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Recently a nonlinear Schrédinger equation (NLSE) with an inhomogeneous term proportional to
bIn(ly|2|a®)y has been put forward. It has been proposed to apply it to atomic physics. Subsequent neu-
tron interferometer experiments designed to test the physical reality of such a nonlinearity were not con-
clusive, thus rejecting it as unphysical. In the present paper it is pointed out that the different length scales
a associated with atomic and nuclear physics, for example, lead to different typical energies b for these sys-
tems. Guided by the experience with phenomenological NLSE’s, the constant b is for the following applica-
tions to nuclear physics identified with the compressibility of finite nuclear matter, C=K/9, ie., b=C.
Thus we obtain consistent qualitative and quantitative answers related to the concepts of microworlds and
mesoworlds as well as, e.g., the prediction 130=<< K <250 MeV. However, this necessitates the interpreta-
tion of the respective NLSE as an equation for extended objects.

I. INTRODUCTION

In spite of the fact that the linear Schrodinger equation
(LSE) works extremely well for a wide range of nonrela-
tivisitic quantum-mechanical problems, there are apparently
some arguments in favor of nonlinear Schrédinger equa-
tions (NOSE, or NLSE; see Refs. 1-7, and references
therein). A particularly interesting example is given by the
NLSE which Bialynicki-Birula and Mycielski (BBM)® recent-
ly proposed: namely,

%V2+U(x,t)—-bln(|¢(2a") = —ikdap(x,t) , (1)

with the associated density p(x,7) = |¢(x,¢)|2. This work of
BBM was motivated by the desire to deal in a consistent way
with quantum phenomena and in particular with the transi-
tion from microworlds to macroworlds (see further below).
The notation is the conventional one with » standing for the
dimensions of the problem. BBM suggest the length a to be
the same universal constant for all systems and require the
energy constant b to be very small, i.e., 2.5x10"2< b < 4
x 10710 eV. The main reason for this requirement is that
the deviations of (1) from the LSE are believed to be rather
small (and that for larger b quantum-mechanical objects
would behave like classical particles). BBM made it clear
that they have no intention to abandon the conventional in-
terpretation of quantum mechanics as a formalism for point
particles. The response which (1) received and results of
further formal and numerical discussions of its properties
may be taken from Refs. 7-9.

BBM suggest that the NLSE (1) should be applied to
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atomic physics. Shimony proposed!® a neutron interferome-
ter experiment to test the physical reality of such-a non-
linearity. Subsequently independent (and different) experi-
ments carried out by Shull, Atwood, Arthur, and Horne!!
and by Gihler, Klein, and Zeilinger'? resulted only in upper
limits for &, ie., b<3.4%x10713 and b<3.3x1071 eV,
respectively. The implications of these results are that there
is no real basis for such a nonlinearity as far as atomic phys-
ics is concerned.!!-13

Why should we reconsider this NLSE?

(i) Approximations to the linear Schridinger equation
(like Fermi theory, Hartree-Fock, the Thomas Fermi ap-
proach, nuclear fluid dynamics, analogies to classical fluid
dynamics, etc.) are well known to lead to nonlinear
Schrédinger equations that yield a lot of useful results.!4-17
But there are also approaches attempting to deal in a non-
perturbative way with the spatial extensions or self-interactions
of quantum-mechanical objects>-* as well as attempts to for-
mulate the respective thermodynamical descriptions.’ And
all of them give rise to nonlinear Schrédinger-type equa-
tions. There is no arguing about the fact that the LSE
works nicely in atomic physics with its tremendous interpar-
ticle separations (compared with the extensions of the parti-
cles involved, i.e., electrons and nuclei; in contrast with
reality, within atomic physics the latter are usually treated as
single entities). If nonlinearities are really important then
they should manifest themselves most drastically in systems
like atomic nuclei with their closely packed nucleons. [The
possible objection that nucleons are not elementary parti-
cles, but made up of pointlike objects, does not invalidate
these arguments; it simply insinuates that we follow the
same level of sophistication as in atomic physics; i.e., now
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we ignore the substructures of the nucleons (and not of the
nuclei, as in atomic physics). The substructures (e.g., nu-
cleons in nuclei and quarks in nucleons) come only into
play if we insist on a fully microscopic description at all lev-
els. A qualified discussion of the associated problems is
beyond the scope of this paper, so that references!~>18
should be consulted for further details.]

