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Sandro Faetti, Leone Fronzoni, and Paolo Grigolini
Dipartimento di Fisica dell'Uniuersita degli Studi di Pisa, Piazza Torricelli 2, I-56100 Pisa, Italy

and Gruppo Nazionale di Struttura della Materia del Consiglio Xazionale delle Ricerche, I-56JOO Pisa, Italy
(Received 5 December 1984)

We study a physical system consisting of a low-frequency nonlinear oscillator interacting both
with a thermal bath at the temperature Tl and a high-frequency linear oscillator which, in turn, in-
teracts with a thermal bath at the temperature T2 (T2 & Tl). The interaction between slow and fast
oscillator is nonlinear, thereby influencing the motion of the slow oscillator via fluctuations of a
multiplicative nature. By means of a suitable procedure of elimination of the fast variables, a con-
tracted description is obtained, which, at Tl ——T2, exhibits precisely the same structure as that re-
cently derived by Lindenberg and Seshadri [Physica (Utrecht) 109A, 483 (1981)] from the Zwanzig
Hamiltonian. Instead of the transition from the overdamped to the inertial case revealed in our ear-
lier paper [S. Faetti et a/. , Phys. Rev. A 30, 3252 (1984)] in this series, it is shown that precisely the
reverse effect takes place. This is confirmed by computer calculations and the reliability of the com-
puter calculation, in turn, is confirmed in the inertial regime via analog simulation. The theory ena-
bling us to explore the noise-induced transition to the overdamped regime is based on an improve-
ment of the techniques of elimination of fast variables, which produces automatic resummation over
infinite perturbation terms. At T2 ~ Tl, a space-dependent diffusion term with the same structure
as that involved with the multiplicative Auctuation of the "external" kind is proven to be added to
the canonical multiplicative diffusion term exhibited by the case Tl ——T2. Canonical and noncanoni-
cal effects, which have so far been the subject of separate investigations, may thus be described via
one single picture. It is also shown that, in the purely canonical case, the ubiquitous character of the
noncanonical diffusional form, ranging from Ito-like to Stratonovich-like structure, is lost and a
unique form of diffusional equation occurs.

I. INTRODUCTION

This paper has to be regarded as the natural continua-
tion of that of Ref. 1 with the same research strategy
based on the joint use of theory, computer calculation,
and analog simulation. In Ref. 1, henceforth referred to
as I, we mainly addressed the following problems.

(i) First of all, we argued that it is dangerous to study a
one-dimensional multiplicative differential stochastic
equation without supplementing this investigation with
additional information coming from a microscopic physi-
cal system behind the coarse-grained description provided
by such an equation. This is indeed the general program
of the reduced model theory (RMT), which is currently
finding a fertile field of application in the molecular
dynamics of the liquid state. ' The use of this general
strategy enabled us to prove that the actual values of the
physical observables range in a continuous way from the
predictions of the Ito diffusion equation to those of the
Stratonovich one. Similar conclusions have been reached
in an independent way from Cxardiner. Recall that the
microscopic model of I was given the form

x(t)=u(t),

u(t) = —yu (t) —x (t)y (t)— +f(t),dN(x)
dx

y(t) = f'y (t)+F (t) . —
The variable y is driven by its own Langevin equation and

does not undergo any influence from the one-dimensional
motion of the Brownian particle under study, with coordi-
nate x and velocity u.

(ii) With increasing (y ),q and, therefore, the strength
of the coupling between the Brownian particle and the
variable y, at fairly large values of (y ),„ the relaxation
time of x was proven to decrease as a linear function of
I /(y ),q. It was shown that this ultimately provokes a
transition from the overdamped to the inertial regime.

The major aim of the present paper is to address the
same above-mentioned basic questions in the case when
the stochastic variable y is also subjected to a back-
reaction term which ensures detailed balance and, in suit-
able physical conditions, the attainment of a canonical
equilibrium distribution.

The outline of this paper is as foHows. In Sec. II we
shall show how to derive the stochastic system here under
study from a rigorous microscopic Hamiltonian descrip-
tion. In Sec. III we shall consider the case where some in-
ertia is present. It will be shown that the constraint of de-
tailed balance provokes an effect opposite to that of (ii):
Upon increasing the coupling between the Brownian parti-
cle and y, a transition from the inertial to the overdamped
regime is provoked. The theory which predicts this in-
teresting effect will be checked via a joint use of computer
calculation and analog experiment. Section IV will be de-
voted to answering the problem (i). We shall show that
the constraint of canonical equilibrium distribution results
in a unique kind of diffusion equation for the variable x.
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Different forms of diffusion equation appear again when
new physical conditions occur, which are incompatible
with the attainment of such a canonical equilibrium
distribution (Sec. V). Concluding remarks are found in

Sec. VI.

II. ON THE DERIVATION OF THE LANGEVIN
EQUATION UNDER STUDY

FROM A HAMILTONIAN DESCRIPTION

As already done by some authors, we shall derive
the Langevin equation under study in this paper from a
Hamiltonian description.

