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The inverse-spectral-transform method of solution is shown to be applicable to the physically in-
teresting problem of the nonlinear Schrddinger equation with a general “potential” term,
ig:+qxx+2[ | g | *—F(x)]g =0. The method determines the class of solutions that are symmetric or
antisymmetric in x. This is done with the help of a modification of the Ablowitz-Kaup-Newell-
Segur and Zakharov-Shabat (AKNS-ZS) formalism incorporating an x- and #-dependent eigenvalue
parameter &, together with a transformation of variables. In certain physical applications, F(x) de-
scribes the inhomogeneity of the medium in which nonlinear wave propagation occurs. The func-
tions F(x) for which the equation is amenable to solution by our method are shown to fall into two
classes, depending on whether or not ¢ is explicitly ¢ dependent. If it is, we show that F(x) must be
a general quadratic function of x. An explicit solution g (x,#) is written down and interpreted for a
parabolic potential barrier. If § is independent of z, we find that localized solutions with static en-
velopes can exist for certain other functional forms of F(x). Finally, we comment on the extension
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of the analysis to explicitly time-dependent potentials or inhomogeneities F(x,?).

I. INTRODUCTION AND SUMMARY

The method of inverse spectral transforms' (IST) has
been used frequently in recent years to analyze the initial-
value problem for a variety of nonlinear evolution equa-
tions. Starting with the general second-order scattering
problem of Zakharov and Shabat,> Ablowitz, Kaup,
Newell, and Segur3 have developed the AKNS-ZS formal-
ism to generate a class of equations solvable by IST. Such
equations are obtained by (i) requiring that the eigenvalue
¢ of the scattering problem be independent of x and ¢, and
(i) making the ansatz that the AKNS coefficients 4, B,
and C describing the time evolution of the scattering pro-
cess are polynomials in & (or 1/§). Physical examples of
these evolution equations are provided by the propagation
of nonlinear waves in uniform media. If the medium is
made inhomogeneous, the coefficients in the equations
may be expected to become dependent on the function
describing the inhomogeneity and on its derivatives. Not
much work has been done on such nonlinear evolution
equations. We have described elsewhere* one such exam-
ple in magnetism, where the following generalized non-
linear Schrodinger equation (NLSE) occurs in the context
of the inhomogeneous, classical Heisenberg chain:

' 2 242 7 2dx —0
g+ (e +2fa1q1*+2q [ felq|?dx=0.

The function f(x) arises from the site dependence or in-

(1.1

homogeneity of the coupling between the spins. Setting .

f =1 yields the conventional NLSE corresponding to the
homogeneous Heisenberg chain. We have shown® that to
solve Eq. (1.1) for a general f(x) by means of the IST,
one must relax the conventional requirements (i) and (ii)
listed above and develop an extension of the AKNS-ZS
formalism. The detailed results obtained™® are strongly
dependent on the precise structure of Eq. (1.1) and are
therefore specific to that equation.

In view of this, a natural and interesting question that
has been posed is whether our extended formalism can be
used to carry out the inverse-spectral-transform analysis
of the following modified NLSE, whose structure lends it
physical relevance of considerable generality:

iqi+qxx+2[ | g | *—F(x)]g=0. (1.2)

Equation (1.2) describes, for instance, the propagation of
envelope solitons in inhomogeneous media—an example
being that of electromagnetic waves in an inhomogeneous
plasma.” F(x)=0 corresponds to a homogeneous plasma.
It is well known? that this case supports a soliton travel-
ing with a constant velocity. The presence of F(x) has
the effect of introducing a potential barrier (or well) in the
path of the soliton. The equation is also relevant in the
context of Davydov’s alpha-helix solitons® which are re-
sponsible for energy transport along molecular chains.
F(x) would then represent inhomogeneities in the ar-
rangement of molecules along the chain. Finally, of
course, there is the literature’ on the possibility that the
NLSE rather than the usual Schrodinger equation is
relevant to quantum mechanics. It would then be of obvi-
ous interest to study its solution in the presence of the po-
tential F(x). Some work already exists on the solution of
Eq. (1.2) under restricted circumstances. Chen and Liu'®
have shown that, if F(x) is a linear function of x, then
the IST is applicable and soliton solutions exist. Newell'!
has studied the equation perturbatively, when F(x) has a
small quadratic term. A reduction of the equation based
on a transformation of variables, once again for the case
of a quadratic F(x), has recently been suggested by Her-
rera.?