(ii) BBM suggested the quantity a in (1) to be a universal
constant that may readily be scaled away. This is certainly
true if a really is a constant as they assume. However, if it
depends on the respective system or is even a function of x
(as hinted by the discussion of similar hydrodynamical
NLSE’s!¢17) then this is no longer possible.

Though (i) and (ii) do imply that it is sensible to recon-
sider the NLSE (1), they both violate the intentions of
BBM®% 13 who did not want to leave the framework of the
traditional quantum mechanics for point particles (certainly
a convenient idealization).

To find out whether the concepts put forward by BBM are
compatible with quantum-mechanical systems other than
atomic physics, let us apply some of them to nuclear phys-
ics. Positive findings would not prove that (1) has to be
reinterpreted as a NLSE for extended objects, but they
would certainly give some impetus to further research trying
to understand to what extent the results are accidental and
to what extent they bespeak of some fundamental connec-
tions.

II. RECOLLECTIONS

For more details on the material gathered in this section
the original paper of BBM® should be consulted. The prom-
inent features of the NLSE (1) are contained in its soliton
or ‘‘gausson’’ solutions,

L )
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where the relation p= mv has been assumed to hold. The
quantity

1=~k 2/2t‘nb 3)

that occurs in (2), characterizes the ‘‘gausson’’ solutions
and represents a typical length of the system described by
the NLSE (1). The center of mass ‘‘gausson’’ solution of a
spherical object with radius R and mass density d is
represented by

1= (3% Y8mwbR3}d)V? . @)
Defining now the quantity
#2 R}
Ry= (358w bd) V5= E—r;—b_] , (5)

with d=m/V=3m/4wR3?, it is stated by BBM that
R << Ry, R = Ry, and R >> R, classify the respective par-
ticles as micro-, meso-, and macro-objects, respectively.
The properties of meso-objects are believed to be rather dif-
ferent from the ones of micro- and macro-objects. This
lead BBM to specific estimates for the universal constant b
and the typical spatial extensions of the system to which (1)
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might be applicable, namely,

25x1072eV<h<4x1070 ey |

0 (©)
Ro<50 A=50x10"°m .

Another point of interest to the present discussion con-
cerns the splitting or binding energy B released in the split-
ting of the wave function of an isolated system into non-
overlapping parts having essentially the same form as the
initial wave function, say,

k
px)— 3 ()Y (x—x)) ,
i=1
with 2f=1 p»=1. The expression BBM provided for B is

k
B=-b El’ilnlh . )

i=1
IIIl. APPLICATIONS TO NUCLEAR PHYSICS

Bearing in mind points (i) and (ii) we discuss now (a)
whether the constant b really has to be very small, (b)
whether (3)—alone and/or together with (5)—gives
reasonable answers when applied to nuclear physics, and (c)
whether the same holds for (7).

(a) BBM did not prove a to be a constant; they, rather, in-
ferred from their physical interpretation of (1) that this
should be the case. However, if we interpret the p = |y |2
due to (1) as representing the physical, experimentally
measurable charge or mass density, then it might be sensi-
ble to consider a to be a function of x.131617 Let us now
follow the philosophy of hydrodynamical NOSE’s and iden-
tify a~—" with the asymptotic undisturbed densities of two
heavy ions (that are at t= +oo well separated so that they
do not feel the presence of each other); ie., a™ "
=po(x) =po(x, 200) =po;(x) +pg2(x), where the indices
1 and 2 refer to the two nuclei. The nonlinearity of (1) ac-
quires then the form

bin(ly12a®)=bInlp(x,t) a1 =b1Inlp(x,1)/po(x)]
= blInp(x,1) —Inpo(x)] . ®)

For ¢ (x,t) — 0 Eq. (1) yields an infinitely strong binding,
an unpleasant feature which does not necessarily pertain for
the nonlinearity (8) where it may be counteracted by po(x).