Let us consider the Hamiltonian

A = —,'Mx + U(x,y)+ —,k„(x —gi) + V(gi, g'q, . . . )

'2

+ —,'my + —,
'

ky(y —q))

(2.1)

This means that the particle with mass M and coordinate
x interacts with a particle of mass p& and coordinate g'&,

which in turn interacts with a large number X~—1 of
other particles with masses p; and coordinates g;. The
particle M via the potential U(x,y) interacts also with a
particle of mass m and coordinate y which is similarly
coupled via a particle of mass v& and coordinate q~ with a
thermal bath of particles with masses vJ and coordinates

q, (j»).
We shall focus our attention on the case where the free-

dom degrees g;,g;, i =1,2, . . . and gj, qJ, j=1,2, . . . are
so fast as to make it legitimate to write an equation of
motion concerning only x, y, x, and y while simulating
the influence of the fast variables via a suitable
dissipation-fluctuation process. In the case U(x,y) =0 the
two particles of interest do not interact with each other,
thereby reducing the problem to one widely studied in the
past, i.e., that concerning how to derive a standard
Fokker-Planck equation for a single particle of interest
immersed in one thermal bath. As well-known " expli-
cit analytical results, including also non-Markovian ef-
fects' '" can be arrived at when assuming the number of
particles of the thermal bath to be infinite, the thermal
bath to be harmonic, and the coupling between particles
of interest and thermal bath to be weak. A further sig-
nificant assumption is that the whole system attains a
canonical equilibrium distribution at the temperature
T. " As a consequence of these assumptions, it can be
shown " that also the Brownian particle must attain a
canonical equilibrium state at the same temperature as its
thermal bath. Since the freedom degrees g;,g;, i = 1,2, . . .
and gj, 'Qj J 1,2, . . . express two well-distinct thermal
baths, for generality we shall assume the first to be
characterized by the temperature T1 and the second by
the temperature T2. The adiabatic elimination procedure
(AEP) of Refs. 12—14, when applied to these two systems,
regarded as being separated from each other, provides re-
sults in agreement with those of the former investiga-
tions. ' If the two systems are brought into contact via
the potential term U(x,y), by application of the AEP of
Refs. 12—14, we obtain for the probability distribution
p(x, U,y, w; t) (where U

—=x and w =—y ) the following equa-
tion of motion:

a 1 a a a kaTia' a 1 a a
p(x, u,y, w;t)= —U + U(x,y) +y U+ —w + U(x,y)

kg T2
+A w+ p(x, v,y, w;t) . (2.2)

In the case when T2& T& energy will flow from the
second to the former thermal bath via the coupling
U(x,y) without affecting these thermal sources. This is a
natural consequence of the assumptions X~= oo and

Xz ——oo, under which at U(x,y) =0 the standard Browni-
an motion is recovered. ' ' In other words the sets of
variables Ig;,g; j and I pi, gj j can be thought of as being
ideal heat baths.

The Langevin equation associated with Eq. (2.2) reads

x =v

U(x,y) —yu +f(t),1

(2.3)

where f ( t) and f'(t) are Gaussian white noises defined by

(f (0)f (t) ).,=2y &(t),
kg T1

M
(2.4)

(f'(0)f'(t) ).q=2& &(t) .
k~ T2

(2.5)

Throughout this paper we shall focus our attention ei-
ther on the pair x, v or the variable x alone. The condi-
tion T2 & T1 will serve the main purpose of keeping this
system in a steady-state condition far from canonical

equilibrium, and close to the illustrative scheme of I (see
Fig. 2 of I). Nevertheless, the theoretical treatment of the
present paper must be general enough as to include the
case
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The Fokker-Planck equation of Eq. (2.2), when Eq. (2.6) is
satisfied, admits the canonical equilibrium distribution

—Mv /2k&T —mm /2k&T —U(,x,y))/k&T
p,q(x, v,y, w) ~e ~ e ' e

(2.7)

Let us assume V(x,y) to read

V(x,y) =P(x)y .

Later on we shall consider the case

1t(x) = —,'ax

(2.15)

(2.16)

It is therefore worth remarking that in consequence of
this canonical constraint, the variable x must be given the
equilibrium distribution

(2.&)

@,&t(x)= k&T—ln 2 J dy exp[ —U(x,y)/k&T]

(2.9)

and A is a normalization factor, the actual value of which
does not influence the calculations as resulting in an addi-
tive contribution to @,tr independent of x.

Throughout this paper we shall assume that
@,tt(x) =@(x)—1tj (x)/2coo . (2.17)

If Eq. (2.16) were valid and the back-reaction term of x
on y were disregarded, Eq. (2.13) would turn out to be ex-
actly equivalent to Eq. (1.1). A major aim of this paper is
to assess whether or not physical conditions do exist al-
lowing the system of Eq. (2.13) to mimic the properties of
that of Eq. (1.1) without disregarding the influence of
such a back-reaction term. We shal1 return to this issue in
Sec. V, where it will be shown that at T2 ) T& a diffusion
term appears, the form of which ranges from the Ito to
the Stratonovich one.

Equation (2.16) allows us to write @,tt(x) of Eq. (2.9) as
follows:

(i) U(x,y) has the form

U(x,y) =4(x)+ —,co&@ + V(x,y),
(ii) the masses m and M are

m =M=1 .

(2.10)

(2.11)

A central result of this paper is that the AEP naturally
leads to the normalized potential of Eq. (2.17). A special
caution, however, will be required to ensure that when
T&

——T2 ——T the equilibrium distribution of x be canonical
with respect to precisely this effective potential. We are
now in a position to clearly outline the next two sections.
Let us assume for a while that

@,tt(x) = —,
'

(coo) x (2.18)
This allows us to replace Eq. (2.3) with

X =U

@(x)— V(x,y) —yv (t)+f(t),B

dX BX

y=w
(2.12)

In addition to the lifetime of the system of interest, 1/y,
and the lifetime of the variable y, 1/I, we can then define
a further relevant time scale, i.e., the oscillation time
l/~o.

