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New functional relation for vertex models
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A new functional relation for factorizable vertex systems that do not satisfy the so-called symme-
try relation is proposed. Together with the unitary condition this relation enables one to obtain the
free energy of these systems in the thermodynamic limit. These relations are then used to solve a
particular case of the free-fermion eight-vertex model.

I. INTRODUCTION

In recent years there has been considerable growing in-
terest on an exhaustive analysis of two-dimensional
models that can be solved exactly. The efforts in this
direction involve both spin and vertex systems. ' The
existence of nontrivial solutions of the factorization equa-
tions plays an essential role: When such solutions do ex-
ist, then two transfer matrices with different Boltzmann's
weights commute. ' From this commutation one can ex-
tract two functional relations for the partition function:
the unitarity relation and the symmetry relation.
These two relations together with some analytical con-
siderations are sufficient to determine the free energy per
vertex (or per spin) in the thermodynamic limit. 8 Al-
though this technique seems to be poorer than the inverse
scattering method " (which allows in principle the
determination of the whole eigenvalue spectrum of the
transfer matrix, not only the largest one as in the func-
tional technique) it has the advantage that the search for
the pseudovacuum is not needed. Meanwhile, there are
some models where the functional may fail. This usually
happens when the model does not exhibit a 90' rotation
symmetry (at the S-matrix level, this corresponds to
models without crossing symmetry ). It is necessary then
to find a substitute functional relation to supply the ab-
sence of the symmetry relation. This has already been
done on the context of some Z(X) &&Z(X) models, ' but
unfortunately (as we shall see in this paper) it does not
work in some other cases. For this reason I propose in
Sec. II a new functional relation which is applied, in Sec.
III, to solve a special case of the free-fermion eight-vertex
model.

where summation over repeated indices is understood. . In
Fig. 2 we give a graphical representation of these equa-
tions.

From Eq. (I) it is clear that if 8=8'=0 then the so-
called initial condition

is a trivial solution. If we put in the expression (l)
L9+ L9'=0 and use the initial condition we get

(3)

where p(8) is some even function of 8. The unitarity con-
dition (3) can be extended to the partition function per
vertex, k (8), of the associated vertex model ' '

k(8)k( —8)=p(8) . (4)

The expression (4) is the unitarity (or inversion) rela-
tion. In order to solve the vertex it is necessary to aggre-
gate another functional equation to the unitarity relation.
This is usually done through the symmetry relation
which comes from a 90' rotation plus parity symmetries
of the vertex model. Naturally, there are models where
such symmetries are absent, and a substitutional function-
al equation must be found, an example of which are

II. THE FUNCTIONAL RELATION

Let S;,';' be the two-particle scattering amplitude as

shown in Fig. 1. The indices run from 0 to q —1 and cor-
respond to the q kinds of particles. The parameter 8 is
the rapidity or spectral parameter.

The factorization equations or Yang-Baxter equations
can be written as follows FIG. 1. S matrix in (1+ 1) dimensions.
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J2
'l2

FIG. 2. Graphical representation of the factorization equa-
tions.

Belavin's solutions' of factorizable Z(X) XZ(K) models.
Belavin and Zamolodchikov' found the following alter-
native form: if it is possible to find a number g such that

N —1

Sk' (2g)QJ' ——0, k), k2 ——0, 1, . . . , X—1

l ),J) =0

has as a unique solution PJ -5J thenJ( J)
N —1

S; k'(g 8)S; k'(q—+8)=p(8)5;,'5,
k), k2 ——0

satisfies the factorization equations and implies that the
partition function per vertex obey the relation

k(g —8)k(g+8)=p(8) .

However, Sogo et a/. have recently made an exhaus-
tive analysis of all factorizable eight-vertex models and
they found, in this category, a free-fermion eight-vertex
model (they classify this model as type II, type I being the
symmetric one solved by Baxter' ). If we apply to this
system the prescription developed by Belavin and Zamo-
lodchikov we would have arrived at the conclusion (on ac-
count of the free-fermion condition) that the matrix g in
diagonal form is not the unique solution and therefore
their procedure cannot be used.

The factorization equations are invariant if we multiply
the matrix S(8) by a normalization function k(8), i.e.,
S'(8)=A,(8)S(8) also satisfies the equations. Now one
supposes that there exists a value 0=8 such that

S; '(8) =5 '5 '
l)lp l) J)

III. SOLUTION OF A FREE-FERMION
EIGHT-VERTEX MODEL

Sogo et al. studied a factorizable free-fermion eight-
vertex model where the allowed vertex configurations and
the respective weights are shown in Fig. 3. It is a particu-
lar case of the one solved by Fan and Wu' using the
method of dimers, and it corresponds to the Ising model
defined on a Union Jack lattice. ' '

The free fermion condition reads

h1h2+h, =1+8, .

