now study the four-point Hubbard model with cy-

clic boundary conditions
4

H=r x x XC,'+a c, +Up n(fnlj (4)
/=1h= +1 cr I=1

where co= c4 and c1 = c5. Note that 0commutes with

N, = Xc,'c;
icr

H = g X a (k) c„" ck

+ (U/W) 5(kj —k2+ k3 —k4)ckj ck2 ck'q ck
k1,k2, k3,k4

Ss = g ( CI f CI f C( j Ci j )

The Hamiltonian (4) admits the C4„point-group symmetry.
Since cyclic boundary conditions are imposed, we can

transform the Hamiltonian (4) into momentum space. We
find that

where

k & [ —n/2, 0, m/2, vr (mod 2w))

and e (k) = 2r cosk. Since H commutes with the total
momentum operator

P = X k ( ck f ck f + ck j ck j )
k

(6)

it follows that we can classify the eigenfunctions of 0as be-
longing to a subspace of equal total momentum, namely,
P= —m/2, 0, 7r/2, and n Sinc.e H and P are invariant
under spin reversal, it is possible to define an operator S
which satisfies S =I. The eigenvalues of S are obviously
5= +1. Thus we can classify the eigenstates as belonging
to negative or positive spin parity. In the case N, =4 and
S,=O we find that the dimension of our Hilbert space is
given by dim/ =36. For the dimensions of the subspaces
with P= —n/2, 0, n/2, and m we obtain 8, 10, 8, 10.
Now a straightforward calculation leads to (E= t/ U,

FIG. 2. Energy-level spacings AE„=E„+1—E„vs n (150 levels)
for w= J=0.5 and a=0.1.

FIG. 4. Nearest-neighbor-spacings histogram for the four-point
Hubbard model (K = 0.2).
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FIG. 6. Energy-level spacings 3 E„=E„+~
—E„ for the four-point

Hubbard model (K =0.2),

FIG. 5. Energy level vs %for the four-point Hubbard model.
t

E E/U)

E(E 1)'[E'—4E'+—E(5—16K') + 24K' —2]

x [E'—3E'+ 2E(1—8K') + 24K'] =0,
[(E—1)'—4K']'(E2 —3E+ 2 —4K2) (E2 —E 4K') =0-
[ (E —1)2 —4K2]2(E2 —3E+ 2 —4K2) (E2 —E 4K2) =0—
(E —1)3(E—2) [E3—3E2+ 2E(1 —8K2) + 8K2]

x [E3—2E+E(l —16K2)+8K2]=0 . (7)

We see that the eigenvalue E= 1 is sixfold degenerate.
The number of energy levels is low, so that a reliable statist-
ical test is doubtful. Nevertheless, in Fig. 4 we have plotted
the distribution for E=0.2. %'e can identify it with a Pois-
son distribution. The different energy levels as a function
of K have been plotted in Fig. 5. We find crossings of ener-
gy levels. This is another indication for integrability. Fig-
ure 6 shows AE„as a function of n for E=0.2, where we
have included the degeneracy.

It should be worthwhile to study the Hubbard model with
more than four lattice sites so that the number is sufficient-
ly large to perform a reliable statistical test. For arbitrary
N (N=N„S, =O) the dimension of the Hilbert space is

given by

N/2 w!dime(N, =N, S, =O)= X„=o N 2 —n! N2 —n!

N
, N/2,

For N = 6 we obtain dim 8 (N, = N, S, = 0) = 400. Consider
cyclic boundary conditions. For the dimensions of the sub-
spaces with P= —2n/3, —2r/3, 0, m/3, 2m/3, and 2r we
find 66, 68, 66, 66, 68. We have studied the subspace with
I' =0. Here, too, we find a Poisson distribution. The ques-
tion remains open whether or not we find Poisson distribu-
tion for higher values of N.

In the discussion of quantum chaos one starts from a
classical Hamiltonian which can be integrable, almost inte-
grable, or chaotic (due to the parameter values or the ener-
gy value). Then the Hamiltonian is quantized and the spec-
trum is calculated. Thus we have the behavior of the classi-
cal systems as a guide to the behavior to be expected in the
quantum version. If there is no classical analog, then we
can ask whether the system can be solved with the help of
the Bethe ansatz or the quantum inverse-scattering method.
We conjecture that models which can be solved via the
inverse-scattering method or with the help of the Bethe an-
satz do not show quantum chaos as indicated, e.g. , by a
%igner distribution of nearest-neighbor. spacings.
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