In the following sections we shall explore the following
cases:

w=— B
V(x,y) —Aw —cooy +f'(t) .2

By

To render the theoretical investigation still simpler we
shall assume w to be the fastest variable of the system.
This allows us to obtain from Eq. (2.12) the following re-
duced set of equations:

(a) I/coo —I/y »1/I" (Sec. III),
(b ) 1 /~Q ))1/y ))1/I

(c) I/zoo )&1/I »1/y .(Sec. IV) .

(d) I/coo » I/I -1/y

X =U

B@(x)— V(x,y) —yv(t)+ f(t),
dx X

(2.13)
III. INERTIAL CASE

A. Theory

y'= —I y —— V(x,y)+1 () f'(t)
A By

where

I —=~0'/A . (2.14)

Note that the contraction on the variable w does not af-
fect the canonical constraint leading to the effective po-
tential of Eq. (2.9). It is worth remarking furthermore
that the analog experiment of the next section simulates
the complete set of equations (2.12), thereby also provid-
ing a check on the assumption that Eq. (2.12) can be re-
placed by Eq. (2.13).

In the inertial case (a) we must regard both x and v as
being variables of interest. This means that we are al-
lowed to eliminate from the set of Eq. (2.13) only the vari-
able y provided that the parameter I is large enough.

We shall apply the adiabatic elimination procedure
(AEP) of Refs. 12—14 [the same as that which must be
applied to the original Hamiltonian for Eq. (2.2) to be ob-
tained]. We shall review a basic aspect of this procedure.
First of all, we must write the Fokker-Planck equation to
be associated with the set of Langevin equations of in-
terest, i.e., in the present case, Eq. (2.13) supplemented by
Eq. (2.15). This reads
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t

a a, , a a a2' a

c3t Bx Bv Bvp(x, uy;t}=Wp(x, u,y;t)—:—u +[4'(x)+1('(x)y] +y u+ksT~ 2
+r

a y
Bv y

a kaT2 a'
+ —g(x) ~ + p(x, u, y; t),

A Bp A Py2

I

(3.1)

where

@'(x)=— C&(x)=d

and

1('(x)=— P(x) .
dx

The central step of the AEP (Refs. 12—14) is precisely to
reach a decision on how to divide the operator W into a
perturbation, W&, and an unperturbed part, Wo. The
final result significantly depends on this choice. In this
paper we shall show that a proper choice (suggested by the
physical nature of the system under study) may corre-
spond to a resummation on the infinite terms generated by
a seemingly more natural choice, determined by the mere
remark that W& must be defined as that part of the full
operator which concerns both relevant and irrelevant vari-
ables (and only that part). This touches the current de-
bates among several groups as to the most suitable pro-
cedure of elimination of fast variables. ' lt has been
pointed out that to bypass resummation difficulties it is
necessary to develop procedures alternative to the projec-
tion operator methods. ' ' On the contrary, we believe
that these difficulties can be overcome within the theoreti-
cal background of the AEP of Refs. 12—14, which indeed
relies on the Zwanzig projection operator method, ' pro-
vided that the preliminary problem of how to divide W
into perturbed and unperturbed part is solved. %"e shall
came back to this basic issue in Sec. IV.

As to the operator W defined by Eq. (3.1), the most
natural choice would be

I

a kaT2 a'a"+ rA Bp

(3.2)

with the associated projection operator —Wp.
(3.5)

where @cff=(dldx)C&,tt and C&,tt is precisely the effective
potential defined by Eq. (2.19). This appealing feature of
the AEP, which is proven to be independent of the pre-
liminary division of W into Wo and W&, is unfortunately
joined to the fact that the last term on the right-hand side
(rhs) of Eq. (3.4) makes the steady state of the system de-

viate from the canonical distribution

o,„(x)cc exp( —4,ttlks T~ ) .

Note that in the case T~ ——T2 ——T this must be actually at-
tained by the system. Note that when g(x) is given the
form of Eq. (2.16) and 4& of Eq. (1.1) is identified with

Eq. (3.4) is no longer distinguishable from the
Fokker-Planck equation associated with Eq. (1.1). This
means that when Nd~ is assumed to be a harmonic poteri-
tial, Eq. (3.4) should result in precisely those instability
phenomena which have been widely studied recently by
the Jolla group. These instability processes do riot have

any plausibility in the canonical case T& ——T2 ——T (as it
will be confirmed below by further theoretical remarks).
This leads us to choose a more proper kind of division of
W (and a corresponding kind of projection operator). We
would like to note, however, that by using precisely this
new kind of projection operator, in Sec. V we shall show
that the condition Tz & T& makes a diffusion term appear
which is typical of the pumping processes (see paper I),
thereby providing a sort of justification for the fourth
term on the rhs of Eq. (3.4).

Nevertheless, the energy pumping structure of Eq. (3.4)
is certainly an artifact which must be avoided via a more
proper division of the operator W. Such a proper choice
is precisely the same as that recently proposed by Haake, '

which in the present case reads

a ksT2 a' y(x) a

Pp(x, u,y; t }=p,q(y) o (x,v; t )

=p,q(y) f dyp(x, u,y;t),
where

p„(y) ~ exp( troy'l2k~ T, ) . —

(3.3)

(3.3')

This leads us to the projection operator

Pp(x, v,y;t)= p,q(y ~

x)o(x,u;t—)

=p,q(y ~x) f dyp(x, u,y;t),
where

(3.6)

kg T2+ 2 2 [1t'(x)] o(x,u;t),I coo Bv
(3.4)

Via the mere application of the standard rules of the AEP
(Refs. 12—14), we are then led by this choice to

