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In recent years the observation of optical second-harmonic generation (SHG) in nematic liquid
crystal (NLC) MBBA [N-(4-methoxybenzylidene)-4'-n-butylaniline] raised again the question of
whether NLC's possess centrosymmetry. Lyakhov et al. [Izv. Akad. Nauk SSSR 45, 917 (1981)]
suggested that these observations can only be explained by considering the NLC as noncentrosym-
metric and optically biaxial. In this paper it is shown phenomenologically that even with D„I, sym-
metry, SHG arising from ee —+e, ooze, and oe —+o interactions can occur in an aligned NLC.
With curvature strains SHG arising from ee ~o, ee ~e, oe ~o, oe ~e, oo ~o, and oo ~e interac-
tions are all possible. Several experimental observations are satisfactorily explained by the present
calculation. The order of magnitude of the effective susceptibilities estimated from a quadrupole-
moment mechanism agrees with the values obtained by Arakelyan et al. [Mol. Cryst. Liq. Cryst. 71,
137 (1981)]and by Barnik et al. [Mol. Cryst. Liq. Cryst. 98, I (1983)]. One may conclude that it is
possible to explain the occurrence of SHG in NLC's without having to invoke noncentrosymmetry
of the system.

I. INTRODUCTION

In both the Frank elastic continuum theory' and the
Ericksen-Leslie-Parodi hydrodynamical theory " of
liquid crystals, the directions of the director + n and —n
are considered as equivalent to each other. It is well
known that systems with overall inversion symmetry give
no optical second-harmonic generation (SHG). However,
recently Arakelyan et al. ' reported their new experimen-
tal data on SHG of all six types of interaction in oriented
samples of MBBA [H3CO(CsH4)CH:N(C6H&)C4H9 or
N-(4-methoxybenzylidene)-4'-n-butylaniline]. They con-
cluded that the oriented MBBA can only have C&[1] or
C&l, [m] symmetry. If the nematic liquid crystal (NLC) is
noncentrosymmetric, then the Frank-Ericksen-Leslie-
Parodi theory must be revised completely. However,
many experimental results do agree satisfactorily with the
predictions of that theory. In such a dilemma, it is natur-
al for us to ask whether it is possible to explain the experi-
mentally observed SHG within the framework of the
theory based upon the equivalence of + n and —n.

The elastic constants of NLC's are of the order of
10 "—10 dyn. An external field of the order of 1

kV/cm or 1 kG would easily induce curvature strains in
NLC's. In an optical electric field the D s symmetry of
the NLC sample as a whole will easily be broken. Howev-
er, the director field n(r) in an aligned sample is a con-
tinuous function of the space coordinates. In an optical
electric field the local D s symmetry of the NLC may
still be preserved. With this in mind, we calculate the
second-order susceptibilities of the NLC both in the well-
aligned state and in states with curvature strains. The ef-
fective susceptibilities for different types of interaction are
then deduced. It follows that we can explain the existing
observations of SHG in NLC's with a quadrupole-
moment mechanism together with an oscillatory director

It is well known that all optical phenomena in a loss-
less, nonlinear dielectric medium are governed by the
Maxwell equation '

VX V XE+ (e.E)=-
c2 g&2 c~ r)r2

(2.1)

To discuss SHG we may write the nonlinear electric po-
larization P " in the form'

NL
+i +ij k+j Ek ++ijkl+j El, k +

(2.2)
i,j,k, l =1,2,3,

where E~ k =BE(IBxk and the subscripts 1,2,3 represent
the three components in a Cartesian space coordinate sys-
tem, respectively. (Summation convention is used in the
present calculation. ) The nonlinear optical susceptibilities
g' '—:X;Jk and g' '=X,jkI depend upon the symmetry
properties of the medium. For media with centrosym-
metry P' '=0.

An aligned NLC possesses D h symmetry and its g'3'
is equal to zero. To find X;Jk~ of an aligned NLC system
we first consider the energy function —P—:—P/ .ENL.

X,JI,~E;EIEI k of th—e electric polarization P/ of the
system in an electric field E. To find out what kind of

mechanism without having to invoke the noncentrosym-
metry of NLC's as suggested by Arakelyan et al.

In crystals with centrosymmetry, SHG stimulated by
electric quadrupole interaction is very weak, e.g., in calcite
crystal X zk

——10 ' —10 ' esu. However, estimates
based upon the theory given by Bloembergen et al. and
the structure of the MBBA molecule show that the effec-
tive susceptibility may reach an order of magnitude of
10 " esu where the value given by Arakelyan et al. ' is
10 ' esu and that given by Shtykov et al. " is 10 ' esu.

II. PHENOMENOLOGICAL THEORY
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g=( —,
'

)
'~ (x j+ix2),

g=( —,
'

)
'~ (xj —ix2),

3=x, (~~n) .

(2.3)

Under the unitary transformation (2.3), the function P
will take on the new form

scalar functions P may take, we introduce a new coordi-
nate system (g', g, 3) where

+As(V E)E+A9VE'E+A(OE VE,

pp jk$ A ]Pfp nj nk nr +A 2 np nj 5kh +A 3nj nk 5j f

(2.7)

respectively, by

Pf =[A&(E n)(n VE n)+A&(E n)V E

+ A3n VE E+A4E VE n]n

+ Az(n VE.n)E+A6(E n)n VE+A7(E n)VE n

/=X prsE EpEsr, a,g, y, 5=/, g, 3 .

