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The diffusion-limited cluster-cluster aggregation model is investigated under conditions which for
long times lead to steady-state coagulation. Single particles are added to the system at a constant
rate and the larger clusters appearing as a result of the aggregation process are removed according
to various rules. Our results show that the dependence of the number of clusters, X(t), on the feed
rate a. in a unit volume and the time t can be well represented by a scaling form N(t)-tt f (est)
with a scaling function f(x)-x for x g&1 and f(x)=1 for x~~1. The exponents a and P are
found to depend on the spatial dimension d, of the system, but within the statistical errors they al-

ways satisfy the relation a+l3=1 in accordance with the prediction of a generalized rate equation
discussed by Racz (see the companion paper). The values we have obtained for a and P are con-
sistent in two and three dimensions with the corresponding results of the Smoluchowski equation
approach but inconsistent in one dimension. This can be considered as an indication of the fact that
the upper critical dimension for the kinetics of the diffusion-limited cluster-cluster aggregation
model is 2.

I. INTRODUCTION

There has been a rapidly growing interest recently in
the irreversible growth processes since they represent one
of the most common phenomena in nature. Examples in-
clude nucleation, coagulation, flocculation, gelation, den-
dritic growt, polymerization, and aggregation processes
which are related to various fields of science and technolo-
gy. ' A number of models have been proposed to study
the geometrical properties of kinetically growing clusters,
such as diffusion limited aggregation, kinetic gelation,
and cluster-cluster aggregation. It has been found that
the clusters grown according to a nonequilibrium rule are
typically fractals, having a fractal dimension D less than
the Euclidean dimension of the space in which the growth
process takes place.

The diffusion-limited cluster-cluster aggregation model
(CCA) introduced by Meakin and Kolb et a/. is a par-
ticularly suitable model for studying multiparticle aggre-
gation. Using this model it is possible to study not only
the static geometrical properties of the clusters, but also
the time evolution of the system in a class of coagulation
phenomena in which the rate-limiting process is the dif-
fusion of clusters (reorganization of the particles within
the clusters is neglected in these models). In CCA the ini-
tially randomly distributed particles undertake a random
walk and stick to each other on contact to form a cluster.
The clusters continue to diffuse and by joining rigidly to-
gether form larger clusters which were shown to be frac-
tals. ' As the time proceeds the number of clusters of

size s in a unit volume, n, (t), changes in a way which can
be described in terms of dynamic scaling. Dynamic scal-
ing for the cluster-size distribution in CCA for mass-
independent diffusion coefficients was first proposed by
Vicsek and Family, ' while the case of mass-dependent
diffusivity was treated by Kolb" and Meakin et al. '

Cluster-cluster aggregation in its original form de-
scribes a process with a permanent evolution in time as
the number of clusters in the system is always decreasing.
In this paper we modify the model to simulate an impor-
tant process of both practical and theoretical interest, in
which a steady-state cluster-size distribution develops in
the system. This goal can be achieved by feeding single
particles into the system and removing the larger clusters
according to some rules. Steady-state conditions are very
typical in many applied fields. For example, cars (as well
as other sources of smoke) represent a permanent source
of small smoke particles fed into the atmosphere. These
smoke particles coagulate and form larger, heavier parti-
cles which gradually disappear from the atmosphere by
sedimentation due to the gravitational force. In the
stirred tank reactors for aerosols, often used for modeling
chemical reactors in industry, an analogous process takes
place but the particles are removed by letting them flow
out from the chamber. '

We have simulated two different models of steady-state
coagulation by feeding single particles into the system and
by removing some of the larger clusters according to a
given rule. At every unit time k particles are added at k
different sites selected randomly. There are a few possi-
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bilities for the removal of the clusters. We have con-
sidered two models. In model I, a cluster is discarded as
soon as it becomes larger than a previously fixed number
s„. This is an extreme version of the situation in which
the larger clusters leave the system with a higher probabil-
ity. Another possibility —which is used in model II—is to
remove the clusters with some rate r independent of the
size of the clusters. Here the probability that a given clus-
ter is removed during a unit time is proportional to r. In
this way both the total number of clusters N(t) and the
number of particles M(t) in the system of size L" go to a
constant value (N and M ) for long times.