8 8 8 a', a
cr(xyu yt) — v +1 u +ks T] 2 +epff

Bt Bx Bv Bv2 Bv

P(x) ~o
p,q(y ~

x) oc exp —y + 2
Q)o 2

(3.7)

The physical meaning of this choice is that, as a conse-
quence of the back-reaction term, the equilibrium state at-
tained by y depends also on the state of the variable of in-
terest.
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Note that this choice, rather than being a proposal of
general validity, is mainly dictated by the purpose of ful-
filling the canonical constraint of Eq. (2.8). As a matter
of fact, in a case explicitly dealt with by Haake, ' precise-
ly the choice of Eq. (3.5) was shown to lead to an unwant-
ed noncanonical equilibrium distribution. Although
Titulaer argued that, despite this flaw, Haake's proposal
in certain conditions leads to an improved description of
the transient processes, we believe that preference should
be given to the fulfillment of the canonical constraint.
This means that in certain cases we do not share Haake's
point of view.

The demonstration that the choice of Eqs. (3.5) and
(3.6), in the case under study in this paper, allows the
canonical constraint to be fulfilled, leads to some techni-
cal difficulties resulting precisely from the fact that
p,q(y ~

x) depends also on x. To bypass this difficulty, let
us make the change of variables

a a y'(x) a+
Bx ~p By

c)

By

By replacing Eq. (3.9) for Eq. (3.5) we obtain

a—U +
kg T] Bx

U~i=[@'tf+0'(x)y]
B

+
k TBU kg T)

r

co(p (j a a2
+ +f V +kg TI

kg T2 Qy Bv

1(t'(x)
2

COp

B B 2 B

Ar ay-2
y+

(3.9)

(3.10)

y =y+ 0(x)l'~o

which means

(3.8)
Thus, the projection operator of Eq. (3.6) recovers a suit-
able form enabling us to apply the usual rules of Refs.
12—14. Then, by making a second-order perturbation cal-
culation, we obtain

a
cr(x, u;t) =Wefto(x, v;t)

Bt a', a (y').. . a a u—v +y u+k+T& +4&,'tt + [g'(x)] +
Bx BU BU I BU BU k T cr(x, u; t), (3.11)

where

(y ) =kg T2/coo . (3.12)

cx 1

COp

(3.18)

It can be easily checked that when T&
——T2 ——T, Eq. (3.11)

attains the equilibrium distribution

—U /2k~ T —4& g(x)lk~T
cr q(x, u; oo ) cc e e (3.13)

which satisfies indeed the canonical constraint of Eq.
(2.8).

Let us assume &P,tt(x) to have the form

@off(x)=(—1)'—,(coo) x +G(x) (s =0, 1) (3.14)

thus being characterized by a "harmonic" ( —1)'—,(coo) x,
and anharmonic part, G(x). When g(x) is given by Eq.
(2.16), the Langevin equation corresponding to Eq. (3.11)
reads

where 21(t) and f (t) are uncorrelated white noises defined
by

(f(0)f(t)) =2yk~T, 5(t),

'(21(0)21(t) ) =2kkgT25(t),

and the parameter A, is defined by

(3.16)

(3.17)

(3.15)

v = —[(—I)'(coo) +2)(t)]x —yu —Ax u G'(x)+f(t), —

f ( t) coincides with the stochastic force appearing in the
second equation of the set of Eq. (2.3), whereas 2)(t) simu-
lates the fluctuation of the potential driving the Brownian
particle of interest which depends on the coupling with
the fast harmonic osci11ator.

Let us consider for a while the case s =0. At
T&

——T2 ——T, Eq. (3.15) is precisely of the same kind as
that derived from the Zwanzig Hamiltonian by Linden-
berg and Seshadri. The only minor difference is that the
stochastic forces f(t) and rI(t) are uncorrelated with each
other. This is so because these are to simulate two dis-
tinct thermal baths. Lindenberg and Seshadri, on the
contrary, derived also a xu term, which expresses the ef-
fect of the interference between 2I(t) and f( t), noises re-
sulting indeed in Ref. 7 from one and the same thermal
bath.

This appearing result means that the canonical con-
straint forces a unique kind of equation to appear, no
matter which is the true ' microscopic" Hamiltonian
behind the "macroscopic phenomenon" we are interested
in. The microscopic system described by Eq. (2.1) has, in
fact, a structure completely different from that of the
Zwanzig Hamiltonian.

This is by itself a result of some interest since it is relat-
ed in some way to the problem (i) posed in the Introduc-
tion. The wide (and continuous) set of results between the
Ito and Stratonovich limit is allowed by a lack of infor-
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mation (see paper I). In a sense, at T, =T2 = T the basic
information provided by Eq. (2.8) removes completely any
uncertainty: as a further significant effect of this, in the
next sections we will show that the diffusion equation,
leading the motion of x when this is the slowest variable
of the system, is characterized by only one possible form.

As already done by Lindenberg and Seshadri, it is

tempting to replace the term —M U appearing in Eq.
(3.15) with —A, (x ),qu. This leads immediately to stating
that, as an effect of the coupling with the fast oscillator,
the effective friction affecting the Browian particle of in-
terest increases. In the case G=O and s=O Lindenberg
and Seshardi supported that statement via rigorous argu-
ments based on the Stratonovich energy envelope
method. This means therefore that these are bounded by
the physical condition required for significant inertial
properties to be exhibited, i.e.,

B. Computer calculation

In this subsection we want to test the reliability of the
mean-field approximation which consists of replacing the
term —A,x U in Eq. (3.15) with —A, (x ),qv. This means
that for G=O and s=O, the normalized equilibrium
correlation function of x, N„(t), is

e„(t)= [(XX(t) ), —(x ), ]/( (x ), —(x ), )

=A~e +A2e (3.22a)

that the analog experiment of subsection III C mainly pro-
vides a check on Eq. (3.11), while the computer calcula-
tion of the next subsection, in a sense, is a check on the
diffusion equation which will be derived in Sec. IV. Both
subsections B and C will concern the case defined by
s=O, G(x)=0, Ti ——T2—= T.

