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The eikonal theory of electron capture by relativistic projectiles is developed. It is shown that as
long as the electron spin is not measured, a density-matrix formalism can greatly simplify the calcu-
lation. The exact eikonal cross section is expressed in terms of two-dimensional integrals. For 1s-1s
capture an approximate closed-form expression valid for not too high nuclear charges is also given.
This form explicitly displays contributions from magnetic capture and from relativistic modifica-
tions of the electron orbits. At each stage of the development the corresponding Oppenheimer-
Brinkman-Kramers (OBK) result can be retrieved as a special case. It is concluded that the
multiple-scattering contributions described by the eikonal approach are crucial in reducing the cal-
culated cross section significantly below the OBK and second-Born-approximation values. In this

way, good agreement with experimental data is obtained.

I. INTRODUCTION

With the currently developing possibilities to extract
nonradiative electron-capture cross sections' from experi-
mental data collected in relativistic heavy-ion collisions it
is timely now to extend the understanding of capture pro-
cesses into the relativistic regime. Earlier theoretical
work in this field has, perhaps, been motivated not so
much by the pressure of existing experimental data as by
the desire to put the structural examination of electron
capture at very high velocities on a more realistic basis.
Indeed, cross-section studies at asymptotic velocities have
played an eminent role in recognizing the unique behavior
of the double-scattering (Thomas) mechanism in nonrela-
tivistic capture theories.

It is natural, therefore, that most of the pioneering
work on relativistic capture has been based on the first-
order Born, or Oppenheimer-Brinkman-Kramers (OBK),
approximation. Unlike the nonrelativistic OBK (Ref.
9) in which the cross section falls off as E with increas-
ing energy E the relativistic OBK (Refs. 3—5) or impulse
approximations yield an asymptotic decay as E '. This
feature remains unchanged when relativistic second-
Born-approximation terms are included. While for non-
relativistic capture the double-scattering mechanism with
an E " dependence is asymptotically dominant it
simply leads to a reduction of the total cross section in the
relativistic case and can be identified only by the charac-
teristic Thomas peak in the differential cross section.

Although the structural behavior of the cross section is
of great theoretical significance it is necessary also to
compare calculated values with experimental data which
are now emerging. ' And here it turns out" that, for
example, calculated OBK cross sections for 1050-
MeV/amu Ne on targets with charge numbers between 13
and 92 are almost a factor of 10 too large. Similar con-
clusions hold for other systems. Since also the inclusion
of second-order Born terms does not bring predictions
close to the data, it is mandatory to formulate a relativis-

tic multiple-scattering theory.
In the present study we develop a relativistic extension

for the eikonal approach" ' to electron capture. In do-
ing so we demonstrate, quite generally, that a capture
theory using relativistic electron wave functions is con-
veniently formulated in a density-matrix formalism which
from the outset allows for summing or averaging over
presently unobservable spin states. It is then unnecessary
to separately calculate non-spin-flip and spin-flip transi-
tions ' and hence the calculation is greatly simplified. A
brief account of this work, together with a comparison to
experimental data, has been given in Ref. 10.

The nonrelativistic eikonal approach" ' is a compara-
tively accessible multiple-scattering theory which renders
good overall agreement with experimental data for to-
tal' ' and state-to-state' cross sections in symmetric or
near-symmetric collision systems at intermediate veloci-
ties. The conceptual basis of the approach has been dis-
cussed in some detail, '~' and it has been shown that,
physically, the prior (post) version of the theory describes
a hard collision of the electron with the projectile (target)
nucleus followed (preceded) by multiple soft collisions
with the target (projectile) nucleus. Not included is that
small portion of phase space' ' corresponding to hard-
hard collisions and giving rise to the elusive Thomas
peak' and the asymptotic E " dependence of the cross
section mentioned before. Thus the eikonal approach
while missing an interesting but difficult to observe part
of the second-Born-approximation term does include
higher-order Born terms albeit in an approximate way.
The multiple-scattering contributions included in the
eikonal approximation are expected' to play a decisive
role in an adequate description of the charge transfer
mechanism. One can also convince oneself' that, within
the range of applicability, the eikonal approach gives re-
sults very similar (within 10%%uo) to those of the strong po-
tential Born (SPB) approximation' for total and forward
cross sections. The SPB approximation, while not exactly
without difficulties, is considered a reliable starting
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point for subsequent approximations.
One may feel confident that a relativistic generalization

of the eikonal approach should give realistic estimates for
capture cross sections at sufficiently high energies, in par-
ticular because the Thomas mechanism does not qualita-
tively affect the cross-section behavior at high energies.