Steady-state coagulation has been investigated by vari-
ous approaches including experiments, ' ' numerical
methods, ' ' and studies of a rate equation' for the
cluster-size distribution usually called the Smoluchowski
equation (SE). In the latter approach the mass distribu-
tion of diffusing clusters is determined from a system of
differential equations which describe binary collisions
with a constant rate K,z, depending only on the size (mass)
of the clusters. As an approximation to the true kinetics
of the cluster-cluster aggregation process SE has been con-
sidered by a number of authors. ' Since the spatial
fluctuations are not accounted for in the Smoluchowski
coagulation equation the applicability of this approach to
the description of the time dependence in various aggrega-
tion models has been a subject of recent investigations. In
general, because of its mean-field character SE is expected
to give good or exact results above a certain critical di-
mension. In a three-dimensional simulation of the CCA
model the collision frequencies were numerically deter-
mined and found to be time independent in accordance
with the assumption used in SE. It was also shown that
SE is appropriate for describing the coagulation process in
a two-dimensional aggregation model in which the diame-
ter of the clusters is equal to unity independently of their
mass (the clusters are infinite dimensional). However, in
this model a time dependent K,z was needed for agree-
ment with the one-dimensional simulation results.

The Smoluchowski equation was originally derived for
describing the coagulation of compact (nonfractal) clus-
ters. Its predictions for the case of fractal objects such as
cluster-cluster aggregates and for low dimensions may
considerably deviate from the true behavior of the
diffusion-limited cluster-cluster aggregation process.
Simulation of the steady-state aggregation process is par-
ticularly suitable for testing the region of validity of the
Smoluchowski equation for CCA. Choosing the feed rate
k as a small parameter it is possible to show' ' ' ' that in
the SE approach (unless KJ is time dependent), the num-
ber of clusters in the steady state X scales as X„-k'~ .
From a study of the scaling properties of SE Racz '

showed that the characteristic time ~ needed for relaxing
to the final state scales as ~-k'~, as well. In the case of
a more general coagulation equation, X -k and w-k,
with the exponents a and P satisfying the scaling relation-
ship a+P=1 independent of IC;~. Thus, in the steady-
state coagulation there are two exponents which do not
depend on the details of the aggregation process, while for
the case of the ordinary coagulation kinetics the exponents
obtained from the Smoluchowski equation depend on the

particular (usually arbitrary) form of the reaction rate
constant K,J. . Therefore, perhaps the best way to estimate
the critical dimension for CCA kinetics and to investigate
the effects of the fractal geometry of the clusters on the
time dependence of the aggregation process is to calculate
the exponents a and P from simulations and compare
these results with the predictions of the SE.

The outline of the paper is as follows. In Sec. II we
describe the simulations and present the results. The re-
sults are discussed in Sec. III. Finally, in Sec. IV we
present our conclusions.

II. SIMULATIONS AND RESULTS

Our simulations were carried out in one to three dimen-
sions on cells with linear size J and with periodic bound-
ary conditions. Square and cubic lattices were used in two
and three dimensions, respectively. The aggregation pro-
cess is started with Mo randomly distributed particles at
the sites of the cells. The particles and the clusters under-
go a random walk and stick rigidly together on contact to
form new clusters. The time is measured by the number
of attempted moves divided by the total number of clus-
ters N(t) in the system. In general, the diffusion constant
of a cluster may depend on the size of the cluster s (where
s is the number of particles in the cluster). We used a
size- (mass-) dependent cluster diffusivity of the form
D, =Dos~. When making an attempt to move, a cluster is
shifted by one lattice unit only with a probability propor-
tional to its mobility, but the time is incremented indepen-
dently of whether the move has or has not been made.

In the following we shall concentrate on the dependence
of the approach to the steady state and the steady state it-
self on the feed rate k. In order to do this we calculate
for various k the quantities N(t), M(t), and N, (t), where
N, (t) is the number of clusters of size s in the system.
After a sufficiently long time these quantities become (on
the average) time independent and their values N, M
and X, can be used to describe the steady state. We call
the characteristic time needed for approaching the final
state from a low-density initial state the relaxation t~me
(r). In most of the simulations the number of clusters (or
particles) exhibits a damping oscillatory behavior before it
assumes its steady-state value. One way of defining the
relaxation time is to identify ~ with the time at which the
first maximum or some similar feature such as the first
minimum or second maximum appears in N (t).