ATg+~, 2 ((~o
(tpp)'

(3 19) where

A ) =—1 —A2 ——A2/(A, ) A,2), (3.22b)
Via a joint use of theory, computer calculation, and

analog experiment in the remainder of this section, we
shall address the question of whether or not this mean-
field approximation can also apply when the relationship
of Eq. (3.19) is not fulfilled. In the next section, further-
more, via purely theoretical arguments, we shall account
for the deviations from the predictions of this mean-field
approximation.

Upon increasing the coupling strength or the tempera-
ture T, the condition

kgT
1 +A, 2 2QPp

(~p)'
(3.20)

can be attained, at which a transition from the inertial to
overdamped regime will be shown to take place. Note
that the relaxation rate of x, which will be denoted by k,
will be shown to be different from

k =(cop) /[y+k, kgT/(cop) ], (3.21)

which would imply the mean-field approximation
—A, (x),qu to be valid also in the overdamped regime.
Nonetheless, such a transition from the inertial to over-
damped regime does actually take place. This interesting
effect is precisely the reverse of that in the problem (ii)
addressed in Sec. I.

Note that the computer calculation of subsection IIIB
refers to the system of Eq. (3.11) (when the condition
T& ——T2 ——T is attained). Therefore, the corresponding re-
sults cannot be thought of as being a check on the elim-
ination procedure which led us from Eq. (2.13) to Eq.
(3.11). They only serve the purpose of shedding light on
the transition from the inertial to the overdamped regime.

On the contrary, the analog experiment of subsection
III C simulates the complete set of equations (2.12) [sup-
plemented by Eqs. (2.15) and (2.16)]. Therefore, the corre-
sponding results can be though of as a reliable check on
the whole approach leading from Eqs. (2.12) to Eq. (3.11).
For technical reasons it was not possible to explore the
overdamped regime in this manner.

We can therefore conclude this subsection by saying

A,; = t
—yp+( —1)'[yp —4(cop)']' I/2 (i =1,2) .

y p @+A,k~ T——/(~p)

(3.22c)

(3.22d)

In order to test Eqs. (3.22) we calculate the "exact" value
of N„(t) by using the continued fraction procedures
(CFP). The version used in the present paper consists of
evaluating the Mori states over which the Fokker-Planck
operator of Eq. (3.11) must be expanded and determining
the expansion parameters of the continued fraction direct-
ly from these states. Notice that in this case Eq. (3.22a) to
Eq. (3.22d) can be obtained by limiting the expansion of
the continued fraction to the first two Mori states.

Figure 1 shows the correlation function 4 (t) at dif-
ferent values of the thermal energy. These results have
been obtained by using 14 Mori states (i.e., 14 steps of the
continued fraction). The estimated convergence of the
continued fraction is better than 5%%uo. The values of the
parameters of Eq. (3.11) have been chosen in such a way
that the transition from the oscillatory to the overdamped
regime is expected to take place at k&T =3.9&10 . This
prediction is in a satisfactory agreement with the compu-
tational results of Fig. l.

However, we note that a slight quantitative difference is
found when one compares the exact time dependence of
4„(t) obtained with a large number of Mori states
( n & 14) with that predicted by the mean-field approxima-
tion (n=2). This difference increases as the temperature
of the thermal bath is increased. Figure 2 shows an exam-
ple of the time dependence of @„(t)at different values of
the number of Mori states. The temperature has been
chosen slightly exceeding the value of the transition to the
overdamped regime. Computer calculation at n & 2 leaves
virtually unchanged the analytical form of @„(t) [Eqs.
(3.22a) and (3.22b)] while slightly affecting the actual
values of k& and X2 which thus exhibit small deviations
from the predictions of Eq. (3.22d). This is shown by Fig.
3, which illustrates the dependence on temperature of the
frequency and damping of this effective damped oscilla-
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tor. Solid circles and triangles correspond to the exact
behavior obtained with lS Mori states, while the dashed
and solid lines correspond to the predictions of the mean-
field approximation. We point out that in the tempera-
ture range of Fig. 3 the exact and the approximate results
are very close. Unfortunately, in this regime the CFP al-
gorithm becomes less stable as the temperature increases.
Therefore we cannot investigate the validity of Eq. (3.22a)
for t, T)2X)O'.
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1 'l.5 2
(&0 'sec )

FIG. 1. Normalized stationary correlation function
@„(t)=[(xx(t)),q —(x ),q]/((x ),q

—(x ),„) at different values

of the thermal energy ( T[ ——T2 =—T): k& T = 10' erg (),
k&T=S&&10' erg (0), KIT=10 erg (6), k&T=2&&10 erg
(+), and k~T=4)&10 erg (C3). 4„(t) is obtained by using 14
Mori states of the continued fraction of Ref. 25. The calcula-
tion relies on the Fokker-Planck operator of Eq. (3.11) with N, ff

given by Eq. (3.14) with G=O and s=O. The parameters of Eq.
(3.11) are y =400 sec ', ~0 ——460 sec ', and A, =29.4
(secXcm )

' [see Eq. (3.18)]. A transition to the overdamped
regime is expected at kqT =3.9X10 erg.
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FIG. 3. Frequency and damping of the effective oscillator
[Eqs. (3.22a) and (3.221)] as a function of the thermal energy

defined v'ia ~g =—Re/2
eo;=ImAz. The parameters of Eq. (3.15) are y=83.3 sec
coo ——460 sec ', and A, =29.4 (secXcm ) '. At T=O these
values correspond to a fully inertial regime. The dashed and
solid lines correspond to the mean-field approximation of Eq.
(3.22a), while the solid circles and triangles correspond to the re-
sult of the CFP calculation with 15 Mori states. In this latter
case we report only the decay rate of the eigenstate with 1argest
weight.