The approach we adopt in this paper, in contrast,
directly considers the case of an arbitrary function F(x)
in Eq. (1.2) and proceeds to determine the solutions g (x,t)
that are either even or odd in x, by means of the IST—
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including, in some detail, the case of a quadratic function
F(x). (We shall finally even allow for some explicit time
dependence in the coefficients of the quadratic.) Apply-
ing our extension of the AKNS-ZS formalism to this
equation, we show first that the presence of F(x) makes
the eigenvalue parameter § occurring in the corresponding
Zakharov-Shabat (ZS) problem [Egs. (2.1) below] develop
a dependence on both x and # in fact, it is found that
&(x,t) itself satisfies a certain nonlinear evolution equation
involving F(x). It turns out that only separable solutions
of the latter equation, of the form &(x,t)=g(x)h(t), are
relevant because they lead to a solvable Zakharov-Shabat
problem in a transformed variable. This solvability cri-
terion (which is crucial in any IST analysis) in turn classi-
fies into two categories the functions F(x) for which Eq.
(1.2) is amenable to solution by the method under discus-
sion. These categories correspond respectively to the cases
£:#0 and £, =0. The general quadratic form for F(x) is
shown to emerge as the sole member of the first of these.
An explicit solution for ¢g(x,t) is written down for the
case F(x)=—~5L2x2 This corresponds to the physically
interesting problem of an envelope soliton in a parabolic
potential barrier. The solution is found to be an antisym-
metric function of x, vanishing as | x | — . It has one
maximum and one minimum, and these decrease in mag-
nitude and simultaneously move away from each other as
time progresses. In a physical context, these “lumps” can

be long-lived entities when the parameters in the problem

have appropriate numerical values. Examining the second
of the categories listed above, we find that localized solu-
tions with static envelopes can exist for some other func-
tional forms of F(x), provided F(x) satisfies certain
asymptotic conditions to be derived in the course of our
analysis. We close with some remarks on the extension of
our analysis to time-dependent “potentials” F(x,?).

II. EIGENVALUE EVOLUTION

To solve Eq. (1.2) by the IST method, we first reduce it
to the usual AKNS-ZS form?3

Uy —i§ q | |1
U2 |x '_q* i; vy |’
‘ (2.1)
U1 A B Uy
125] t= C —A4 125) '
The conventional formalism assumes {=const. Allow-

ing® for the possibility £=£(x,?) leads to the constraints
A,—qC—g*B=—i¢,,
B, +2i(B+2A49=gq, ,
Cy—2i{C+24q* = —q;

on the coeff1c1ents A, B, and C. As explained else-
where,% 13 the solution of Egs. (2.2) is facilitated by the in-
troduction of the functions W, Y, and Z according to

(2.2)
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A=i|q |*—iF(x)=2i’+W ,

B=iq,+295+7Y, (2.3)

C=igy —2¢q*E+Z .

Here W=W(x,t,{), and likewise for Y and Z. Using
Egs. (2.3) in Egs. (2.2), we find

W,—qZ —q*Y =0,
Y, +2ifY=—2q(W +£,), 2.4
Z,—2EZ=—2g"(W —¢,)

and also a nonlinear evolution equatlon for the “eigen-
value” {(x,t) itself:

g,ZZ(g )x +Fx . (2.5)

We see at-once that §, =0 implies F, =0 or F, =const,
i.e., the case in which F(x) is either a constant or else a
linear function of x. These are the only cases which can
be handled directly without modifying the conventional
AKNS-ZS formalism.'° For any other F(x), Eq. (2.5
must be dealt with. However, owing to the nonlinearity
of that equation, it turns out®!3 that only separable solu-
tions of the form

E(x,t)=g(x)h(t)

render the corresponding ZS problem [Egs. (2.1)] directly
solvable, so that we may henceforth restrict our attention
to these.