In order to obtain more accurate results we calculate
various kinds of averages. First, the same quantity is cal-
culated from a number of runs (typically this number is
about 20). Second, a time average is taken in the steady
state. Finally, for large cluster sizes the results for a small
range of cluster sizes are averaged to obtain a better esti-
mate of X,

In one dimension the cluster-cluster aggregation process
has been simulated on a line of length L = 131072 (2' ) or
L =65 536 (2' ) lattice units. In the low-density limit the
size of the clusters is always much less than the distance
between them; therefore, the asymptotic behavior of the
kinetics of CCA in one dimension is expected to be the
same as in the simple model of Kang and Redner. In
the latter model when two clusters of masses i and j meet,
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FIG. 1. The number of clusters in the steady state N and
the time ~ required to reach the first maximum in the time-
dependent number of clusters vs the particle feed rate k. In
these simulations carried out on a linear chain of length
L =131072 (2' ), k was measured in particles/(time unit) and
the time was in units of attempted moves per cluster. The max-
imum cluster size was s„(clusters containing more than 250 par-
ticles were removed from the system as soon as they were
formed). The straight lines on this log-long plot indicate scaling
of the quantities N„and v.
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FIG. 3. Time dependence of the total number of clusters,
N(t), and total number of particles in the system, M(t), ob-
tained from simulations of cluster-cluster aggregation on 400
lattices with a feed rate of 8 particles/(time unit). Clusters with
a size greater than s„=100were removed.

they coalesce into a single particle (one lattice site) of
mass i+j. Using this assumption we have obtained data
for the steady-state number of particles N and for the
relaxation time ~ as a function of k. The results are
displayed in Fig. 1 for model I with s, =250 and y =0.
The distribution of the cluster sizes after a long time is
shown in Fig. 2.

The two-dimensional simulations were carried out on
400 lattices. Figure 3 shows the behavior of N(t) and
M(t) as a function of time. In these simulations all clus-
ters larger than s„=100 were removed from the system
(model I) and a feed rate k =8/(time unit), a size-
independent diffusion constant, and a low initial number
of particles Mo ——16 (initial density p=0.0001) were used.
In Fig. 4(a) we display data obtained for the number of
clusters (N ) in the steady state and the relaxation time r
for various feed rates k. The straight lines on this log-log
plot indicate scaling of N and r as a function of k.
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FIG. 2. The steady-state cluster-size distribution obtained
from a one-dimensional simulation. The lattice size was
L =65536 (2' ), the particle feed rate was 5 particles per time
unit, and the maximum allowed cluster size was equal to
s, =250. The results shown in Figs. 1 and 2 were obtained with
mass-independent diffusion coefficients.

FIG. 4 The total number of clusters in the steady state N„
and the time ~ required to reach the first maximum in N(t)
(shown in Fig. 3) vs the particle feed rate k (a). The scaling of

and v as a function of k is indicated by the straight lines
drawn through the data on this log-log plot. Assuming the
existence of a logarithmic correction of the form
N -k ln(L /k) one is able to determine the exponent, a from
the plot lnN(t) —1n[ln(L2/k)] vs ln(k) (b).
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FIG. 5. Time dependence of the total number of clusters
N(t) obtained from three-dimensional simulations of cluster-
cluster aggregation on 128 with particle feed rate of 10
particles/(time unit). The maximum allowed cluster size was

s, =250 and the initial particle concentrations were 10000 and
100 particles.

FIG. 7. The time dependence of the number of clusters of
size s, N, (t), for various cluster sizes (1, 2, 3, 5, 9—10, 19—20,
38—40, 75—80, and 150—160) obtained during a three-
dimensional simulation of cluster-cluster aggregation. The
starting concentration was 10000 particles, 10 particles were
added to the system at every time unit, and s„was equal to 250.

However, if d =2 is the upper critical dimension for the
kinetics of the CCA, the logarithmic corrections have to
be taken into account as well. Assuming that
N -k ln(I. /k) we are able to determine the exponent
a by plotting lnN —in[in(L /k)] versus ln(k) as it is
presented in Fig. 4(b). We also calculated these quantities
for the case where the diffusivity of the clusters depends
on their size s as D, —1/s. Gur results show that the ex-
ponents describing the power-law behavior of N„and r
are insensitive to the change in the diffusivity of the clus-
ters.

Since most of the practically interesting processes
which are analogous to the steady-state cluster-cluster ag-
gregation occur in three dimensions we have carried out
more extensive simulations on 128 lattices. In the first
series of simulations we studied model I. In order to see
the effects of k, r, s„, and Mp on the results, runs with
various values of these parameters were made. Figure 5
shows the time dependence of N(t) for two initial values
of the number of particles Mp ——100 and Mp ——10000,
with k =10 and s„=250. The behavior of N„and w as a
function of the feed rate k is presented in Fig. 6. In these

o InN
A lA 7

simulations a low initial value Mp ——100 was used for the
number of particles. The data show that N and v scale
with k in three dimensions, too. %'e have also calculated
the dynamic cluster-size distribution N, (t). Figure 7
shows the time dependence of N, (t) for a few selected
cluster sizes and for Mp ——10000, k =10/(time unit) and
s, =250. The steady-state distribution for this case is
presented in Fig. 8. Additional simulations show that in-
creasing s„ to 500 or to 1000 does not have a significant
effect on N„and the only important consequence of this
change is that the mean cluster size in the steady state

S(t =Do)= gs N, /g(sN, )

increases.
Next we investigated the second version of the steady-

state models. In model II, single particles were added to
the system every unit time as before, but the probability of
removing any of the clusters during a unit time was equal
to a small constant r In this mod. el the dependence of the
number of clusters does not show a maximum but there is
a maximum in the plot of the mean cluster size (Fig. 9).