In the case of scattering events—as, e.g, discussed in
Refs. 10-12—p(x,2) = po(x) holds for all times but the
ones close to the climax of the scattering event, say, at
t=0. That is, for tightly bound pointlike particles possess-
ing no internal strucutres (e.g., electrons and the nucleus as
treated in atomic physics) the deviations of p(x,t) from
po(x) will always be negligible. Hence, the nonlinearity will
not be activated or only activated to an extremely small ex-
tent. According to our understanding, that should hold for
atomic physics with its huge interparticle separations and
also for the experiments discussed in Refs. 10-12. If the
nonlinearity is something real, then it should manifest itself
in a more obvious way in the scattering of heavy ions on
each other (with distances of smallest approach that are
comparable with their spatial extensions'®!?’). To an even
larger extent this argument is believed to hold for the rela-
tions between nucleons bound together within a nucleus.
Traditional nuclear physics denies, however, such nonlinear-
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ities, in spite of the extreme success of nonlinear methods
like Hartree-Fock, Thomas Fermi, and the like.!* Yet, it
has to be admitted that even after 50 years one does not
have a unified theory of the atomic nucleus and most (or
all?) of the significant unresolved problems are related to
short interparticle separations. And for short separations
the nonlinearity should be of note, ifit is something funda-
mental.

From this qualitative discussion it is inferred that the
nonlinearity (and the constant ) should be rather small for
systems with large interparticle separations, while it might
be significant for strongly overlapping systems. Equation
(8) indicates also that [for a(x)] the strength of the non-
linearity depends not just on b but on the combination of a
and b. This is in line with the well established wisdom that
typical lengths and energies vary from system to system; for
example, in atomic physics they are of the order of
angstroms and eV while nuclear physics requires fermis and
MeV as suitable units. Our arguments are certainly sensi-
ble, but they are not strong enough to enforce the interpre-
tation given. However, the same applies to the suggestion
of BBM that a should be the same universal constant for all
systems.®

(b) To find out whether or not the concept of separating
the world into micro-, meso-, and macro-objects® does make
sense when applied to nuclear physics, let us recall that
meso-objects should exhibit properties distinctly different
from the ones of micro- and macro-objects. This require-
ment seems to indicate that nucleons and « particles are the
only candidates for meso-objects traditional nuclear physics
can offer. To test this notion, we insert the well-determined
charge radius of the proton, R,=0.865 fm, into (3) to ob-
tain b =28 MeV.

Now, what is the physical interpretation of & in nuclear
physics? Applying hydrodynamic concepts to elastic col-
lisions of heavy ions similar NLSE’s, such as (1), were ar-
rived at. (That is, depending on the details of the deriva-
tion, they have a cubic or logarithmic nonlinearity.!®) The
strengths of the respective nonlinearities are in these cases
given by the nuclear compressibility modulus, C=K/9,
thus indicating that the nonlinearity is proportional to the
elastic energy stored in compressed nuclear matter.!617 De-
tailed considerations of common points -and of differences
between these NLSE’s and (1) are beyond the scope of this
paper. Hence, let us simply take over the notion that in ap-
plications to nuclear physics there are good reasons for iden-
tifying the constant b with C, i.e., for the substitution
b=C=K/9.

The numerical value b =28 MeV arrived at for the proton
implies thus K=9C =95=250 MeV. It corroborates nicely
with conventional results. Evaluating now by the aid of (5)
the radius Ry of the proton we arrive at R,=0.865 fm
= Ro(proton) =0.8654 fm. According to BBM such a coin-
cidence implies indeed that protons (and, hence, also neu-
trons) are to be classified as meso-objects which are to cor-
respond to the ‘‘gausson’’ solutions of (1). That is, our as-
sumption is compatible with the resulting numbers. Ex-
tending the comparison via the global relation
R(A)=ryAY3 with ro=1.2 fm towards larger nuclei, Fig. 1
is arrived at. For heavier nuclei R (4) (full curve) is obvi-
ously significantly larger than R, [dotted curve, (5)] so that
we have to classify them as macro-objects. In the case of
light nuclei the classification is more problematic. However,
with the additional requirement® that the properties of
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FIG. 1. Full curve represents the average nuclear radii as func-
tions of the mass number, i.e., R(4)=1.24Y3 fm. The R of (5)
with K=9C =250 MeV correspond to the dotted curve and the
ones with K=9C =130 MeV to the broken curve.

meso-objects be distinctly different from the ones of micro-
and macro-objects, we are lead back to nucleons and possi-
bly « particles as feasible candidates for meso-objects or
‘“gaussons.”