We substitute Eq. (2.6) in the first of Egs. (2.1) and
make a transformation of independent variables from
(t,x) to [t,y = f g(x)dx], and of the dependent variable
from g(x,?) to Q(y,t)=g/g. This yields a ZS problem in
the variable y, with a time-dependent eigenvalue A (¢):

—ih(t) Q(y,t)
—Q*(y,t) ih(z)

Further if |y|—ow as |x | — o0, the necessary condi-
tion® hm, 3| = @(,t)=0 of the ZS problem will be sa-
tisfied because we are, in any case, concerned only with
solutions g(x,t) that vanish sufficiently rapidly as
| x | — o so as to make the AKNS-ZS formalism applic-
able. The transformed version of the second of Egs. (2.1)
is '

(2.6)

wi
(2.7)

LU2y

w, Ay, t,h) B(y,t,h)
Cy,t,h) —Ay,t,h)

where A (x)-—»Z(y), etc.

The IST method must now be applied to Egs. (2.7) and
(2.8) to determine the unknown potential Q(y,z). The re-
quired solution g (x,?) of Eq. (1.2) is then given by

q(x,t)=g(x)Q [ fg(x)dx,t} .

It is evident that we must first determine g(x) and A (z).
Using Eq. (2.6) and Eq. (2.5), we get

h, =2(g2)xh2/g +F,/g .

We may distinguish between two possibilities.

wj
) (2.8)

12053 Wy

t

(2.9)

(2.10)
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Case (a). If h(t)#const, then we must have

(gz)x/g:k’ F./g=u, (2.11)

where A and p are arbitrary constants. The first of these
yields

g(x)=5Ax+2Ao, (2.12)

where A is a constant. Hence F(x) must necessarily be a
quadratic function

F(x)=+uAx2+puAox +po , (2.13)

where p is a constant. Moreover, Eq. (2.10) gives in this
case

hy=2M0%4u , 2.14)
with the solution (for A, u=40)
h(t)=al[h(0)+atanh(rt)]/[a+h (0)tanh(rt)] , (2.15)

where a=(—p/20)'"? and r=(—2uA)"2. Equations
(2.12) and (2.15) express the x and ¢ dependence of {(x,?)
in this case. For the subsequent analysis in terms of the
variable y, it is convenient to note that

g¥=Ay+A35, F=py+uo. (2.16)

We mention in passing that the linear inhomogeneity
studied by Chen and Liu'® is recovered easily as the spe-
cial case A=0, so that [from Eq. (2.14)] A(t)=put +h(0).
We do not repeat here the analysis of this special case in
which solitons moving with a constant acceleration can be
shown to exist.

Case (b). h(t)=const=~h(0), which happens when the
two terms on the right-hand side of Eq. (2.10) cancel each
other, i.e., g(x) is determined for a given F(x) from the
equation

F(x)=co—2h%0)gx), 2.17)

where cg is an arbitrary constant. We must of course en-
sure that | g(x)dx becomes unbounded as |x | — o,
and also satisfy the (rather weak) condition ¢/g(x)—0
asymptotically. These serve as restrictions on F(x). II-
lustrative examples are g(x)=tanhkx, g(x)=(kx)*"*!
(n=1,2,...), etc. The former corresponds to a localized
inhomogeneity F(x) that is relevant in physical problems.

An important point that should be noted with regard to
the solution in case (b) is the following. The quantity
4 (0) is actually an eigenvalue of a certain (differential)
operator in the variable y = f g(x)dx, in the ZS problem
of Eq. (2.7). Now, y itself cannot be dependent on
h (0)—in other words, one cannot redefine the scale of
g(x) by absorbing part of #(0) in it for more than one
such 4(0). On the other hand, if we specify F(x) [as we
indeed do in writing down Eq. (1.2)], then, because % (0)
occurs in the relation (2.17) connecting g(x) and F(x),
one must choose once and for all a single value from the
eigenvalue spectrum {#(0)} and determine g(x) (and
thence y) according to

gXx)=[F(x)—c]/2h*%0) .

The ZS problem will, in general, have a set of discrete
eigenvalues as well as a continuous spectrum. The latter

(2.18)
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can be eliminated by choosing initial conditions in such a
way that the potential Q(y,0) is reflectionless. If we fur-
ther select a potential that supports only a single pair of
complex-conjugate eigenvalues [pure imaginary ones, in
fact, because F(x) must be real—see Eq. (2.17)], the cor-
responding eigenvalue 4(0) is of course the appropriate
quantity to use in Eq. (2.18), and the rest of the IST
method goes through in the new variables y and Q, as we
shall see. The price we pay is that in this case (b), our ex-
tended AKNS-ZS method enables us to discuss only the
single soliton solutions in the variable y. The individual
lumps of a multisoliton solution correspond to distinct
bound states [or eigenvalues A(0)], and our transforma-
tion method cannot handle these as it stands.