Now P must satisfy the following requirements. '

(2.4)
+A S~ij ~kl +A9~ik~j I +A lo~il~jk (2.8)

+A 4 n ' n j5jk +A 5 5jnk n j '+ A 65 'j nj nk +A 7 5 'k nj n j

(1) The function P is an even function of n on account
of the equivalence of + n and —n.

(2) The number of g and the number of q appeared in
the subscripts of P must be equal to each other, since n is
the C axis and P is an invariant.

(3) The subscript 3 in the function P can only appear in
an even number of times, since any plane perpendicular to
n is a plane of mirror symmetry.

(4) The subscripts g and g are interchangeable, since
any plane containing n is a plane of reflection.

Besides, P is a real function and the components of n are
given by

+@V;[Ej(co)E,(co)] . (2.9)

For transparent materials the coefficient y is much less
than a and P. Comparing Eq. (2.7) with Eq. (2.9) we
find that

where the A's are material constants. Notice that the last
three terms of Eq. (2.8) are independent of n. They are
the contributions from the isotropic part of the medium.
Both Bloembergen et al. and Wang et ah. ' showed that,

--regardless of the detailed mechanism and the models for
the nonlinearity, the nonlinear polarization for an isotro-
pic medium may always be written in the form

P;(2co) =(a P)Ej—(co)VjE;(co)+PE;(co)VjEj(co)

n~ ——n~ ——0, n3 ——1 . (2.5) As ——P, A9 ——2y, A jo
——a —/3 . (2.10)

We can easily show that P can only be the linear combina-
tions of the following scalar functions:

Resolving the applied optical electric field E(r, t) into
its Fourier components by

(n VE n)(E n), (V E)(E.n), (n VE n)(E E),
(n VE.E)(E n), (E VE n)(E n),
(V E)(E E), E VE E .

(2.6)

It follows then the nonlinear polarization Pf and the
optical susceptibility 7;Jk~ for an aligned NLC are given,

E(r, t) = g E(r, co ) exp( i co t), —

co = —co, E(r, co ) =E*(r,—co ),

we get the nonlinear polarization Pf (r, co) as

(2.11)

Pf"(r,co)= g [Aj[E(r,co ) n][n.VE(r, co —co ) n]n+A2[E(r, co ) n][V E(r, co —co )]n

+A3[n-VE(r, co —co ).E(r,co~)]n+A4[E(r, co ).VE(r, co —co ).n]n+A~[n VE(r, co —co~) n]E(r, co )

+A6[n. E(r, co )][n.VE(r, co —co )]+.A7[n. E(r, co )][VE(r,co —co ) n]+A&[V E(r, co —co )]E(r,co )

+A 9 [VE(r, co —co ).E(r, co )]+A jo[E(r,co ) VE(r, co —co~ )]J (2.12)

where the A's are functions of cu, co, and ~—co and

Ai(co~con~co corn ) =Ai ( co~ corn corn (2.13)

It is generally accepted that with curvature strains, the
NLC as a whole is no longer centrosymmetric, yet the
director n(r) at the point r is still the local C axis.
Under such circumstances, the X;jk in Eq. (2.2) is a non-

Q=P„E=XjkE;EjEk . (2.14)

Similar to P, by preserving the first-order terms of Vn

vanishing third-order tensor related to the deformation
Vn(r). Now consider the energy —g= —Pd .E of the
electric polarization Pd of the NLC with curvature
strains in an electric field E:
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only, one may prove that P can only be the linear com-
binations of the five scalar functions:

NL
~di =&JkEJ«k (2.16)

Xljk =Bib; nj nk+B2n. ; ink +B3ng nj bk+B4(V n)n; nj nk

+Bsb;5jk+B65rjbk+B75(kbj. +Bs(V.n)n;5fk

+B9(V n)5J nk+Blo(V. n)5;knj +Bi

in;nkvd

+~12~i~j k +~13njnI k +~14+J+k

(n Vn E)(E.n), (V.n)(E n), (n.Vn. E)(E.E),
(2.15)

(V.n)(E E)(E n), (E.Vn. E)(E n) .

Thus we have

~",kl ~",kl ~'j lk ~",Ik —~k1, " ~ (3.3)

Let us apply these results to the NLC system. In the case
of an NLC, the summation should be taken over the
valence electrons of the NLC since there is no long-range
translational order in NLC's. If we write Eq. (3.1) in the
form

NL
=&ri~V i«J ~k«i (3.4)

(olxjxllo)(olxkxllo)1.

where N is the number of molecules per unit volume of
the liquid crystal, we then have

3e
y;,» , ,——g [(olx;x,. lo)(olxkxilo)

'6 coo

where

+~15+k~i,j+~16+knj, i ~ (2.17)
The 12 nonvanishing components of y,ski are

b=n Vn, n, ,=Bn,—/ax, . (2.18)
j 1122 72211 /1212 3 2121 ~

Obviously, the expressions for the Fourier components of
Pd; are similar to Pf (r, co) as given by Eq. (2.12) with
the material-constant B's being frequency dependent.