Through the factorization equations Sogo et a/. 2 found
the following parametrization (see Felderhof'9 who also
solved the free-fermion model using elliptical function
parametrizations)

cn(8, k) ye sn(8, k)
dn(8, k) 1 y2 '~2 '

hp(8) =h )( —8),

(8) 6sn(8yk)

( 1 y2)1/2

5k sn(8, k)cn(8, k)
dn(8, k)

(loa)

(10b)

(10c)

(10d)

—(8) p (8)
A (8)k(8+ 8)

Now what I would like to say is that the local condition
(7) extends to the level of the partition function per vertex,
1.e.,

k(8+8)k(8)=p(8) .

This is a delicate point since if one tries to use the stan-
dard method to prove (8), the first step would be to show
that the two transfer matrices T(8) and T(8+8) com-
mute. But the determinant of S'(8) is zero, so the matrix
is singular, and therefore the commutation cannot be
proved from the factorization equations. However when
Eq. (8) is applied to a particular case of the free-fermion
eight-vertex model then at the level of the associated spin
model (Ising model on a Union Jack lattice) it becomes ex-
actly the symmetry relation. In any circumstance a more
direct proof would be required.

and
h„(8)=1, (10e)

q —1 0

Sk,' '(8+8)Sk, k,'(8) =p'(8)5;,'5;,',
ki, k2=0

(6)

where 8 is the rapidity, k is the modulus of the Jacobian
elliptic functions, and y is an additional parameter.

First I define

then the factorization equations (1) are satisfied.
The introduction of the function A,(8) comes only to

take into account the fact that the value 8 may correspond
to a pole of the original S matrix (as in the case that we
shall study in the next section).

Returning to the original S matrix, we have

q —1

Sk', ;,'(8+8)Sk', k', (8)=p(8)5, 5;,',
k), k2 ——0

(1—y )'~ =sn(g, k)

FIG. 3. Vertices of the free fermion model and their respec-
tive activities.
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where k' is the complementary modulus.
In this way, Eqs. (10) can be rewritten (putting

@=5=1)

h k cn(n k) sn(u k)
h] =cn u, k +

sn(ri, k )dn(u, k )

cn(g, k )sn(u, k )
h2 ——cn u, k-

sn(g, k )dn(u, k )

dn(g, k)sn(u, k)
sn(g, k )dn(u, k)

ik sn—(u, k)cn(u, k)
dn(u, k)

h, =

(13b)

(13c)

(13d)

(13e)

and for convenience, I will change all the elliptic func-
tions to the modulus k

ik
k

f(u)+f ( —u) =ln sng —sn u2 2

sn 'gdn u
(14a)

f (u +iK') =ln +f ( —u),
cnu

where I have omitted the explicit dependence on k of the
elliptic functions.

The logarithms have the following expansion for k & 1:

where u =k'8 and ri=k'g.
The physical regime when all weights are positive in the

ordered phase corresponds to 0&k ~1, u =iU, g=i~,
0&v &r, 0&x&K', and K' —v &r (K' is the complete
elliptic integral of the first kind of the complementary
modulus k'). It is easy to verify that condition (5) is
satisfied for u =iK' and A(u)=[cn(u, k)] '. Using Eqs.
(3), (4), (7), and (8) one can derive the functional relations
for the reduced free energy per vertex f (f = PI')—

sn g —sn u2 2

ln
sn gdn u

16q" . mn
sin (g+K iK ')—

~ n(1 —q ") 2K

mn Knu
X sin (q K iK—') s—in

2K 2K
(15a)

ln

where

cn(u +iK ') " 2q"+( —1)"(1+2q")
cnu „~ n(1 —q ")

mniK '
mn iK'

sin u +
K

(15b)

q =exp

From these expressions and Eqs. (14) one can derive the reduced free energy per vertex in the ordered phase (for the
disordered phase, i.e., k & 1, it is necessary to change k —+(k) ' and derive the new expansion for the logarithms),

00 1f(u)= —g
n (1—q ")cos

. [g„(u)+h„(u)]
mniK '

(16)

with
r

g„(u)=[2q"+(—1)"(1+q ")]sin sin
2K K

and

mnu . en
sin (u iK ')—

2K 2K
h„(u) =Sq" sin (ri+K iK ') sin —(g K iK ') sin— —

2K 2K

IV. CONCLUSION

For factorizable vertex models that do not satisfy the
symmetry relation I have presented an alternative func-
tional relation. This relation is verified to be true for a
free-fermion eight-vertex model which corresponds to the

I

Ising model defined on a Union Jack lattice; nevertheless
a more direct demonstration is still lacking.
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