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A scaling generalization of the Smoluchowski equation is used to treat fluctuation effects in ag-
gregation problems. In particular, we investigate the diffusion-limited cluster-cluster aggregation
subject to the condition that single particles are fed into the system at a constant rate, 4, while clus-
ters larger than a fixed size are removed. Considering the zero-feed-rate limit as a critical point, we
find that A plays the role of an external field conjugate to the order parameter which turns out to be
the cluster density. The cluster density obeys dynamic scaling and, because of the finiteness of a ki-
netic coefficient, the dynamic critical exponents are expressible in terms of a static exponent. The
exponents are determined by arguing that the zero-feed-rate process is in one universality class with
the 4+ A—0 diffusive annihilation problem. Our scaling theory is in agreement with available

Monte Carlo simulation data.

I. INTRODUCTION

Irreversible aggregation appears to be the principal pro-
cess underlying a variety of phenomena such as colloid
growth, polymerization, aerosol formation, red-blood-cell
aggregation, nucleation at phase transitions, etc."> From
a general point of view, aggregation is interesting because
it produces scale invariant clusters even in its simplest
variant when particles and clusters execute a random walk
and stick irreversibly on contact (diffusion-limited
cluster-cluster aggregation®*). This scale invariance can
be described in terms of anomalous dimensions such as,
e.g., the fractal dimension® and the task of an analytical
theory would be the calculation of the exponents deter-
mining those dimensions. This is not an easy task, how-
ever. As evidenced by Monte Carlo simulations,®’ the
cluster-cluster aggregation is qualitatively similar to the
relaxation towards equilibrium at a critical point but an
additional complication is also present. The dynamic
scaling observed for relatively short times might break
down as a result of the appearance of an infinite spanning
cluster (gelation).”8

In order to bring the analogy with equilibrium critical
phenomena closer and to make the methods developed for
that case applicable, one would like to modify the cluster-
cluster aggregation so that the system would relax to a
well-defined steady state. Furthermore, it would be desir-
able to eliminate the possibility of gelation since it has no
relevance to the problem of aggregation in the regime
when the average distance between the clusters is much
larger than the radius of the clusters. A possible modifi-
cation consists of removing the larger clusters and creat-
ing smaller ones according to some rules. Removal pro-
cesses such as sedimentation and outflow from a chemical
reactor are present in real systems and, as indicated by the
rate-equation studies of aggregation,”!? gelation is
prevented if the removal rate is sufficiently weighted to-
ward larger clusters. Particle sources may also play an
important role in aggregation processes, e.g., there is in-
flow into a chemical reactor or seeds for secondary aero-
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sol formation may be produced by photooxidation. In the
presence of sources and sinks, the system usually evolves
to a steady state which has been investigated in detail us-
ing the Smoluchowski equation approach. E.g., theorems
giving the conditions for the existence of the steady state
are provided in Ref. 10 and 11 while numerical studies
and comparisons with experiments'? can be found in Refs.
13 and 14.

In this paper we consider cluster-cluster aggregation
with the simplest choice of sources and sinks. Single par-
ticles are fed into the system homogeneously and at a
fixed rate h while clusters containing more than a
prescribed number (k) of particles are eliminated instan-
taneously. Our aim with the study of this simple model is
to suggest that the zero-feed-rate limit (2 =0) may be
considered as a critical point and consequently, around
this point, the Smoluchowski equation approach may be
generalized into a scaling description of aggregation. This
is the topic of Sec. II where we shall see that the feed-rate
plays the role of an external field conjugate to the order
parameter which might be taken to be the cluster density
n.