III. SHG IN W'ELL-ALIGNED NLC

F1133 F3311 3 1313 7 3131 ~

j 2233 F3322 V2323 Y3232

(3.6)

P; (2')=N(l .
1 k; I; »—)E (co)VkE1(cu.),

with

3er,,»=, , g[&Olxx, x„x, lo&
'6 Q)o

(3.1)

—&0lx,x, lo)(ol«x, lo&]

where N is the number of unit cells per unit volume of the
crystal, ficoo is some average energy (closure approxima-
tion), and the the summation is over all the electrons in a
unit cell of the crystal. Obviously,

Bloembergen et a/. have shown that, for SHG, the
lowest-order nonlinear contribution from the bound elec-
trons in nonmagnetic crystals with inversion symmetry is
the quadrupole-moment source P; (2'�):NL

The director n(r) gives the direction of the preferred
orientation of the molecules at the point r. ' The D„z
symmetry of the NLC implies that the probability of find-
ing a molecule at r with its long axis making an angle 9
with n(r) is a function of cos 8, i.e., f(cos 8). The mac-
roscopic nonlinear susceptibility X,jkl (or any fourth-order
tensor X,ski with D „h symmetry) may be considered as the
statistical average of the corresponding molecular non-
linear susceptibility y;~ki. Naturally y;Jkl is defined in a
coordinate system (1,2,3) rigidly attached to the molecule
with the 3 axis pointing along the long axis of the mole-
cule. By introducing a new coordinate system (g,g, 3)
similar to that defined by Eq. (2.3) and the tetrads ijkl
and apy5 where i,j,k, l are unit vectors along (1,2,3) and
a,P,y, 5 are unit vectors along (g, r1,3), we can show
that the 21 nonvanishing components 7;Jk~ are related to
he yikI' by

X1111 X2222 [ 2 (~6+40S2+9S4)(j llll+j 2222)+4(7 10S2+ 4)Y3333+ 6 ( 6+4 S2+9S4)j 12
N 1

+ —,( 14—5S2 —9S4 )'Y33]'

[(21—30S2+9S4)(y11 1 1+y2222)+ 3(7+20S2+ SS4)y3333+ (7—10S2+3S4)y12+(7+5S2—12S4)y33],
105

X1122 X2211 6 + [(1 + 2S2 )(j 1122+ Y2211)+ ( S2)( Y1133+y2233+ j 3311+y3322 l6

X1212 X2121 G + [(1 +2S2)( Y1212+ Y2121)+(1 S2 )(y1313+Y2323+ Y3131+Y3232) ]6

X1221 X2112 G + [(1+ S2)( Y1221+j 2112)+(1 S2)( Y1331+j 2332+ Y3113+Y3232)]6
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~1133 ~2233 II + [(1+252 )( Y1133+y2233)+ ( 52)( Y1122+ Y2211+ Y3311+Y3322)]6

~1313 ~2323 + [( + 2 )( Y1313+Y2323) + ( 2 )( Y1212+y2121+ y3131+y3232)]6

~1331 ~2332 H + [(1+252)() 1331+Y2332)+( 52)( Y1221+ V2112+y3113+y3223)]6

+3131 ~3232 II + [(1+252)(7 3131+]3232)+( 2)(3 1212+) 2121+1 1313+V2323)]6

~3113 ~3223 ~+ [( +252)(y3113+y3223)+( 52)( V1221+y2112+1 1331+j 2332)] ~6

N
+3311 ~3322 H + [( + 2)(y3311+Y3322)+(1 2)( Y1122+y2211+y1133+y2233)]6

(3.7)

where The ten material constants A introduced in Eq. (2.7) are
now given by'

S2 = f —,
' (3 cos 19—1)f(cos 8)d (cos8)—1

=( 2 (3cos 8—1)),

S4 ——f —,'(35cos 8—30cos 8+3)f(cos 8)d(cos9)—1

=((35cos 8—30cos 8+3)/8),

A1=A4 =A6 =A 1o =0

A2 ——A5 ———A3 ———A7
1

2 +(y1133+Y2233 ) 1122) 2

1~ 8 ~ 9 7+[(Y1122+y1133+ Y2233)

(3.10)

712=7 1122+F1212+7 1221+ V2»2+ F2121+722»

F33=71133+F1313+71331+F2233+72323+ F2332

+ 73113+$3131+3 3311+73223+3 3232+/3322 ~

[ 2 (56+4052+954)(y1111+Y2222)420

+4(7—10S2 +3S4 )y3333

——,(28+ 80S2 —354 )y12

—2(7 —10S2+3S4 )y33],

[(14
. 552 9 4 )(3 1111+3 2222)210

(3.8)

+ (l 1122 Y1133 ) 2233) 21

They are all independent of S4. Above the clearing point
of the NLC, S2 ——0, and only A8 and A9 are different
from zero. The nonlinear polarization given by Eq. (2.7)
now reduces to Eq. (2.9) with p= —2y and a=p. This is
the same result given by Bloembergen et al. From their
measurements on crystals with cubic structure and on
fused silica, Wang et al. ' obtained a value of 4 for a/p.
However, the isotropic phase of the NLC is not in the
solid state. We would suggest that measurements of SHG
in a NLC in the isotropic phase will most likely furnish
more useful information. Furthermore, if the structure of
the molecule is isotropic then y»22 —j»33—f2233 In
such a case, again, only A 8 and A 9 are different from
zero and independent of s2 and S4 at any temperature.
This simply means that isotropic molecules do not form
the liquid crystal as it should be.

+2(7+5S2 —12S4)y3333 (7—1052+3S4)y12 IV. SHG IN NLC WITH CURVATURE STRAINS

—(7+5S2 —12S4)V33] .

Here S2 is the traditional order parameter and S4 is the
order parameter of the fourth order.