The plan of the paper is as follows. Starting from a co-
variant form of the transition amplitude we derive in Sec.
II a general cross-section formula expressed in terms of
density matrices for initial and final states and in terms of
transformation matrices. Subsequently, in Sec. III, we ex-
plicitly calculate the density matrices and the resulting
cross section for 1s-1s transitions. %"ith the aid of an o.Z
expansion, this formula is cast into an approximate
closed-form expression in Sec. IV, while in Sec. V we
show how to generalize the density-matrix method to ar-
bitrary initial and final states. In Sec. VI we conclude
with a discussion of results. Atomic units are used unless
explicitly stated otherwise.

and subsequently transformed to the target system using '

1/2

S(U) =
2

(1—5a, ) =St(U), (2.5)

Vp(rp, t )=—Zp U
1 Az

rp C

Zp S
rp

(2.6)

The term with (U/c)a, accounts for the Lorentz contrac-
tion of the Coulomb field as well as for the induced mag-
netic interaction. From (2.6) and (2.2) we immediately ob-
tain the simpler form

where y=(1 —U /c ) ', 5=[(y—1)/(y+1)]', and a,
is the component of the Dirac u matrix in the beam direc-
tion. From (2.4) and the relation yqS(U)y4 ——S '(U)
=S(—U) we see that the electron-projectile interaction in
the laboratory system takes the form

II. GENERAL FORMULATION Af;=i f dt f d r[gf(rp, t')] S f;(rr, t) .
rp

(2.7)

Consider a collision system consisting of a hydrogenic
target (charge Zr) at rest and a bare projectile (charge Zp)
moving along a rectilinear trajectory R=b+ vt with
respect to the target nucleus where v is a constant velocity
and b the impact parameter. Space-time coordinates of
the electron are denoted by r, t in the target frame and by
r', t ' in the projectile frame. We use atomic units
A'=e=m =1, however, the electron mass m is explicitly
displayed when it serves the understanding.

The capture cross section averaged over the initial and
summed over the final projections p,p' of the electron an-
gular momentum j,j' is given by

(2.1)

where the spinor transform S that transforms from the
target frame to the projectile frame is defined by

g'(r', t') =Sf(r, t) . (2.3)

In the prior form of the theory, the electromagnetic four-
potential 3 is produced by the projectile nucleus. Hence,
in the projectile frame, it is simply the instantaneous
Coulomb potential. The covariant operator is then identi-
fied as

Zp
'Vv~ v = —'V4

rp
(2 4)

Here, in the amplitude Af; for capture (suppressing spin
labels for the moment) the perturbation acting on the elec-
tron four-current ' igy g—(with P=g y4) is the elec-
tromagnetic four-potential A . Setting up the final wave
function and the four-potential in the projectile frame and
subsequently transforming to the laboratory frame we can
write the transition amplitude" in the covariant form

Af, — i f dt f d —r[S 'pj(rp, t')]

&&[ iS 'y —A„'(rp, t')S]f;(rz, t),
(2.2)

It now remains to specify the spinor wave functions. In
the prior form of the eikonal approach adopted and ap-
propriate for Zp (Zz the initial and final wave functions

and

g;(rr, t) =P;(rr)e (2.8a)

1/Jf ( rp, t' ) =pf ( rp )exp( iEf t ' )exp —iZ'r f —dt"
r~

(2.8b)