At least for nucleons, this conclusion seems to be
inescapable, so that they are to be identified with the ‘‘gaus-
son” solutions of (1). Hence, we use now (3) with
b= C=K/9 to evaluate the compressibility of the proton as
a function of its radius (see Fig. 2). The absolute upper
limit of K corresponding to the well-established charge ra-
dius of the proton is K,,x=250 MeV, its lower limit with
R =1.2 fm (as the largest possible radius for the nuclear
matter distributions of nucleons, for which 1 fm should be
more realistic) corresponds to Kpi,=130 MeV. These two
extreme limits are consistent with the range of values dis-

cussed in various approaches within nuclear physics.

To get a feel for the impact that such a small value of K,
such as 130 MeV, has on the discussion of Fig. 1, the calcu-
lations were repeated with C=K/9=14.4 MeV to obtain
essentially the same result as before (see the broken curve
in Fig. 1).

(c) Recalling that o particles fulfill, at least to a reason-
able extent, the requirements for meso-objects, let us use

K T , r . . . . . -
(MeV)
I K=9 C 1,2
c=—— R?
2m
1000 -
F ]
3 1
F (Rp=0.87 fm, Kp=250 MeV)
100 — -
_ 1 1 1 L 1 1 1 1 1 1
0.2 06 10 1.4 R (fm)

FIG. 2. Nuclear compressibility modulus K=9C=9&2%/2m)/
R? is plotted as a function of the proton radius [see Eq. (3)].
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(7) to evaluate the splitting or binding energy B for the
breakup of an a ‘‘gausson’’-solution into four identical

nucleon-‘‘gausson’’ solutions. Since such a crude picture ig- -

nores spin and isospin, it is understood that one should at
best expect order of magnitude estimates. Using the two
extreme values for K as discussed above (i.e.,
K =9C =9b =250 and 130 MeV) and the more reasonable
one for R =1 fm with 189 MeV, we obtain for the binding
energy of the o« particle the estimates B (XK =130)= —20
MeV, B(K=189)=—29 MeV, and B(K =250)= —39
MeV. Bearing in mind that the experimentally established
B,= —28.3 MeV yields K =184 MeV=9x20.4 MeV, all
these numbers are surprisingly close to the truth.

IV. SUMMARY

It is concluded that the concepts of BBM as developed by
them in the context of their NLSE® (1) are compatible with
nuclear physics. That holds, e.g., as well for the binding en-
ergy of ‘‘gausson’’ solutions as for the division of the world
into micro-, meso-, and macro-objects. . Taken seriously, the
implications are, e.g., that within nuclear physics nucleons
and « particles are meso-objects and that the compressibility
of (finite) nuclear matter should be found in the interval
130 < K [MeV] =< 250.
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However, in view of the negative experimental results of
Refs. 11 and 12, and bearing in mind the discussion of Sec.
IIT and of Refs. 2—4, 16, and 17, it has to be realized that
the only consistent interpretation of the NLSE (1) would
then be the one of an equation for extended objects (and
not for point particles as originally suggested by BBM).
This new interpretation emerges if the a of (1) is taken to
be a different constant for different systems or even a func-
tion of the spatial variables. We would like to caution the
reader against premature far-reaching conclusions. But we
believe that the present discussion indicates that it is sensi-
ble to continue more detailed studies into (1) and similar
NLSE’s to find out to what extent our tentative conclusions
will survive further tests and to see to what extent it is pos-
sible to marry the field theoretical NLSE (1) with hydro-
dynamical and thermodynamical concepts.
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