III. TIME EVOLUTION
OF THE SCATTERING DATA

We consider next the determination of the time
development of the scattering data using Egs. (2.7) and
(2.8). As is customary, one begins by defining w as a Jost
solution of Eq. (2.7) with boundary conditions®

1
w~ 0 X(t)exp(—ihy), as y— — o , 3.1)
) a (h,t)exp( —ihy)
W~ p (b, expliny) |[X(th a8y—> oo (3.2)

for real A. (The analyticity of a and b required for subse-
quent continuation to complex 4 can be proven.’) The
function X(#) is found by considering the asymptotic
behavior of Eq. (2.8), for which we require that of 4, B,
and C as |y | —oo. Written in terms of the variable y,
Egs. (2.3) involve functions W, Y, and Z, which can be
determined by dividing both sides of Eq. (2.4) by g(x) to
obtain

W,=Q,0Z+Q*(y,nY ,
Y, +2ih (1)Y= —2Q (y,t)[ W +h(1)gg, ],
Z,—2ih(VZ=—2Q*(y,t)[ W —h (1)gg,] .

(3.3)

What is required in the IST method is the asymptotic
llehgvior of W, Y, and Z as y—+ oo. It turns out that if
Y,Z—0 as y—t o, all the subsequent steps in the
AKNS analysis can be carried out to determine Q (y,1),
thereby rendering Eq. (1.2) fully integrable. A proof of
this is straightforward if 4 (¢) is complex (Imh540): For
Y and Z are then automatically damped out at one of the
limits, while the boundary condition at the other limit can
be chosen to be zero.

However, when # is real, Y and Z display an oscillato-
ry behavior as y— =+ . The coefficients of these oscilla-
tory terms can be made to vanish for certain special forms
of Q [ensuring the integrability of Eq. (1.2) for quadratic
F(x) in the present approach], and the general conditions
under which this happens can be found in principle as fol-
lows. Combining Eqgs. (3.3) to obtain a third-order dif-
ferential equation for W, one may sgow that ?,Z —0
as y—* oo provided the integrals f e QWexp(Zihy)dy
and f —w Q8 8yexp(2ihy)dy vanish. It is evident that
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these conditions are not of much use in practice. We
therefore determine sufficiency conditions on ¢ (x,t) and
F(x) which lead to the integrability of Eq. (1.2). For this
purpose, it is convenient to return to the original set of
equations (2.4). We ask for the conditions under which
these equations support solutions W, Y, and Z of definite
parity in x. The conclusion is that it is possible to have
solutions satisfying W(x)=W(—x), Y(x)=1Y(—x),
and Z (x)=*Z(—x) when g(x,t)=Fq(—x,t) along with
g(x)=—g(—x). Thus, if we choose one set of boundary
conditions such that W,Y,Z -0 as x — + o, they vanish
as X— — oo as wgll. ~Given this result, we may return to
the behavior of W, Y, and Z. Since y = | gdx is now
an even function of x, the solutions of Eq. (2.4) in the full
space — o <X < + o determine the above functions only
in the half-space 0 <y < + 0. Further, since |y | — « as
| x | = oo (this requirement was imposed on the ZS prob-
lem [Eq. (2.7)] to obtain localized solutions g (x,t) asymp-
totically), and the functions W, Y, and Z _have been
shown to vanish as | x | — w0, the functions W,Y,Z—0
as y—+ .

It remains to determine W, Y, and Z in the half-space
— o0 <y <0. This may be done by solving Egs. (3.3) to-
gether with the choice of boundary condition
lim, , _ W, Y,Z =0. We have thus shown that these
functions vanish as |y | — oo for both real and complex
values of & (t), provided q has a definite parity in x, and g
is an odd function of x. The latter condition, in turn, im-
plies that the inhomogeneity function F(x) must be even
in x [cf., respectively, Egs. (2.11) and (2.17)]. In the rest
of this paper we shall assume that these conditions are sa-
tisfied.