I/ff ( rp, t ) = tI)f ( rp )exp [ i yEf ( t UzT /c )]-
&& exp[ivln(rr +zr )], (2.9)

where v=qZ& and q=1/u. At this point, we may easily
convince ourselves that in the nonrelativistic limit (energy
ef) the phase describing the time oscillation in the projec-
tile frame

are expressed by the stationary target and projectile wave
functions p; and pf, respectively, and the time-dependent
phase factors associated with the relativistic energies E;
and E~. The final wave function is phase distorted by the
electron-target interaction integrated from the time of
capture to infinity. In the target frame, the interaction is
a simple Coulomb potential, and the corresponding target
charge is denoted by Z& where the prime provides a
unique signature for the electron-target interaction in the
eikonal phase. It is clear that 'for Zz ——0 we recover the
OBK approximation. The eikonal integral in (2.8b) has to
be evaluated with rp kept fixed. This is in line with the
condition for the validity of the eikonal approach' that
the kinetic energy of a free electron traveling with the
speed of the projectile is large compared to the larger one
of the binding energies in initial or final state, or
y —1~&1—(1—a Z )'i for ls-ls capture.

Transforming the final-state time oscillation into the
target frame we get
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QEf(t u—zTle )=mc t+eIt+ —,
'

mu t —m(v rT)+

(2.10)

and, similarly,

(2.17a)

consists of an immaterial contribution from the electron
mass (which is canceled by the corresponding term from
E;), the nonrelativistic eigenoscillation and the familiar
translational factor. With the aim of evaluating (2.7), we
use the Gau-Macek representation to rewrite

with

Pi, = f dA, f dA, 'h„(pbp;A, ) h„(pi,p;A, ')A, '"

X (gl) —jv—1 (2.17b)

"T+ T [I (&&)]
—1 giv —le "T+ T dg

0
(2.11)

and combine the coordinate-dependent exponential within
the integrand with the initial wave function to define the
Fourier transform h (p, A. ) through

Similarly, for the final-state wave function we introduce
the Fourier transform g(q) through

Pg(rt ) =(2~) '/' f g(q)e
' 'd'q .

rp'
(2.13)

Both g and h are 4-spinors. Now, by combining (2.8)
with (2.9), (2.12), and (2.13) one may move all space-time
coordinates to the exponents so that these integrations can
be readily performed. With p = (p&,p, ) and q = (qb, q, )

Eq. (2.7) immediately leads to the transition amplitude

2 PTER/Zp

Agy =i d pb dkgp (pb,p+ )Shp(pb, p;k)

)( gl V—] ~be (2.14)

where we have reintroduced the angular momentum com-
ponents. The longitudinal components of p and q take
the fixed values

P;(rT)e =(2m) /2I (iv) f h(p, g)e Td3p .

(2.12)

It is clear and will become explicit in Sec. III that it is
considerably simpler to calculate P& and PI, than any one
of the P" or PI", .

We are now ready to insert (2.14) into (2.1), integrating
over the impact-parameter plane and introducing the den-
sity matrices (2.16) and (2.17). In this way, we obtain the
cross section in the compact form

af; ——
2 Zp Tr SPgsph d'pb, 2.18

(2m )"

2j+1 y'

where the integrand is expressed as the trace of a product
of four 4X4 matrices. The task is now reduced to con-
structing the matrices Pz and P~ for each individual case
considered. This will be done in the following sections.
Owing to axial symmetry, the integration remaining in
(2.18) will, in general, be simply a one-dimensional in-
tegral.

III. CAPTURE FROM INITIAL 1s~qq STATES
INTO FINAL 1sq~q STATES

The presence of high-momentum components in initial
and final states renders 1s-1s capture the most important
case at high collision energies and it is also the only case
that has been considered so far within the Born ' or
impulse approximations. For evaluating (2.18) we first
have to set up the appropriate density matrices P& and PI, .