On account of Eq. (3.6) we find that only the following
X,jkl's are nonvanishing:

+1122 +1212 +2121 +22»

=—[(1+2S2 )y»22+ (1—S2 )(y1133+y2233) ],3
(3.9)

+1133 +2233 +3311 +3322

+1313 +2323 +3131 +3232

=—[2(1—S2 )Y1122+(2+S2 )(y1133+y2233) ] .
6

Electric dipoles and quadrupoles will oscillate in an ac
electric field, and so will the director of an NLC in an op-
tical electric field. It was first pointed out by Meyer'
that it is possible to induce splay (or bend) deformation
and polarization in a liquid crystal by mechanical stress,
an effect called flexoelectricity. The flexoelectric effect
will be largest in liquid crystals with asymmetric mole-
cules reflecting the presence of a dipole moment. Prost
et al. showed that flexoelectricity will also exist in
liquid crystals built up of symmetric molecules if one
recognizes the importance of the quadrupole density.
From their observations on SHG in MBBA, Gu et al. '

concluded that the observed SHG is due to the flexoelec-
tric effect. Taking the flexoelectric effect into considera-
tion, we may write the free-energy density of a NLC in an
electric field E as
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I 2
g ? kll(V n) +k22(n V Xn) +k33(n Vn) — (E.n) —e)1(V.n)(E n) —e33n Vn. E (4.l)

where k
~ ~, k22, and k33 are the splay, twist, and bend elastic constants, respectively, e, =@I~—ez is the dielectric anisotro-

py, and e» and e33 are the flexoelectric coefficients. The equation of motion of the director in a low-frequency electric
field now becomes

8 8I
2 n;+y) n; —k)1V;(V n)+k»I(n VXn)(VXn)+VX[(n'VXn)n]I;

Bt

k33 [(V.n)(n. Vn); —nJ nk ~ (nk; n—; k ) +n jnkn; J'k ]

1 eg(E'Il)E;+e(1(V;E).n+e33(n. V)E;+(e33—eii )[(V.n)E; —(V;n).E]=—An;, (4.2)

where I =pa is the moment of inertia per unit volume of the NLC, a is the typical dimension of a molecule, and the
Lagrangian unknown multiplier A, is determined by n-n= 1 with the result

2 r

A, =I +k»n. V(V n) —2k»(n'VXn) —2k33(n Vn) + e, (E n) —(e11+e33)n VE.nBn 2 2 1 . 2

9t 4m

+(e11 e33)[(V n)(E n) —n Vn E] (4.3)

Let us now apply Eq. (4.2) to the case where the NLC is in an optical electric field. Following Bloembergen we ex-
pand n(r, t) into a power series of the optical dectric field E:

n(r, t)=n' '(r)+n'"(r, t)+n' '(r t)+ (4.4)

where n(~)(r, t) is proportional to the jth power of E. Substituting Eq. (4.4) into Eqs. (4.2) and (4.3) we find the zeroth-
order equation and the first-order equation as

—k»[V(V.n' )));+2k»(n( 'VXn' ')(VXn( '); —k22[n' )XV(n( 'VXn( ')];—k33(V.n' ')(n' 'Vn' ');

(o) (o)( (o) (0)) k (o) (0) (o) +[k (0).V(V. (0)) 2k ( (0).VX (0))2 2k (
(0).V (0))2] (0) 0

E 7

(4.5)

a2
, n', "+y, n,

"'—k»[V(V.n'")],
Bt

+2k22[(n' 'VXn'")(VXn' ');+(n"'VXn' ')(VXn' ');+(n' 'VXn' ')(VXn'");]

[n XV(n VXn )+n XV(n' .VXn )+n XV(n VXn( )];

[(V.n (0)
) (

(0) .Vn(1) ) + ( V.n(0) ) (n(1) .Vn(o) ) + ( V.n(1) )(n(0) .Vn(0) ) ]

+k33[nj nk j(nk; n; k)+n—j nk j(nk; n; k)+n—f nk .(n), ; n;k)]—(0) (0) (1) (1) (0) (1) (0) (0) (1) (0) (0) (0)

k33(nj nk n; Jk+nj nk n; Jk+nj n~ n; Jk) —(e11 —e33)[(V.n )E; —(Vn ); E](0) (0) (1) (0) (&) (0) I&) (0) (0) (0) (0)

+e»(VE); n' '+e33(n' 'VE;)+ Ikii[n' 'V(V n'")+n"'V(V n' ')]

—4k»[(n' 'VXn' ')(n' 'VXn"')+(n' 'VXn' )(n' 'VXn' ')]

[( (0).Vn(o)). ( (0).Vn(1))+(n(0).Vn(0)). (n(1).Vn(o))]

In�(())

+[(e» —e33)[(V n' ')(E n' ') —n' 'Vn' 'E]—(e11+e33)(n' 'VE n' ')In

+[k„n' 'V(V.n' ') —2k (n' 'VXn' ') —2k (Il' 'Vtl'0') ]n;"'=0.
For a well-aligned NLC, n' '(r) is independent of r and Eq. (4.5) becomes an identity. Here Eq. (4.6) simplifies to

(4.6)

2 n; +p) n; —k)1[V(V.n'")];—k22[n' 'XV(n' 'VXn'")]; k33nj 'nk 'n j—k+e))(VE); n' '+e33(n' 'VE;)

Let the Fourier expansions of n'"(r, t) and E(r, t) be

+k)1[n' 'V(V n'")]n' ' —(e +e )(n' 'VE.n' ')n' '=0 (4.7)
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n "(r,t)= f n "(q,cu}exp[i(q r —cot)]dqdco,

E;(r,t) = f E;(q, to) exp[i(q r cot—))dqdto .