0.5 1.0 1.5 2.0 2.5 3.0 5.5 4.0 4.5 5.0 5.5
Ln(s)

FIG. 6. This figure shows how the total number of clusters in
the steady state N„and the time v needed to reach the first
maximum in N(t) depend on the particle feed rate k in the
simulations of coagulation on 128 lattices.

FIG. 8. The steady-state cluster-size distribution under the
conditions used to obtain Fig. 7. Results are also shown for the
feed rates 0.3125, 1.25, and 20 particles/(time unit).
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FIG. 9. This figure shows some typical results obtained from
a simulation carried out using model II. The simulation was
started with 10000 particles on a 128' lattice and additional par-
ticles were fed in at a rate of 10 particles/(time unit). The rate
constant for removal of clusters of all sizes was equal to
r =0.005/(time unit). (a) shows the time dependence of the
number of clusters, X(t), and in (b) the mean cluster size as a
function of time, S(t), is displayed.
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FIG. 10. Steady-state cluster-. size distributions from three-
dimensional simulations with a particle feed rate of 10
particles/(time unit) and with a constant . removal rate of
r =0.005/(time unit) (model II). Results are shown for several
values of the exponent y which determines the diffusivity of the
clusters of size s, D„ through the expression D, -s~. The max-
imum allowed cluster size in these simulations was 250 particles.

The cluster-size distribution after a long time for a con-
stant removal rate r =0.005 and for various diffusivities
(y=0.0, —1/D, and —1.0) is presented in Fig. 10. This
figure shows that the cluster-size distribution follows a
power law with a likely exponential cutoff for the large
values of s. The value of the exponent describing this
algebraic decay depends only slightly on y.

III. DISCUSSION
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FIG. 11. The steady-state cluster size distributions shown in
Fig. 8 for various feed rates k scaled onto a single universal
curve.

A characteristic feature of the approach to the steady
state is that the moments of the dynamic cluster-size dis-
tribution N, (t) show an oscillatory behavior in most of
the cases (Figs. 3 and 5). This behavior can qualitatively
be explained as follows. In the steady-state models dis-
cussed in this paper there are three processes affecting the
number of clusters N(t) in the system. The addition of
particles with a given feed rate increases N(t), while the
coagulation (sticking together) and the removal of the
clusters decreases it. As the clusters grow and the dis-
tance among them becomes smaller [with increasing N(t)
and cluster radius], the rate of coagulation increases and
compensates the feed rate. At this moment the number of
clusters starts decreasing as in the ordinary CCA. This
decline in N(t), however, does not continue forever, since
as soon as clusters larger than s, are formed they are re-
moved from the system. In this way the clusters which
were the most effective in "capturing" other clusters are
eliminated and the tendency changes. In model II this
process is smoothed out, but an extremum still can be seen
on the plots of the mean cluster size (Fig 9). .

Our results for the steady-state value of the number of
clusters N and for the relaxation time r indicate scaling
of these quantities as a function of the feed rate k. Figure
11 shows how the steady-state cluster-size distribution
N, (co) can be scaled as a function of k using a simple
scaling form N, ( oo ) -k g(s). In the case when the initial
density of the particles is very small our data for N(t)
given in Fig. 12(a) show that the total number of particles
in a unit volume at time t, n (r), can be well represented
by the following scaling form:

n(t)-a f(a~t),
where ~ is the feed rate in a unit volume and f(x) is a
scaling function with f (x)-x for x && 1 and f (x)= 1 for
x &~1. This behavior is demonstrated in Fig. 12(b) where
the N(t) curves obtained in the three-dimensional simula-
tions for various feed rates are scaled into one universal
function. The actual shape of f(x) may depend on the
parameters y, s„, or r but for a fixed set of these numbers.
N(t) can be expressed through the scaling form (1).

The values of the exponents a and P can be determined
from the slopes of the straight lines drawn through the
data on the log-log plots of N and r versus k. The
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where L is the length of the chain along which the clus-
ters diffuse. Although the above arguments are not
rigorous, they are quite plausible, and therefore Eq. (2) is
expected to give the exact asymptotic behavior of N(t).
For k =0 and s„—+Do it gives N(t)-t'/ in agreement
with Kang and Redner's simulations and the Smolu-
chowski equation results.