Starting point is the spinor wave function ' ' for the
hydrogenic 1s state

and

p =ri(E~/y —E; )

t

+g =gp'(pb~p+ )gp'(pb~p+ )

(2.15a)

(2.16b)

g(r)X„
iI)„(r)= (4~) (3.1)

P .—i r cTrX
where Xz with p =+—,

' denotes a Pauli spinor, r=r/r, and
the standard radial functions are

Owing to its spinor structure, the expression (2.14) is rath-
er involved and the evaluation would have to be repeated
for each essentially different combination of p' and p.
For example, in his ls-ls OBK calculation Shakeshaft
considers only non-spin-flip transitions while Moisei-
witsch and Stockman separately calculate non-spin-flip
and spin-Aip cross sections.

A simplification can, however, be achieved by con-
structing density matrices from the initial and final 4-
spinors h and g and by summing over the (currently
unobservable) angular momentum projections within each
of the density matrices. We hence define

g(r)=Ngr' 'e

f(r) =NIr' 'e
(3.2)

with s = [ 1 —(aZ )]'/, a = », , and the normalization
factors

N, = " '" „,(1+s)~/2
[2r(2s+1)]'"

(3.3)
(2Z )s+ 1/2

Xf——— )
1/2

[2I (2s + 1)]'/

pg= Xpg (2.16a)
The Fourier transform gz(q) is obtained by inverting the
defining relation (2.13) and by inserting the partial-wave
expansion

with
I

&g" =g, (pb p+)g„(pb,p+) (2.16b)

lq'Ip = ~X t'J (sr~»f~(r~»~~(q)
l, m

(3.4)
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of the plane wave. Clearly, only i =0 and l = 1 contribute
to the integrals over g and f, respectively, and leave us
with radial integrals whose evaluation leads to

NgI (sp)a(q)= —
&2sin s~tan (3.5a)

q (z'+ ')"~ k~= p+i Ae, =(pb,p +i A) (3.9)

over A, . While the radial part of the exponent can be com-
—ATbined with that of the wave function (3.2) the term e

is absorbed into the plane wave by defining' a complex
wave vector

and

Nf I (sp —1),qb(q)=, „sin (sr —1)tan
P

with k~2 pb2+S2 X2+2lkp and p being
(2.15a). As a result, the quantities a(q), b(q),
(3.6) have to be replaced with complex integrals.
abbreviation A, + ——k+ZT+ik~ and s =sT the
take the form

given by
and q in
With the
integ rais

Nf I (sp) ) qcos sptan
q (Z'+q')

(3.5b)
I (s+ ) (g

—(s+1) g
—(s+I))' p = ' r( v)

As a result, we obtain g& in a form that closely resembles
(3.1) as

X A,"-'dA, , (3.10)

a(q)X„
(3.6)

+&2 b(q)(o q)X~

Of course, when g„ is used in (2.14) we have q =pb+p+
with p+ given by (2.15b) and (for ls-ls transitions) relat-
ed to p via Zr+p+ Zr+——p As .(3.6) is made up of
Pauli spinors, the spin-dependent density matrix (2.16b)

X gi'v —
)+mdiv (3.11)

B (p) =N . (A,
' —A, ')A, ' '+ dA,I(' ) o 2k'

x '('+') ' (~-" ~+~-~+ )I (~v) o 2k'

a XpXt abX~Xp(o''q)

ab (o"q)X„X„b'(o"q)X„X„(o.q )
(3.7)

If the integrals B with m =0, 1 are combined to build a
vector

a
I' =

2m' ab(o q)

ab(o .q)
$2 (3 8)

where use has been made of the relation (o"u)(o v)
=u v+io" (uXv) to be employed throughout our further
development. If one wants to keep the spin information
one may substitute X&X„=—,(1+o,) for p=+ —,

' in (3.7)
and subsequently use the same techniques. However, the
reduction work —allowing for spin specification in initial
and final states —is increased by a significant factor.

The construction of Pr, defined by (2.17) proceeds ex-
actly along the same line. Complications arise from the—A(rT+zT )
presence of the factor e and from the integration

I

is built from blocks of 2X2 matrices. At this point, it be-
comes clear how much is gained by first summing over
the spin projections p. Since g X&X&——1 is the 2X2 unit
matrix we have

K=(Bop', Bop +iB)) (3.12)

the A, integral over the spinor function h& defined in
(2.12) assumes a structure analogous to (3.6),

Apg~I h„(p, A, )A,
'" 'dl, = ~ ( K)X (3.13)

~
Ao

~
Ao(o K*)

(o"K)AO (cr.K)(o"K*) (3.14)

This completes the construction of the matrices entering
in (2.18). The matrix multiplication now can be easily
carried out by using the properties of the Pauli sub-
matrices.