One finds that

(4 &)

[Ice +i@(co—k33(n' 'q) ]n"'(q, co)—[k)iq.n"'(q, co)+ie»n' 'E(q, (o)]q—kqz[n' 'qXn"'(q, (o)](n' 'Xq)

=ie„(n' 'q)E(q, to) —fk„q n"'(q, co)+i{e„+e33)n' 'E{q,to)](n' 'q)n' ' . (4.9)

For a given value of q we may choose the three unit vec-
tors (xi, x2, x3) of the local Cartesian coordinate system as

The induced polarization P(r, t) and the applied electric
field E(r, t) are related to each other by

x, =x,xn' )/ix, xn( ) i,
n(0) X qy

~

n(0) X q ~

(Q)
X3 =Xl

(4.10) P(r, t)= (e—I) E(r, t),

In this local coordinate system, n"' is given by (assuming
kii ——k22 ——k33 —k)

where the components of the electric constant e are given
by

n")(q, co) = I~ +i@]a)—kq

X Ie»n' 'E(q, co)q+e33(n( 'q)E(q, co)

—(ei(+e»)[n"'E(q, ~)](n'" q)n"'i .

Eij El~ij +Eani nj

The nonlinear electric polarization P which is quadra-
tic in E is given by

(4.11)

Using the typical values k = 10 dyn, y &

——10 ' P,
A, =5X10 cm, I =10 '" glcm, we have q =1.2X10

kq = 1.44X 10 g/cm sec, 1~ = 1.42/ 10, y]~
=3.8&(10' . Thus the term kq can be neglected and Eq.
(4.11) becomes

n")(q, co)=
Ico +Ega&

[n(0) n(1)i n(0)n(1)+n(1)n(0)

Applying the convolution theorem we have

(4.13)

X Ieiin' 'E(q, co)q+e33(n( 'q)E(q, ~o)

—(e„+e„)[n' 'E(q, to)](n( 'q)n' 'I .

(4.12)

P "(r,(o) = e, (co)[n( ),n")(r, co —(o')]+ E(r, to')de' .1

4m

(4.14)

Substituting the inverse transform of Eq. (4.12) into Eq.
(4.14) one finds that

P "(r,to)= f e, (~o)

4m [I(co co') +iyi(co co')—]—
X Ie))[E(r,to') VE(r, cu —co').n( ']n' '+e33[n' 'VE(r, co —co') E(r,co')ln' '

—2( e»+e 33[)E(r, to) n' '][n' 'VE(r, c~o') n' ']n' + )[eE(((r,co'). )n7[(VE(r, to —co').n( ']

+e33[E(r,co') n' '][n' 'VE(r, co —co')]]den' . (4.15)
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Comparison of Eq. (4.15) and Eq. (2.12) shows that, under the oscillatory director mechanism, the nonvanishing material
constants are

A) ———2(e»+e33)X, A3 ——A6 ——e33X A4 A'7 e))X,
(4.16)

e, (co)x—
I4m. [I(co—co') +iy)(co —co')]

Equation (2.13) is automatically satisfied.
For liquid crystals with curvature strains, Eq. (4.7) is no longer satisfied. In this case Eq. (4.6) simplifies to

82I n"'+y) n"' —(e» —e33}[(V.n' ')E—(Vn' ') E]+e))(VE) n' '+e33(n' 'VE)
el) 2 Br

+I(e)) —e33)[(V n' ')(n' 'E)—n' 'Vn' 'E]—(e))+e33)n( 'VE n' 'jn' '=0, (4.17)

where the terms containing elastic constants are neglected. Let n("(r, t) be the sum of a deformation-dependent part
n'"(r, t) and a deformation-independent part n""(r„t):

n"'(r, t) =n'"(r, t)+n""(r, t) .

One then has

I n'"+y) n'" —(e» —e33)[(V n' ')E—(Vn' ') E]+(e)&—e33)[(V n' ')(n' 'E)—n' 'Vn' 'E]n' '=0,8
at

I n""'+y n""+e))(VE) n' '+e33n' 'VE —(e))+e33)(n' 'VE n' ')n' '=0a2

at2

(4.18)

(4.19)

(4.20)

E(r, t) = f E(r, co) exp( i cot)dco, —
the solution of Eq. (4.19) is given by

e33(co)—e) ((co)n'"(r, co) =
Ico +l /~co

(4.21)

Equation (4.20) is simply Eq. (4.7) with the elastic con-
stant terms neglected. With the Fourier transformations

n'"(r, r) = f n'"(r, co) exp( i cor)dco, —

eg [e33(co')—e)) (ai')]
+ijk

4m[I (co')2+. i y,co']

(0)b(o)n (0) 2( V. (0) )n (0) (0) (0)

+(V n' ))n' '5 n' 'n' '—

+(V n(o)y"n( ' —n' 'n' ']J, S (4.24)

~ [ [n(0);Vn(0).E(r ~ ) ]n(o) When compared with Eq. (2.17) we find that the nonvan-
ishing material constraints are

—(V n' ')[E(r,co).n' ']n' '

+(V n' ')E(r, co) —(Vn' ') E(r,co) j .

+2 +4 2+ +s +9 ~12 +16

e, (co)[e33 (co') —e ) ) (co') ]
4m [I(co') +iy, co']

(4.25)

The subsidiary polarization Pd now takes the form

P~N"(r, ~)

(4.22)

e, (co)[n' '(r), n'"(r, co)]+ E(r, co —co')dco' .
4m

(4.23)

If we write Pd;"(r, co) in the form

(r,co)= f X,jk(co,co, co —co )

V. COMPARISON WITH EXPERIMENTS

q = (q),q„q, ) = (sing cosP, sing sing, cosg) . (5.1)

The refractive index n, (g) of the extraordinary beam trav-
eling along the 0 direction is given by

Optically the NLC is uniaxial with the optical axis
along the direction of the director. In the local Cartesian
coordinate system defined by the three unit vectors
(b/

~
b ~,c/

~

c ~,n), where b—=n'Vn and c=nXb, the unit
wave vector q of the light beam may be written as (Fig. 1)

&& FJ(r, co')Ek (r, co co')dco', —
then the susceptibility 7;jk will be

] 6( IE'j.
n, (g)=

cos 0/710+sin 0/pl~ g&+g q 3

(5.2)
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where n, =Ei and n, =Ei are the principal refractive
indices of the NLC. The magnitude of the ordinary wave
vector q, (co) and that of the beam traveling along the 8
direction q, (8,co) are given, respectively, by

2
2 eqCu

q, (01)= q'"I fq. (01)
I lq. (8 ~)

I lq ~ (5.5)

quency. For the second harmonic, we shall denote the
corresponding terms with a superscript (2), e.g., EIl ', Ep',

(2) t2) (2) ~ (2)
a ~ qo ~ qe ~ e, etc.