Using Egs. (2.14) and (2.16) in Eq. (2.3) yields

A~ —ihy —2ikoh*—ipo, B~C~0 (3.4)
[for case (a)]. Similarly, using Eq. (2.18) in (2.3) gives
A~ —icy, B~C~0 (3.5)

[for case (b)]. In both cases, Eq. (2.8) leads to the asymp-
totic equation

4 0
0 —4

Making use of Egs. (3.1) and (3.2) for the asymptotic form
of w in the above, we get the following results, respective-
ly, in the two cases (a) and (b). .

Case (a).

wy wi

, as |y —oo . (3.6)

~

t

Wy wy

X(D=X(O)exp | —pot —2h [ h2t"dr' | ,

a(h,t)=a[h(0),0], (3.7

b(h,t)=b[h(0),0]exp [2iu0t+4ix0 fo'hz(p)dt,] ,

h () being given by Eq. (2.15).
Case (b).
X(t)=X(0)exp(—icot) ,
a(h,t)=a[h(0),0],

b (h,t)=b[h (0),0]exp( —2icot) .

(3.8)

For a given initial potential Q(y,0), A (0) is an eigen-
value of the corresponding ZS problem, Eq. (2.7). Given
the eigenvalue spectrum {4 (0)}, the time evolution of the
scattering data is given by Egs. (3.7) and (3.8), respective-
ly, in the two cases (a) and (b). These represent the
scattering data for the new potential Q(y,z). Following
conventional procedure, it can be proved® that the zeros of
a(h) in the upper half plane [denoted by hg(s),
k=1,2,...,N] correspond to the (discrete) bound-state
spectrum, while the real eigenvalues @ represent the
scattering states. The (time-dependent) scattering data is
given by the set?

3 b(hy) — b)) | bw) blw)
S(’)“_l Ml ) l [h"’a'(ﬁ,.). ' a(0) ) |
(3.9)

where j =1,2, ..., N and the barred quantities correspond
to the boundary conditions

0
w~ | _q |X(t)expl(ihy), asy—co ,
(3.10)
b (h,t)exp( —ihy)
W~ | _ g (h,nexplihy) X1 asy—+oo .

In Eq. 3.9), a’(h;) stands for da(h(0))/dh(0) evaluated
at the eigenvalue 4 (0)=h(0); similarly for a’(h;). [In
the latter case, the bound states correspond to the zeros of
a(h) in the lower half plane.] The structure of the
scattering problem here is such that N=N, h,=hj,
@(h)=a*(h*), and b(h)=b*(h*). Defining

b(hy) .
o exp(ishy)

a k )
1 ©

+ 2 f — )

and T(s,t)=T*(s,t), the Gelfand-Levitan-Marchenko

equations for the column matrices K and K are given
by1,3

T(s,t)=—i,
P

(3.11)

b(w) .
(@ explisw)dw

0 I
T(z+y,t)+ fz K (z,5,t)T (s +y,t)ds =0 ,

I?(Z,y,t)-k 1
(3.12)

1|_. o — _
K(z,p,t)— 0 T(z+y,t)— fz K(z,5,t)T(s +y,t)ds =0,

for y >z. The solution required [the potential Q (y,2)] is
obtained after solving Eqgs. (3.12) from

Q(y’t)= _ZKI(y,y’t) )

where the subscript 1 refers to the upper element of the
column matrix XK.

(3.13)

IV. THE SOLUTION g (x,t)

As is customary,’ let Q (»,0) correspond to a reflection-
less potential with a single pair of eigenvalues
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{h1(0),A7(0)}, where h;(0)=£(0)+in(0), with 1(0)>0.
[We recall, too, that the potential must be such that
q(x,0) is either even or odd in x.] The expression for
T (s,t) given in Eq. (3.11) then simplifies to

t
T (s,t)= —ic exp |ish(2)+2ipgt +4idg foh%(z')dt']

(4.1)
for case (a), and
T (s,t)= —ic exp[ish(0)—2icyt] (4.2)
for case (b), where the constant c is given by
c=>5b[h(0),0]/a’[h(0)] . 4.3)

Substituting these in Egs. (3.12), we can readily solve for
K (y,y,t). Using Eq. (3.13), we find that the general solu-
tion in both cases has the structure

Q (y,t)=ic*sechO(y,t)exp[ —ip(y,?)] , (4.4)

where 6(y,t) and @(y,t) are given below.