The results of the scaling theory can be summarized in
two scaling laws. The first one

1
Ad——1 (1)
*s
relates the exponent 8 of the steady-state cluster density
iy ~h'7® )

to that of the relaxation time at fixed 4:

Th~h—Al . . (3)

This scaling law relating a static and a dynamic exponent
is similar in spirit to the A= relationship in equilibrium
systems where A is the critical exponent of the relaxation
time of the order parameter while y is the susceptibility
exponent. - Apart from the scaling assumption, the deriva-
tion of both of these relationships involve the assumption
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that the appropriate kinetic coefficient is not singular at
the critical point. We shall argue that this is a valid as-
sumption for cluster-cluster aggregation. Supporting evi-
dence comes from Monte Carlo simulations’® of
diffusion-limited cluster-cluster aggregation where the
scaling law (1) is found to hold in d =1, 2, and 3 dimen-
sions.
The second scaling law
SA'= L )
b

is based solely on the scaling assumption. It involves a
third exponent { which characterizes the power-law decay
of the cluster density at A =0

n(t)~t=%. (5

This scaling law is useful because, as is discussed in Sec.
III, the & =0 dynamics can be thought of as a diffusive
‘annihilation problem!'¢ and the exponent ¢ is well known
for that case. There are exact results!’ for d =1 and vari-
ous analytical approaches18 and Monte Carlo simula-

tions'®~2?! indicate that the critical dimension d, is two.
For d > d, one has {=1 while
d
=— 6
g 2 (6)

for d <2. Then all the exponents are determined since 8§
and A’ follows from Egs. (1) and (4)

s_dt2 2

R ——, d<2 (7)

T d+2’
while mean-field results which can be derived from the
Smoluchowski equation apply for d > 2

8=2, A'=+. 8)

Comparing these predictions [Egs. (7) and (8)] with the
Monte Carlo results,’> one can see good agreement for
d =1 and 3 but considerable deviation is observed for
d =2. The disagreement might be due to the fact that
d,=2 and consequently the logarithmic corrections to
scaling make the finite-size analysis difficult in d =2. Of
course, it is not excluded that, as argued in Ref. 15, the
fractal nature of the clusters and the presence of clusters
of different size may make the process distinct from
diffusion-limited annihilation.

II. SCALING GENERALIZATION
OF THE SMOLUCHOWSKI EQUATION

The first mean-field-like treatment of irreversible
coagulation is due to Smoluchowski?®»?* who assumed
that clusters coalesce through binary collisions and pro-
posed the following rate equation to describe the time evo-

lution of the concentration n;(¢) of k-particle clusters:
dﬂ k ( t )
dt

=3 3 Kyntnj®)—ng(0) 3 Kyn(t) .
i) =k !
)

Here the first sum gives the increase of n(¢) as a result of

the coalescence of clusters satisfying the condition
i+j=k while the second sum accounts for the decrease
of n;(¢) due to the collision of the k-particle clusters with
clusters of any size. An appropriate choice of the col-
lision kernel K;; takes partial care of such details of the
process as how the diffusivity of the clusters affects the
probability of their meeting and how the collision cross
section depends on the size of the clusters. The spatial
fluctuations in the cluster distribution are completely
neglected and this is why Eq. (9) is considered to be the
mean-field theory of aggregation.?*

The generalization of Eq. (9) to include sources and
sinks is straightforward.”~!4#?° In our case, the produc-
tion of single particles at a fixed rate h (particles per unit
volume per unit time) is taken into account by adding an
hd;, term to the right-hand side of Eq. (9) while the in-
stantaneous elimination of clusters containing more than
ko particles means that we must set n,(¢)=0 for k > k.
Thus the equation to study is as follows:

dink(t)zhakl—l-% 2 Kijn,-(t)nj(t)
d ij
i+j=k<k,
ko
(03 Kpny(0), k=12,...,ky.  (10)
j=1

This equation has simple scaling properties with respect
to the feed rate h. Introducing scaled time and scaled
cluster-size distribution

ng(t)

=~ _p1/2, = (F)_
T=h'%, m ()= 172

(11

one can see that 4 is eliminated from Eq. (10), and conse-
quently, the solution of that equation can be written in the
form

ne(t,h)=h12¢, (h"%) . (12)