For simplicity, let us consider the case of collinear in-
teraction:

2

q, (8,co) =
E'g E'I

I
co

(E1 +Eg q 3)C

(5.3) Here the condition of phase matching is given by

q,"'(8)=q, (8)+qb(8), (5.6)

The direction of polarization of the ordinary beam e, and
that of the beam traveling along the 8 direction e, are,
respectively,

10= ~2 1/2 ( q2&qi
( l q~ 2)1/2

h(01) r ~ ~ ~ ~2
2, /, [ llqiq3'llq2q3 —" '-q 3 ]

h (~)= I Ei(01)+[Ell(io) —Ei(r0)]q 3]

The dielectric constants Ell and Ei. are functions of the fre-

where a, b, c refer to either o or e and 8 is the angle be-
tween the wave vector and the optical axis (director). Let
the incident electric field E(r,co) be

E(r,co) =e,E, exp(iq, r)+e.,E, exp(iq, r) . (5.7)

When we substitute Eq. (5.7) into Eq. (2.12) and write the
result in the form

Pf "(2')= g e,' 'X(ah~c)E, Eb exp[i(q, +qs) r],
a, b, c =e,o

we find the expressions of the effective susceptibility for
different types of interaction ab~c in the case of an
aligned NLC as follows:

X(ee —+o) =X(oo—+o) =X(ooze) =0,
X(oo~e) = ,'iq, h (2') sin(—28)[A9E'll (A3+A9)EJ ]

X(oe~o) = , ih (03) s—in(28)Iq, [A10Ell (A6+A 10)El]+q.[A8Ell (As+As)EL]I
(5.8)

X(ee~e)= ziq, h (co)h(2')sin(28) [(A8+A9+Ai0)Ell Ell
—(A3+A9)El Ell (As+A6+A8+A10)EIl El]EII

P

10

+ A7+A9)Ell Ei+ A2+A4+As+A10)E1 Ell
— g A; Ei Ei. Ei. sin 8(2) (2) (2) 2

I

In the case of a NLC with curvature strains we have

X(oo 0) (85+86+87)b sing,

X(oo~e) =h (2') IBsEll b cos8cosp

—[Bs(d2+g 1 )+ (811+812)(d2 cos p+g 1 sin p —d 1 sing cosp —g2 sing cosp)]EI sln8I

X(oe~o) =h (01) I (86+87)bEll cos8cosp —(89+8,0)(d2+g, )Ei. sin8

—(813+8,4+Bis+816)[g, sin p+d2 cos p —(di+g2) sing cosp]Ei sin8], (5.9)

X(oe~e) = —,
'

h (~)h (201)»n(28)[ —(Bii+Bi2)(di+g2)Ei Ell cos(2$)+(8,4+816)Ell Ei(di »n ~ g

+(813+8,s)EIl 'E1(g2 sin p —di cos p)]
——'h (01)h (2') sin(28)[2(811+812 1 Ell+ 813+814+815+816)

ll EJ-l(d2 —gi) sin(2$)

—h (co)h (2')[(82+83+86+87+811+812+8,4+816)Ei 'Ei sin 8+(86+87)Ell Eli cos 8]b sing,

X(«o)=—h'(01)EllE1»n(28)I[(Bi3+Bis)di+(Bi4+Bi6)g2]»n'0 —[(Bi4+Bi6)di+(Bi3+Bis)g2]cos'0

(813+814+Bis+Bi6)(d2 —g2) sing cosp j
—h (co)[(81+Bs+813+B»)E1sin 8+BsEll cos 8]b sing,
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g(ee~e) =h (aJ)h (2')I [(B1+B5+B13+B15)e))'el+(B2+B3+B6+B7+B11+B12+B)4+B)6)el'e))E'l]sin 8

+(B5+B6+B7)e))'e)) cos 8Ib cos8 cosP

h (ri))h (2')I [BgeJ e))+(B9+B)(j)eI) e))el]cos 8+(B4+Bg+B9+Blo)el el 8I (d2+g ) sln8

——,'h (aJ)h(2a)}[(B»+B)2)el '&))+(B(3+B)4+B)5+B)6) )) )) J.]

~[g) cos p+(d(~g2)sing cosp+d2sin (t ] sin(28)cos8,

where

d, =c.Vn.b/b, d2 —c Vn c/b

g, =b.Vn b/b, g2
—b.Vn. c/b

(5.10)

et al. 6, 7, 10 are

A(a)) ~1.06 pm, A(2') =0.53 pm .