Case (a). This corresponds to a quadratic F(x), cf. Eq.
(2.13). We also recall from Egs. (2.12) and (2.15) that
g(x)=3Ax +Ag, y =FAx2+Aox, and

hi(t)=a[h(0)+atanhrt]/[a-+h(0)tanhrt]

in this case, with a=(—pu/20)"% and r=(—2ul)%
Setting /4 ,(0)=£(0)+in(0), we easily obtain £(¢) and 7(t),
where h(¢)=§&(t)+in(t). We find as solutions the ex-
pressions

83,0 =16ho [, &t m("dt’—29m(D)+1n] | ¢ | /27(0)]
4.5)

and

Py,0= 8 [['[E1) =Pt Jdt' +dpuot
+2pE(0)—iln[ | ¢ | /29(0)] . 4.6)

Once Q(y,t) is found, the solution g(x,?) to Eq. (1.2) is
obtained from it by using Eq. (2.9).

Considerable simplification occurs if Ag=py=0, which
corresponds to a parabolic potential barrier F(x)
=—5L%? where L?>=—2u)A>0. The final answer in
this case is

q(x,t)= (c* /) xn(t)exp[ — +iAx2E(1)]
xsech[ +Ax () +In2p()—In|c |]. (4.7)

Two arbitrary constants, A and L, occur in this solution
(on eliminating u in favor of L, we have a=L /A and
r=2L). L is specified, of course, by the given potential
F(x). The constant A is fixed by the initial datum ¢ (x,0).
A concrete example is provided by the initial potential
Q (y,0)= —2sech2y, which has'* a single pair of eigen-
values [ 7 (0),h*(0)]=(i,—i). (It is easily verified that the
corresponding q(x,0) is an odd function of x, fulfilling
the requirement that it have a definite parity.) We now
have £(0)=0, 7(0)=1, and

£(n)= | L | L2+ tanh(2L1)
A | L2+ A%anh*(2Lt)

()= L’sech’(2Lt) 4.8)
L2+ Atanh®(2L1)

Inserted in Eq. (4.7), we have the solution q(x,t) explicit-
ly. In general, the envelope of the solution (4.7) is an an-
tisymmetric function of x composed of two lumps which
move away from each other and dissipate as time
progresses. For sufficiently small values of L, the lifetime
of such an entity could be large enough to be of physical
relevance. :

Case (b). This corresponds to a time-independent
eigenvalue {(x)=h(0)g(x). The form of the solution
Q (y,t) is again as in Eq. (4.4), where one now has

O0(y,t)=—2n(0)y +In[ | c | /217(0)] 4.9)

and

@(p,1)=—2cot +2£0)y —iln[ |c | /29(0)] . (4.10)

As before, g(x,t) is found from Q(y,t) with the help of
Eq. (2.9).

Consider the illustrative example F(x)=cy—2h2(0)
Xtanh%kx, in which case g(x)=tanhkx and
y =Incosh(kx). Taking the initial potential to be
Q(y,0)=—2sech2y once again, with eigenvalues (i,—i),
we find the solution

q (x,t)= 2 tanh(kx)exp( —2icyt)

X sech[2 In cosh(kx)+const]. (4.11)

The solution thus has a static envelope that is a localized,
antisymmetric function of x. The static pattern arises
essentially because we have taken cq to be real, since F(x)
must be real in physical problems.

Finally, we note that the analysis in case (a) can be ex-
tended to time-dependent quadratic functions F(x,t) of
the form

F(, ) =p(t)(+Ax 24 Aox) + o(2) . 4.12)

The formal solution for Q(y,t) continues to be that given
by Egs. (4.4)—(4.6). However, Eq. (2.15) for A(?) is no
longer valid. This quantity must now be found by solving
the Riccati equation 4, =2Ah%+u(t). [For certain func-
tions p(z), simple solutions for 4 (¢) exist.] The rest of the
development then goes through as before, except that the
term po(t) in Egs. (3.7), (4.1), and (4.6) is replaced by
o wolt")de'.
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