As an intermediate result to be used with 1s~~2 final
and any initial state we give here the matrix product

The density matrices (2.17) are then obtained as in (3.7)
and (3.8). We just give the density matrix summed over
spin states

sp, s='+.'
87$ m)p(o. q)+m']2(o e, )

m ~2(cr.q)+m &2(o.e, )

m22
(3.15)

with q=q/q, e, a unit vector in the beam direction, and the coefficients

m~~ =a 25abq, +5 b, m~2 —ab(1 —5 ), m ~——z —— 5(a 25abq, +b ),—m2z —5a 25abq, +——b— (3.16)
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Here 5= [(y —1)/(y+ 1)]', q, =@+./q, and
q=(pb+p+) . In the final matrix multiplication of
(3.15) and (3.14) in (2.18) we only need to consider terms
that contribute to the trace. The final result for the cross
section for capture of an (unpolarized) 1s electron into
both possible 1s states of the projectile is then obtained as

01s-]s 2m& ZJ2 2y+1 " 2 2

y2 0 Q(Pb)d(Pb )

Here, the integrand is given by

Q=mii
I
~o I'

(3.17)

Here, the m,z are the same [Eqs. (3.16)] as before,
q=(pb+p+), p=(pb+p ), and the quantities a, b
result from a, b of (3.5) by the replacements Z&~Zz,
q —+p, sz~sT + 1. The cross section is structurally simi-
lar and numerically identical' to the result obtained by
adding the non-spin-flip and spin-flip cross sections of
Moiseiwitsch and Stockman. In Sec. IV we give a direct
comparison of the more transparent approximate forms of
both the OBK and eikonal results.

+(2mi2/q)[Re(Ao8o )(Pb+P~P )+Im—(~o8i )P+]
+2m', 2[Re(Ao8o )p —+Im(Ao8i )]

+m22[ I8o I (pb+p )+—21m(8o8~i)P-+ I8i
I

']
(3.18)

The calculation of the cross section requires the numerical
evaluation of the A, integrals in Ao, 8o,8i and the addi-
tional one-dimensional integration over pb. The results of
such calculations have been given and discussed in an ear-
lier publication. '

Just for completeness we also give here the capture
cross section in the OBK approximation obtained for
Zz-~0 or v~0. Recalculation of Pb shows that in (3.17)
we simply have to substitute the modified integrand

OBK 2 12 — 2
Q =rn»a + ab(Pb+P+P )

P9'

2P7l )2+ aha +m22b

2 &ZPZT y+ 1 77+ZT

Su (Zz +P ) 2y sinh(irgZz. )

—2gZ&tan ( —p /Z& )
(Selk +Smagn +Sorb )

with

(4.1)

5 ZT 5 2(ZT) 2 1
Seii, ——1+—'i) p + 'i) 2 p + —'i) (Zr )

I

g" 16 8 7+1 ZT 4

(4.2a)

+ 5 g (Zz)
48

S „b = 5a(Zp+Zy ) — 5 a(Zp+Zz. )
5m 5% 3

18 36

(4.2b)

——5aZz qZz. (1——,5 ) — 5 aZ~
5 5m y
8 18 @+1 ZT

2

y (Zr)'
cxZp+1

I Zr

binding nuclear charge, and hence magnetic capture will
have the same charge dependence as Coulomb capture.