This form is exact only if 7;(0)~h'/2. Otherwise ¢ also
depends on h through the initial conditions
iz"j(O):n,-(O)/hl/ 2, We believe, however, that the long-
time behavior and the steady-state properties are insensi-
tive to the initial conditions and thus, for our purposes,
Eq. (12) gives an adequate description of the system.
Since the cluster density is given by

ko
nth)=3 m(th) (13)
k=1

substitution of (12) into (13) gives a scaling form for the
time-dependent cluster density

n(t,h)=h'2p(h't) . (14)

It follows from Eq. (14) that if the system reaches a
steady state in the #— oo limit then the steady-state clus-
ter density 7 scales as

A~h8_pl/2, , (15)

and we obtain §=2, a result which has been known from
previous studies.!>'* It also follows from Eq. (14) that, in
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the A—0 limit, n(z,h) approaches its steady-state value
7 =0 by power-law decay

n(,0)~t=5~¢t—1, (16)

i.e., mean-field predicts {=1.
Finally, the relaxation time to a steady state at a fixed A
can be calculated as the area under the relaxation function

Y(t,h)=[n(t,h)—n(w,h)]/[n(0,A)—n(w,h)]
which gives

_re - ® (hl/zt)—“ (o) —A’ —1,2
f,,—fo Y(odt =~ fo gs—ch(O)—qS(oo) dt~h=—8p=172,

17

hence the mean-field value of A’ is +. It should be noted
here that in calculating 7, it is assumed that
n(0,h)—n(c,h)~h'/2. This assumption ensures that
the initial state is close to the final steady state and conse-
quently 7, measures the linear (“equilibrium”) relaxation
time. Otherwise one would deal with the so-called non-
linear relaxation time?® which diverges with an exponent
distinct from A’.?2® We also note that the possible in-
tegrability problems in (17) may be avoided by defining 7,
as the time for ¢ to relax to 5. The result is again
Th~h~12,

Comparing the mean-field results (1/8=0.5, A’=0.5)
with the available Monte Carlo data'® (1/8=0.33+0.02;
0.40+0.04; 0.48+0.05 and A’'=0.67%+0.03; 0.62+0.05;
0.57+0.05 for d=1,2,3, respectively) one can find satis-
factory agreement only in d =3. Otherwise a pattern
familiar from the theory of critical phenomena emerges,
the discrepancy increases as the dimensionality is lowered,
thus indicating the enhanced importance of the neglected
spatial fluctuations.

Since the singularity of the relaxation time [Eq. (17)
and the power-law decay of n(¢) (Eq. (16)] suggests that
the A =0 point should be regarded as a critical point, one
can follow the theory of critical phenomena and treat the
spatial fluctuations on a phenomenological level by a scal-
ing generalization of the Smoluchowski equation. To do
this, note that Eq. (10) can be written in the form

d
-d—tnk(t)=h8k1—Gk(n1,n2, .

where Gy, is a homogeneous function of second degree

Gk(knl,knz, .

,nko) (18)

. ,Anko)zszk(nl,nz, e ,nko) .

(19)

The simplest generalization of Eq. (18) is to keep the de-
gree of homogeneity as a free parameter

Gi(An,An,, . .. ,knko)=kaGk(n1,n2, N N (20)
The scaling analysis of the resulting equation is similar to
that of the original Smoluchowski equation. Changing to
scaled time and scaled cluster-size distribution
~ ng(t)
—p1-178, ﬁk(f)=# ) @1)

one eliminates # from Eq. (18) and thus the solution for
large ¢ can be written as

ne(t,h)=h'3¢, (h'1~1/%) (22)

As a consequence we obtain the cluster density in a scaled
form

n(t,h)=h'3¢(h'~1/%) (23)

which is in agreement with the Monte Carlo simula-
tions.”> As in the mean-field case, Eq. (23) implies
i~h'8 n(t,0)~t~%, and 7, ~h—2 but now the critical
indexes are not determined explicitly. Instead, they are
expressed through the homogeneity index §, i.e., we obtain
two scaling laws

1

A+-8-=1 (24)

and

{ :
A'=— 25
oa'= @5)
connecting the three exponents. Monte Carlo simulation'®
are in agreement with the scaling law (24) and since Eq.