Figure 4 shows the decay time To = C&„(t)dt jn the
0

overdamped regime versus the thermal energy. In this
case, also, the mean-field results (dashed line) approximate
wltll satlsfactoly plcclsloll tllc exact ollcs (do'ts 111 Flg. 4)
in the low-temperature range (k+T ~5X 10 ). However,
a large discrepancy between these two results is obtained
at higher temperatures (klIT & 5&C 10 ). The solid line in
Fig. 4 represents the theoretical prediction of a simple
mean-field calculation which will be discussed in the fol-
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ge
e
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.5 c

21 1.5
t (10 'sec)

FIG. 2. Dependence of the calculated N (t) on the number of
Mori states of the continued fraction: (2 states), + (8 states),
and Q (12 states). The parameters of Eq. (3.11) are the same of
Fig. 1, while the thermal energy k&T =4X 10 erg ( T& ——T2 = T)
has been chosen slightly exceeding the threshold of the transi-
tion to the overdamped regime {k~ T =3.9)& 10 erg).

0
I -I I

2.5 5 7.5
k&T(10 erg)

FIG. 4. Relaxation rate of the normalized stationary correla-
tion function N„(t) vs the thermal average energy k&T. The pa-
rameters of Eq. {3.15) are y=400 sec ', coo ——460 sec ', and
A, =29.4 (sec)&cm ) '. These values correspond to a fully over-
damped regime even at T=O. The dashed line corresponds to
the mean-field prediction [Eq. (3.22a)], while dots correspond to
the result obtained by using 15 Mori states. The vertical error
bars indicate the estimated error of convergence of the contin-
ued fraction (5% in the high-temperature regime). The solid
line corresponds to the predictions of Eq. (4.9).
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lowing section [see Eq. (4.7)]. This calculation is based on
a diffusion equation for the slow variable x which will be
obtained in Sec. IV. The good agreement between the
dots and the solid line in Fig. 4 can be, therefore, con-
sidered as a check on the adiabatic elimination procedure
of Sec. IV.

C. Analog experiment

We have simulated Eqs. (2.12) by means of two electric
oscillators and multipher devices. Figure 5 illustrates
the corresponding electric configuration. A nonlinear os-
cillator (x) is coupled via two multipliers (M~,M2) to an
overdamped oscillator (y). The strength of the coupling
is given a proper value so as to result in the effective har-
monic potential of Eq. (2.18). Each of the two oscillators
is coupled to a white and Gaussian noise via independent
lines. The amplitudes of the two noises are regulated in
such a way as to ensure the physical condition described
in Sec. II, i.e., the canonical equilibrium. Note that
switching off this coupling does not change this condi-
tion. Details on noise generators and nonlinear oscillators
can be found in paper I. The x output was connected to
the input of an autocorrelator for the evaluation of the
stationary correlation function. The value of the thermal
energy k~ T is obtained by means of a direct measurement
of (u ), =qk~T: indeed the output corresponding to v

was sent to an analog multiplier (M3) and then to a low-
pass filter.

The results of this experiment are illustrated by Fig. 6.
A good agreement with the theoretical predictions is ob-
tained. Note that the experimental curve bends down
slightly below the theoretical curve resulting from the ap-
proximation y,tt=y+A, (x ),„, in agreement with the re-
sults of the computer calculation of the preceding subsec-
tion (Fig. 3). For technical reasons we could not explore
via analog simulation the overdamped regime involved in
Fig. 4.

I

e 16
i

~tu 8-

T —T] —T2 ~ (4.1)

Case (b): I/cop » 1./y »1/I can be dealt with starting
from Eq. (3.11) itself. The corresponding operator W,ff
can be divided into unperturbed and perturbation part as
follows

82
Wp—=y v +kg T

Bv BU
(4.2)

Wt=W —Wp .

A further possible choice is

Wp—=y u+kgT
BU BU

I l l

0 ~ ~ 1 1S
~ v'o (10 volts~ sec 'j

FIG. 6. Effective friction coefficient (y,f~) as a function of
the thermal energy k~T in the cast„T& ——T2=T. The experi-
mental results (circles) are compared to the theoretical predic-
tion of the mean-field approximation [Eq. (3.19)]. The parame-
ters of the system are coo=465 sec ', coo ——10coo, y=0.316coo,
and A =3.16cuo.