From (2) it can be seen that for s„~oo in the
steady state the number of clusters is equal to (k/b)'/;
therefore, N scales with the feed rate with an exponent
a= —,'. In order to get an expression for the relaxation
time we integrate Eq. (2) for s„»1 and obtain

6.0

5.5
0
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5.0

[N(t) a' ]-
ln

6ba N (t)+N(t)a' +a1, , 2N(t)+a '/'

3b& 2/3 3& 1/3tan +C (3)

45

4.04 7
ln[k0 5~ t ]

(b) where a=k/b and C is a constant. Keeping only the
term which becomes singular as N(t)~a'/ we get from
(3)

N(t)=a A,e— (4)
FIG. 12. This figure shows the time dependence of the total

number of clusters obtained from three-dimensional simulations
of cluster-cluster aggregation with feed rates of 0.3125, 1.25, 10,
20, and 50 particles/(time unit} and with a maximum allowed
cluster size s, =250. (a) shows the data before scaling and {b)
shows how the scaling form N(t)-k f(k' t) can be used to
scale curves in (a) onto a single universal curve. The deviations
from scaling apparent on the left-hand side of {b}are a result of
the fact that instead of a zero initial particle concentration
(Mo ——0), a small finite initial concentration was used in these
simulations.

dN(t) =k bN (t) F(k,s„,t), —— (2)

where k is the feed rate, b is a constant, and the term
—F(k,s„,t) &k/s„describes the removal of clusters as it
is done in model I. The term N (t) is included because of
the following consideration. The rate of change of N(t)
due to coagulation is proportional to the number of clus-
ters itself and to the average collision frequency of the
clusters v. In one dimension because of the diffusional
motion this frequency is inversely proportional to the
square of the average distance R between the clusters. On
the other hand, R =L /N(t); therefore, v-N (t)/L,

numbers we obtained for a and P depend on the dimen-
sion of the space in which the cluster-cluster aggregation
takes place but they seem to be insensitive to the mass
dependence of the diffusivity or to the parameter s, . In
one dimension we found that a =0.33+0.02 and
p=0. 65+0.03. The two-dimensional simulations gave
a =0.40+0.04 and P=0.58+0.05 without, and
a =0.52+0.04 and p= 0.46+0.05 with logarithmic
corrections taken into account, while in three dimensions
a =0.47+0.05 and P=0.54+0.05 were obtained.

In addition to the simulations the one-dimensional case
allows an approximate treatment using a rate equation for
the number of clusters

with the characteristic time t =k ~/3b '/ and with
a= —, and p= —,. In Eq. (4) A, is a constant depending on
the initial conditions. The values a= —,

' and p= —', satisfy
the equality a+p= 1 and are in good agreement with the
simulation results. For model II similar considerations re-
sult in the same values for the exponents a and p.

Having determined a and p in one to three dimensions
we are able to discuss the relevance of the Smoluchowski
equation to the cluster-cluster aggregation under steady-
state conditions. One of the notable features of the num-
bers obtained for the exponents a and p is that their sum
is approximately equal to one a+p=1.0 in all dimensions
we investigated. As it was shown by Racz ' a generalized
version of the Smoluchowski equation for the cluster
numbers N, (t) leads to the same result. On the other
hand, from the scaling properties of the original SE, it fol-
lows' ' that a and p should be equal to —,

' in all di-
mensions. This value is in clear contradiction with our
simulation results in one dimension, while it is in a
reasonable agreement with the results obtained for the
two- and three-dimensional cases.

IV. CONCLUSIONS

We have presented results of computer simulations
studies of diffusion-limited cluster-cluster aggregation
under conditions leading to steady-state coagulation. The
study of steady-state models is particularly suitable for in-
vestigating the applicability of the Smoluchowski equa-
tion to coagulation processes. The exponents a and p
describing the asymptotic dependence of the number of
clusters and the relaxation time do not depend on the par-
ticular form of the rate constant X,J. This is in contrast
with the non-steady-state models where the value of K;~
has a strong effect on the behavior of the systems. Our
results indicate scaling as a function of the feed rate with
exponents which are not consistent with the mean-field
approach (SE) below two dimensions. They are in accor-
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dance, however, with the theoretical prediction a+P= I
for all the cases we have considered. It has recently been
shown that the upper critical dimension d, for the ki-
netics of the model of single-site clusters is equal to 2.
The a and P values we obtained for the two-dimensional
case are consistent with the mean-field result only if we
assume that d, =2 for the kinetics of the CCA model and
take the logarithmic corrections into account.
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