From Eqs. (5.11) and (5.12) we find that the angles of
phase matching are

The observations of Arakelyan et al. in 1979 certainly
agree with the results of.Eq. (5.8) for the case of a well-
aligned NLC. Their more careful observations in 1981
confirm, with Eq. (5.9},the case of a NLC with curvature
strains. "

For the ee —+o type of interaction, from Eqs. (5.1), (5.3),
and (5.6) we find that the angle of phase matching 8~m
satisfies the condition

el( E')) —el )
(2}

cos ~pm (2)El(e)) —el)' (5.11)

For the oe~o type of interaction the angle of phase
matching is determined by

II

P~ (2) (2) 2( (2))1/2 el/2E'I
)

(5.12)

A least-squares fitting of the refractive indices of
MBBA yields the dispersion formulas for MBBA at
25 'C:

8~ =32'10' for ee —+o interaction,

8~~ =42'40' for oe —+o interaction .

They agree very well with the observed values

8~ =30' for ee~0 interaction,

Op 43 for oe —+0 interaction

In the experiments of Gu et al. ' they found that, in a
NLC with satisfactory alignment, no SHG was detected.
But strong SHG was observed in samples with curvature
strains. In fact, the observed SHG is of the oe~o type.
In their experiment, the light beams are normal to the sur-
faces of the liquid crystal cell. One notices that in the
case of a NLC with satisfactory alignment, 8= —,

' m..
Under such circumstances the factor sin(28) in the non-
vanishing terms of Eq. (5.8) makes all the X(ab +c) van-—
ishing. This result agrees with their observation of non-
detectable SHG. Gu et al. made an assumption on the
director of the NLC with curvature strains ' (Fig. 2):

e)) ——n, =2.680+0.1501/A,

el =n, =2.266+0.0463/A,
(5.13)

n=(0, sin@(x,y), cos4(x,y)),

4&=@0sin(kx) exp( —ay),
(5.14)

where the wavelength A, is measured in J(tm. The wave-
length of the light beams in the experiments of Arakelyan

where 4o is a small quantity. Here, to first order of 40, b
is a null vector and we may choose the direction of b

ao
X 2

rrrr rrrrrrrrr//rr/rr'r'r'r'

~X

~x,
g X)

y4
rr r r r r r r r r rr r r r r/r r/////////////\ Z

FIG. 1. Relationship between wave vector q and the direc-
tions of polarization e, and eo. FIG. 2. Distorted director field.
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X1——b/~ b
~

=x,
x2 ——n X x1——(0,cos&b, —sin@), (5.15)

X3=Il .

For normal incidence, 8=/= —,rt and Eq. (5.9) gives

X(ee~o) =X(oooo) =X(oe~e) =0,
X(ee~e)=h (co)(2')ej 'e1(B4+Bs+B9+B1O)

)& C&oa sin(kx) exp( —ay),

X(ooze) =h (2')eI 'Bs@oa sin(kx) exp( —ay),
(5.16)

X(oe~o) =h (co)ej (B9+B1o)@casin(kx) exP( —ay) .

Taking Eq. (4.25) into account we have that X(ee~e) =0.
Therefore only SHG of ooze and oe~o interactions ex-
ists.

Now let us study the refractive indices of MBBA, we
have

parallel to the x axis. The three unit vectors of the local
coordinate system now become

g,tt=g"'=qX"', (6.1)

where q is the magnitude of the wave vector. Using g'3',
Arakelyan et al. ' found from their experimental data
that

X' '(MBBA) =(0.5—2) && 10 ' esu,

and Shtykov et al. "gave the value

X' '(MBBA)=1.5&&10 ' esu .

It is difficult to make a direct calculation on the order
of magnitude of X,tt in the present calculation. However,
Bloembergen et al. have shown that, for isotropic ma-
terials, the nonlinear quadrupole-moment source is given
by

VI. DISCUSSIONS

To determine the various nonlinear susceptibilities from
the measured intensity of the SH one must decide whether
the nonlinear polarization is of the form X,JkEJEk or
XgJkJEJ EI k . The latter expression has the factor EI k,
therefore, to second order of E, we have

n, (2')) n, (co), n, (2')) n, (co),

n, (co) )n, (co), n, (2') )n, (2') .
(5.17)

The condition of phase matching written in terms of re-
fractive indices becomes

P; =, (X )'(E;V,EJ E&V;E,—),4N'e

where the linear susceptibility 7 is given by

2N'
X„o(co)= (0

i
x

i
0),

0

(6.2)

(6.3)

n, (2') = —,
' [n, (co)+nb(co)],

(5.18)

with N' the density of the valence electrons in the materi-
al. If we compare Eq. (6.2) with Eqs. (2.12) and (3.10)
(with S2 ——S4 ——0) we find that

a, b, c =o,e . N 3
1 1122+1 1133+3 2233) q

(X )4N'e
(6.4)

From Eqs. (5.17) and (5.18) we see that in MBBA only the
oe ~o and ee ~o type SHG can meet the condition of
phase matching. In addition, the fluctuation of the direc-
tor field will cause fluctuation in the refractive index of
the extraordinary beam traveling in the direction perpen-
dicular to the director. And the fluctuation of the refrac-
tive index causes light scattering which makes the obser-
vation of the extraordinary second harmonic difficult.
These may be the reasons why Gu et al. detected only
SHG of the oe~o interaction.

The conclusion that in MBBA only SHG of the oe~o
and ee~o type interaction can satisfy the condition of
phase matching agrees with the experimental observations
of Shtykov et al. " They applied a bias field of 14
kV/cm on MBBA cells with planar alignment and cells
with homeotropic alignment and found phase-matching
oe~o and ee~o type SHG in both cases. After the
withdrawal of the bias field they detected only the oe —+o
type SHG. With the bias field on, the director field is dis-
torted either by the dielectric effect (Freedericksz transi-
tion) or by the flexoelectric effect in the NLC cells. And
the withdrawal of the bias field makes the cells restore to
their original uniformly aligned condition. Equation (5.8)
tells us that in a uniformly aligned sample, SHG of the
ee~o interaction is forbidden. Therefore one can only
have SHCx of the oe~o interaction.