.(25) is based only on the scaling form (23) there is implicit

confirmation of this scaling law as well.

At first sight it might seem strange that one parameter
(8) determines both the static and dynamic exponents of
the system. To understand this, let us briefly recall how
the scaling theory is extended to dynamics near an equili-
brium critical point. For a purely relaxational system
with a one-component order parameter m (model 4 in
Ref. 29; for example, let us think of a uniaxial ferromag-
net in a magnetic field H), one assumes that the time evo-
lution towards the minimum free energy configuration is
described by a van Hove—type equation®®3%:31

_oF
om

dam _

dr H

(26)

Here F is the appropriate free energy which is assumed to
obey scaling near the critical point. In particular, restrict-
ing ourselves to the critical isotherm we have®?
OF _ H,m®. 27)
om
In general, the kinetic coefficient T is also singular at the
critical point and also obeys scaling. On the critical iso-
therm it is assumed to have the form

T(m)=Tym? . (28)

Equation (26) together with (27) and (28) determines the
scaling properties of the system on the critical isotherm.
Quantities such as the equilibrium value of magnetization
(m~H'%, the decay at the critical point
[m(ty~t—5,E=(8+0—1)"1], and the relaxation time
[rg ~H%,A'"=(84+0—1)/8] can be calculated and one
can see that 8 determines the static properties while both
o and 6 enter into the expression for the dynamic ex-
ponents. If the kinetic coefficient is not singular (c=0)
then the static exponent (8) determines the dynamic
behavior as well and we obtain scaling laws identical to
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those found for aggregation.

To understand why the kinetic coefficient is constant in
the case of aggregation, let us derive an equation for the
average density of clusters n (z) which seems to play a role
similar to that of the order parameter m (¢). Returning to

Eq. (18) and summing it over k=1,2, ..., ko, one finds
dn ko
E:h-—kgle(m,nz,...,nko). (29)

Now we make an approximation used in deriving equa-
tions like Eq. (26); namely, we assume that the sum on the
right-hand side depends only on n:

G, (30)

dt
This equation ought to reproduce the scaling behavior as
obtained from the cluster-size distribution treatment [Eq.
(23)] so the function G (n) should behave as G (n)~Gon®
for small n. Thus we have arrived at a special form of
Eq. (26), namely for aggregation we have I'=1. It should
be emphasized that this feature is not a consequence of
the approximations. There is a basic difference between
H and h in Egs. (26) and (30). The magnetic field tends
to align the magnetic moments along the field but its ef-
fect appears through a complicated interplay with the
thermal fluctuations in the system. Thus the timescale on
which the effect of H is felt depends on the magnitude of
fluctuations and this is why I' in Eq. (26) might become
singular at the critical point. The effect of A, on the other
hand, appears on a timescale which is independent of the
aggregation process. The feed rate A just describes how
often the single-particle clusters are added to the system.
So, if an equation of the form (26) can be used for calcu-
lating the scaling properties of the cluster density in the
aggregation processes, then I'=1 necessarily in that equa-
tion.

One might question, of course, the existence of Eq. (26)
since the memory effects which are known to be amplified
near a critical point are neglected. In some circumstances
(e.g., near four dimension in case of a ferromagnet), the
memory effects can be taken care of by renormalizing the
kinetic coefficient.?>** The main point of the above argu-
ment, however, is that the kinetic coefficient is not renor-
malized in the case of aggregation and thus one might ex-
pect that the dynamic critical exponents can be expressed
through the static ones. Monte Carlo simulations'® seem
to indicate that at least in case of diffusion-limited
cluster-cluster aggregation, this expectation is justified.