IV. DIFFUSION EQUATION
FOR THE VARIABLE I ( T) —7"2)

a a v+ r ~'") a. a. +k, T (4.3)

In this section we shall focus our attention on the phys-
ical condition:

M3

(4.3')

Although Wp of the latter choice depends also on x, the
corresponding equilibrium distribution of the "irrelevant"
variable would be the same as that of the former choice.
In other words, in both cases the projection operator I'
reads

NOISE
GENERATOR

X

NON- LINEAR (V)
OSCILLATOR

(X) (X)

[

M2

LOW —)'ASS
flLTER Po (x,u; t) =o.,q(v )y(x; t)

=o.,q(u) J duo(x, u;t), (4.4)

NOISE
GENERATOR OSCILLATOR (y)

T

AUTO-CORRELATOR IL 'Y
ANO E)T

FIG. 5. Scheme of the analog circuit used to simulate Eq.
(2.12).

o,q(v) ccexp( u /2k~T) . — (4.5)

The fact that Wp of Eq. (4.3) depends also on x only im-
plies some minor technical difficulties which, however,
when limiting ourselves to a second-order calculation, can
be straightforwardly overcome, and do not deserve to be
illustrated.
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The choice of Eq. (4.2) results in
r

p(x;t) =a . a
Bt ' Bx

k~T
, [0'(x)]'

cooI p

a @:n
X + p(x t).

ax k~T

The choice of Eq. (4.3) leads us to

(4.6)

The direct comparison between Eqs. (4.6) and (4.7) im-
mediately leads us to some interesting conclusions.

First of all we see that Eq. (4.6) exhibits a diffusion
coefficient which seems to be obtained from the second
one via an expansion into a Taylor series of
[I+[/'(x)] /cooyi ] '. This touches again the problem
mentioned in Sec. II. Lugiato, ' for instance, developed
an approach, alternative to the projection methods, the
aim of which was to solve the problem of resummating
over infinite terms. Our point of view is that the solution
to this intriguing problem can also be found within the
context of the projection methods themselves, provided
that a clear understanding of the physics behind the sys-
tem under study is reached. The inclusion of the second
term on the rhs of Eq. (4.3) into the perturbation part is
quite natural from a purely mathematical point of view,
because this term involves both the variable x and the
variable u (this is precisely what an interaction term is
formally meant to be). However, as widely discussed in
the preceding section, this term plays the major role of a
standard diffusion operator for a variable velocity, the
friction of which depends on x. When the temperature is
sufficiently large this term cannot be regarded as a small
perturbation term and must be included into the unper-
turbed part.

Now we are also in a position to settle a question left
not completely answered by the results of the preceding
section, i.e., how to account for the deviations from the
mean-field approximation leading to the effective damp-
ing ygff defined by

y,tt=y+A, (x'),
q

. (4.8)

In the region y,tt&2coo, to which Eq. (4.7) refers, the
same mean-field criterion as that leading from Eq. (3.11)
to Eq. (4.8), when applied to Eq. (4.7) would produce the
relaxation rate

(4.9)

a 8 kaT a
p(x;t) = p(x;t) .

Bt
'

&x y+[q( )]'/,'r ax ksT

(4.7)

(~o)'
k )

—— 1 ——(x'),q+, (x'), +
7 'V y

(4.11)

(~o )'
k2 ——— A,

2

1 (x') + (x')' +
'Y y

(4.12)

In the case 4,'ff —p (cl)o) x, to which the computer calcu-
lation of the preceding section refers, the canonical equili-
brium distribution is Gaussian, thereby resulting in
(x"),„=3(x ),q. This-means that both k& and k2 de-
crease upon the temperature, and the decrease of k, is
slower than that of k2. Notice that the exact calculation
of the relaxation time (1/k& ) as given by Eq. (4.9) allows
us to obtain the solid line in Fig. 4. A virtually perfect
agreement with the relaxation rate calculated by using the
CFP of Sec. IIIB is obtained (dots in Fig. 4). This defi-
nitely settles the question left unanswered by the preced-
ing section.

Let us address now case (c): 1/coo »1/I »1/y. We
are thus allowed to replace Eq. (2.13) [supplemented by
Eq. (2.15)] with

@'(x) f'(x) f(t)y+
'V

(4.13)

&x+g(x) too f'(t)
(4.13')

while keeping y as being much faster than x. After writ-
ing the Fokker-Planck equation corresponding to this set
of Langevin equations, we use the same change of vari-
ables as that of Eq. (3.8). The unperturbed operator Wo is
then the same as that of Eq. (3.10). Straightforward use
of the AEP of Refs. 12—14 leads again to Eq. (4.6). This
interesting result answers the question (i) of the Introduc-
tion: The diffusion equation for the variable x is charac-
terized by a unique form, regardless of whether this is ob-
tained by assuming u to be much faster than y, or vice
versa. Paper I shows that this is no longer true when the
Brownian particle is kept far from canonical equilibrium
precisely by the interaction itself with the fast variable y
and no back-reaction term is present.

A further check on this interesting result is obtained by
studying case (d): 1/coo»1/I -1/y. In this case we
must have direct recourse to Eq. (2.13) supplemented by
Eq. (2.15). Then we use again the change of variables of
Eqs. (3.8) and the unperturbed operator of Eq. (3.10). Un-
fortunately, to obtain results comparable with the preced-
ing ones we are now obliged to take into account both
second- and fourth-order perturbations terms (in the cor-
responding interaction Wi), whereas the preceding results
relied on a simpler second-order calculation. Although
tedious, this calculation does not involve any difficulty
and leads us to

whereas Eq. (4.8) would predict the rate y(x;t) =
at ' ax

k~T k~T [0'(x)]'
coop I

k2 ——(coo) /(y+A, (x ),q) . (4.10)

Let us consider the case y~~2coo. When this condition
applies, we can study cases characterized by a temperature
T so small as to make it legitimate to expand both Eqs.
(4.9) and (4.10) into a Taylor series. We thus obtain

a
X + y(x t)

ax k, T,
AT Q Q 0 ff

, C,'tt + y(x;t) . (4.14)
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The only remarkable difference with respect to Eq. (4.6) is
the appearance of the second term on the rhs of Eq.
(4.14), i.e., a contribution of higher order in the perturba-
tion parameter 1/y which has nothing to do with the
corrections coming from the interaction between x and y.