Consequently we have

X,tt=, (X )'q .
4N'e

(6.5)

The linear susceptibility X may be estimated from the re-
fractive index n of the liquid crystal in the isotropic phase
by the well-known Lorenz-Lorentz equation:

—2

x =L 3 t/ —1

4m. n 2+2
(6.6)

CH 0

FIG. 3. MBBA molecule.

The MBBA molecule has two benzene rings (Fig. 3). The
six m. electrons in each ring may be considered as the free
electrons confined to the conjugated bond. Davydov
et al. had examined about 100 different organic com-
pounds with the power method. They found that a large
number of compounds with benzene rings do show strong
SHG. Their result suggests that the conjugated m elec-
trons in the benzene ring may be responsible for the SHG.
In fact, it is well known that. the delocalized m electrons in
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the conjugated molecules can produce anomalously large
second- and third-order nonlinearities. It seems, then,
that the polarization of.the molecule with benzene rings in
an optical electric field would be determined mainly by
these free 7r electrons in the rings. In this way we may
take each MBBA molecule as having 12 valence electrons.
The density of valence electrons N' becomes now

12K P
M

where p is the density of liquid crystal MBBA, M its
molecular weight, and X the Avogadro's number. Tak-
ing ' n =2.5, p= 1 g/cm, and M=267, we find that

X,rf(MBBA) =10 " esu .

rarrrrr /r/rrr/r r rrr r r r r n rrr

////// r/r//// //r r / r r r ra L r r

This agrees in order of magnitude with the nonlinear sus-
ceptibility obtained experimentally by Arakelyan et al.
and by Shtykov et aI.

In the oscillatory director mechanism Eqs. (2.8), (4.16),
and (6.1) lead to

(2)
11(33) a

jeff
47'(Ico +iy(co)

(6.7)

For MBBA, if we take2

yi ——0.8 P, eel(33) —10 dyn'

e(2'=1, I =10 ' g/cm,

~=10' sec ', q =10 cm

we find that X,ff will be of the order of magnitude of
10 ' esu, which is too small for observation. However,
the validity of Eq. (4.2) had been verified only in cases of
low frequencies where the molecule is capable of moving
like a rigid body under the action of the applied field. It
is conceivable that a rigid molecule with its heavy mass
will not be able to vibrate in accordance with an applied
optical electric field. Only the electrons of the molecule
are capable to oscillate accordingly. In other words, it is
the electric moment of the molecule that vibrates when it
is acted upon by an optical electric field. So far the
correct equation of motion of the director in a high-
frequency field is still unknown. Frank has pointed out
that the exact meaning of the director is still a question
open for investigation. At low frequency, the director
may be considered as the average direction of the long
axis of the NLC molecules. At high frequency, it seems

FIG. 4. Photovoltaic effect.

that we may take it as the average direction of the electric
moment of the molecules, since n gives the direction of
the optical axis. Under such a point of view the moment
of inertia I in Eq. (4.2) would be the moment of inertia as-
sociated with the motion of the free electrons per unit
volume of NLC. Taking the ratio of the mass of the elec-
tron and the mass of the atom into account, for MBBA,
we would have I= 267 X 2000 X10 ' =10 —10
g/cm. Furthermore, if we neglect the absorption of light
in the NLC, the dissipation term with the coefficient y& in
Eq. (4.2) may also be omitted. With the other constants
unchanged Eq. (6.7) would also give an order of magni-
tude of 10 "—10 ' for g,ff.

Now let us consider the case where monochromatic
light of frequency cop is normally incident on a homogene-
ously aligned NLC cell. We may take the director of the
NLC and the direction of polarization of the light beam
as (Fig. 4)

e = (cosP, sin()), 0),
(6.8)

n=(0, 1,0) .

Let us write the optical electric field in Dirac 5 functions
as

E(r,CO) =Epe[5(CO, COQ) exp(iqx3)+5(CO, —COp) exp( iqx3)], —
(6.9)

where q is the wave vector. It follows from Eq. (2.12)
that

Pf (co) =iqEQ I [A7(co, cop, co cop) sin P+29(—co,copco cop)]exP(2iq—x3)5(co—cop, cop)

—[2 7 ( co —
cop co +cop )sin P +2 9 (co, —cop, co +cop )]

exP�
( 2i qx 3 )5( co—+cop, —cop )

+ [A7(co cop co+ cop) si11 Ijk+ A9(co coQ co+coQ)]5(co+cop cop)

—[A7(co,cop, co —cop) sin (i}+A 9(co,cop, co —cop) ]5(co—cop, —cop) I . (6.10)
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Since P (co) is parallel to q, there will be no SHG.
However, along the direction of q, Pf has a dc com-
ponent:

Pf (0)= tqE pl [37(0,—cop, cop) —A7(0, cop, —cop)] sin P

+ [~9(0& cop&cop) ~ 9(co~cop| cop)] I

(6.11)

In other words, there exists a photorectification or photo-
voltaic effect. Across the NLC layer there is an emf U
given by

U =4+Pf (0)d cc Ep ~ Ip, (6.12)

where d is the thickness of the NLC layer and Io is the
intensity of the incident beam. The observation of Kamei
et al. 3 on APAPA (p-methoxybenzylidene-p'-
aminophenylacetate) seems in agreement with this predic-
tion, at least qualitatively.
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