III. ANALOGIES WITH ANNIHILATION PROBLEMS

As discussed in Sec. II, the absence of a singularity in
the kinetic coefficient I' means that only one of the ex-
ponents 8, A’, and § has to be determined, the other two
follow from the scaling laws (24) and (25). The most
promising way to proceed seems to be the calculation of §.
This exponent describes the decay of cluster density when
no particles are fed into the system, a case which is remin-
iscent of the annihilation problems'® much studied in
chemistry. Indeed, when ky=1 and the two particle clus-
ters disappear from the system, the aggregation process
corresponds to the

A+A—0

chemical reaction where 4 and O denotes the active and
inert molecules, respectively. When the A4 molecules
move around by diffusion, this reaction is called diffusive
annihilation'® and has been studied extensively.'”=2° The
one-dimensional model can be solved exactly!” with the
result '

&=

It is remarkable that, as rather extensive Monte Carlo
simulations'® indicate, the same result holds for a one-
dimensional diffusive cluster-cluster aggregation model?!
where the colliding clusters coalesce into a cluster occupy-
ing only one lattice site.

No exact result is available for d > 1 but the common
view, based on dimensional analysis,'® analytical and scal-
ing approaches,'®3* and Monte Carlo data,'>?° is that
d.=2 for diffusive annihilation. Mean-field theory
[6=1, Eq. (16)] applies above d,=2 and a simple func-
tional form {=d /2 seems to hold for d <2.

If we assume now that the universality class is not
changed when going from ky=1 to any other finite value
of ko then we have § and consequently A’ and &8 as dis-
cussed in the Introduction [Egs. (7) and (8)]. We cannot
provide a rigorous justification for the above assumption
but the following points will clarify the ideas which form
the basis for it.

(i) For ko> 1, we have clusters of different size in the
system so the process superficially resembles the

A+B—0

d=1). (31

[STPN

annihilation problem which is not in the same universality
class with the 4+ A—0 reaction.'®?® The distinction is
not surprising because it is known from the theory of crit-
ical dynamics®® that the conservation laws play an impor-
tant role in determining the universality classes and the
two processes are distinct because there are no conserva-
tion laws in the 4 +A4—0 case while the difference be-
tween the number of 4 and B atoms is conserved in the
A+ B-—0 reaction. Looking now at diffusion-limited
cluster-cluster aggregation from the point of view of con-
servation laws, one can see that no conservation laws ap-
pear when going from ky=1 to 1 <kg < oo so the process
should be in the same universality class as the 4 +4 —0
diffusive annihilation.

(ii) It has been observed** that if the diffusivity of
clusters decreases with increasing cluster size then the
process of diffusion-limited cluster-cluster aggregation is
dominated by the sticking of clusters of almost the same
size. This means that after a while only clusters contain-
ing more than ky/2 particles are present in the system
and consequently all collisions lead to annihilation. Thus,
in the long-time limit, the process is equivalent to the
A + A—0 type diffusive annihilation.

It should be noted, however, that the existence of a
time-dependent characteristic cluster size is not a neces-
sary condition for the equivalence with the 4 + A4 —0 re-
action. If the diffusivity of the clusters is independent of
their size, then the cluster-size distribution is not bell-
shaped but monotonically decreasing with increasing clus-



ter size.® Nevertheless, the same exponents A’ and § are

obtained!® as in the case of size-dependent diffusivity.

(iii) The Monte Carlo simulations!® lend numerical sup-
port to the universality assumption. The agreement with
the predictions following from that assumption is good in
d =1 and 3 and the discrepancy in d =2 probably can be
explained by the presence of logarithmic corrections to
scaling at the critical dimension.

In closing, we note that although the above arguments
are quite convincing and thus the exponents 8, A’, and §
might be considered to be determined, one thing remained
unaccomplished. For large k(, one expects that the clus-
ters grown in the system have the same fractal structure
as the clusters of similar size grown without the presence
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of the sources and sinks. The intriguing question of what
is the relationship (if any) between the fractal dimension
of the clusters and the exponents 8, A’, and £ remained
unanswered.
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