V. ON THE APPEARANCE OF NONCANONICAL
EFFECTS ( T2, & Ti)

In a preceding short paper it has been shown that Eq.
(3.11) results in a sort of noise-induced phase transition,
which was checked via analog experiment. This
phenomenon is as follows: at T] ——0 the slow oscillator is

characterized by (x )ss ——0 ( (x )ss denotes the steady-
state mean value of x ) for an interval of the temperature
T2 ranging from T2 ——0 to T2 ——T, . At a threshold value
T, a new regime appears where (x )ss increases as a
linear function of Tq.

The major conclusion of Ref. 26 was that this
phenomenon is related in some way with those explored in
paper I. In this section we shall support via theoretical
arguments this statement.

When applying the same calculation as that concerning
case (d) of the preceding section to the case T2 & T&, we.
obtain

a
at

y(x;t) = ~B~1 8 8 jeff+
ax ax kg T)

&a &] 8,, a ~'.ff &a&i „8 a

~oy I ax [
ax kgT( y ax ax kgT)

+ + 3 jeff + y(x;t)

k~ T2+ 2
COO

a, a 1g'(x) f'(x) + [P'(x)]2 1 — y(x;t) .
yI y+I ax ax y2(y+r) ax~ T2

(5.1)

at
y(x;t) =

g)(x; t)

It is worth remarking that the condition T2 & T& produces a correction term which is precisely the same diffusion term
as that describing the coupling between x and y when no back-reaction term is present (see paper I). As pointed out in I,
the form of this correction term changes from the Ito to the Stratonovich one with increasing the parameter R =y/I'
from R=O to R = ao. The remarks made in the preceding section on how to make a complete resummation on the
"canonical" perturbation series leads us to replace Eq. (5.1) with

a a kg T] Q jeff+ y(x; t)
ax y+[y (x)]'/~,'yr ax k, T,

kmTz 1 a, a+ g'(x ) g'(x ) + [P'(x)] 1— (5.2)
yr(y+r) ax ax y2(y+r) ax

[the third term within the first pair of large square brack-
ets of Eq. (S.l) has been neglected]. This is a quite general
diffusion equation consistently of both a canonical [first
term on the rhs of Eq. (5.1)] and noncanonical [second
term on the rhs of Eq. (5.2)] contribution.

The reliability of the first term is supported by the
computer calculation and analog experiment of the
present paper. On the other hand,

'

paper I was devoted to
check a noncanonical term with the same form as the
second term on the rhs of Eq. (5.1). It was shown that the
validity of this description is limited to the low-
temperature region. With increasing the temperature, a
transition from the overamped to the inertial regime may
indeed take place, which completely invalidates the as-
sumptions of the AEP leading to this equation. This
transition is now in part counterbalanced by the canonical
term.

To make this aspect clear, let us consider the case when

N, ff is given the same double-well potential shape as that
of the bare potential of paper I (s= 1), and g(x) is given
by Eq. (2.16). Note that the breakdown of the AEP takes
place for values of the temperature of the fast oscillator so
strong as to oblige the Brownian particle to explore the re-
gions of extremely high potential energy and, therefore,
characterized by extremely large effective frequencies.
When this condition is attained by the system of Eq. (5.2),
however, the canonical term produces a relaxation rate,
the intensity of which being proportional to

( ~ y+ [y (x)]'/~,'yr] -'),
should become increasingly weaker with increasing
T2 —T, . This, of course, should not prevent the break-
down of the AEP from ultimately taking place.

In the low-temperature region of the fast oscillator, on
the contrary, paper I shows that the steady-state distribu-
tion is characterized by two Gaussian-like curves, origi-.
nally centered at the bottom of the two wells, which, with

increasing (y ),q [see Eq. (1.1)] shift towards the top of
the barrier and, at a certain threshold, merge into a distri-
bution with a single peak at the top of the barrier itself.
Throughout this process the relaxation time of x was

shown to increase with increasing (y ),q. Even this pro-
cess is now counterbalanced by an effect of opposite na-
ture resulting from the canonical contribution (first term
on the rhs of Eq. (5.2). Indeed, when the two Csaussian-

like distributions shift towards the top of the barrier the
weight of

t y+ [4'(x)]'/~oy r j

should increase. For extremely large values of y, howev-

er, the net effect should be the same as that detected in

paper I.
VI. CONCLUDING REMARKS

As to problem (i) in the Introduction, we proved that
the canonical constraint restricts the wide range of dif-
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fusional equations (from the Ito to the Stratonovich form)
to a unique kind of equation.

As to problem (ii) raised there, we showed that the
canonical constraint makes it possible to produce a
phenomenon of nature opposite to that monitored in pa-
per I: rather than a transition from the overdamped to
the inertial regime, with increasing the thermal energy of
the fast variable y a transition from the inertial to the
overdamped case is produced [in the case where @,'tt(x) is
linear].

This extends the former results of Lindenberg and
Seshadri who limited their investigation to the inertial
case. The overdamped regime, including that induced by

the coupling between the Brownian particle and y, was ex-
plored analytically and accounted for completely via the
AEP.

We also showed that the problem of resummating infi-
nite perturbation contributions can be solved within the
context of projection procedures, provided that physical
rather than mathematical arguments are used.
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