In order to study corrections to the kinematically deter-
mined capture cross section, we expand the electronic
wave functions in powers of +ZAN T «1 keeping only the
leading terms and assuming that high-energy approx-
imations can be applied to these correction terms.
This means that (within the correction terms)
p~+-(1375) && Z~ z and tan '(q/Zp)=n. /2 in (3.5).
Correspondingly, in (3.10) and (3.11), we assume that con-
tributions to the integrals arise mainly from values of
A, &~ 137. Using again g = 1/u, 5= [(y —1)/(y+ 1)]'
and substituting v=ivZz (where Zz ——0 for the OBK and
Zz. ——Zz- for the one-electron eikonal approximation) we
derive the result'

IV. APPROXIMATION ANALYTICAL EXPRESSION
FOR THE 1s-1s CROSS SECTION

5m y5 a(Zp+Zz. —5 Zp)
28 y+1 ZT

(4.2c)

While it is not difficult to evaluate the cross-section
formula (3.17) numerically, it is instructive to give an ap-
proximate expression and to discuss it in some detail.
Note that our treatment includes two kinds of relativistic
effects, namely the relativistic kinematics of the projectile
motion and the relativistic motion of the electron in its
initial and final atomic orbits. Compared to the non-
relativistic case, the latter has two important conse-
quences. (1) The electron orbitals and their binding ener-
gies are modified in a Z-dependent manner. (2) The elec-
tron acquires a Dirac magnetic moment which in turn in-
teracts with the induced magnetic field arising from the
Lorentz transform of the static Coulomb field of target
and projectile. The occurrence of a Dirac magnetic mo-
ment for the electron is, of course, independent of the

This final approximate expression embraces a number of
limiting cases which we are now going to discuss. (1) If
we only keep S„i, in (4.1), we obtain the exact eikonal
cross section for relativistic kinematics but nonrelativistic
electron wave functions. (2) If, furthermore, we let y~ 1

and use the nonrelativistic limit p"' =eq ——,U where
e= ——,(Zp Zr) we re—cover the nonrelativistic eikonal
cross section. ' (3) If, in addition, we let Zz ~0, (4.1) col-
lapses to the nonrelativistic OBK cross section. (4) By
using the full expression (4.1) but with Zz. ~0, so that
S„k~1 and S,g„and S„b each reduce to the first two
terms, we retrieve the approximate relativistic OBK re-
sults (summed over non-spin-flip and spin flip) of
Moiseiwitsch and Stockman within the approximation
ZT «p used both in Ref. 5 and here for the correction
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terms. (5) The term S,s„does not depend on the binding
nuclear charges (ZT represents a final-state interaction)
and hence is interpreted as a magnetic contribution to
capture. It may be worthwhile to note that, according to
Ref. 5, the term —5 is entirely due to non-spin-flip
whereas —,', 5 is —,

' non-spin-flip and —,', spin flip. (6) S„&
is composed of terms that explicitly include uZ~ or O.ZT
and hence are interpreted as correction terms arising from
a relativistic modification of the electronic orbitals.
While the OBK contribution is symmetric with respect to
Zz~ZT owing to the post-prior symmetry of the theory,
the eikonal contribution (with ZT ) is not.

A comparison with the results of an exact numerical
evaluation of (3.17) shows' that the approximate formula
(4.1) is very accurate at small aZP T and still for ZT ——73
(at Zp ——10, E=1050 MeV/amu) deviates no more than
15%.

We brieAy comment on the asymptotic behavior of
(4.1). Clearly, the asymptotic energy dependence is E
as for the OBK. The eikonal cross section is, however, re-
duced with respect to the OBK value by a significant fac-
tor. Asymptotically, when y~ oo, 6~1, g~a =,37,
p ~—1/a, the prefactor in (4.1), specific to the eikonal
approximation, takes the form [maZT/sinh(m aZT)]
&&exp[ —2aZTtan '(1/aZT)] which ranges from 0.80 for
ZT ——10, 0.33 for ZT ——50, to 0.15 for ZT ——90. Moreover,
the last term in parentheses in (4.1) contributes another
reduction factor whose size depends on both Zz and ZT.
The combined effect of these factors is to diminish the
eikonal cross section by a factor of 5—15 below the OBK
value. '

V. EXTENSION TO ARBITRARY
INITIAL AND FINAL STATES

The method outlined in Sec. III for 1s-1s capture can
be readily generalized to arbitrary initial and final states.
Adopting the usual relativistic notation one may write a
hydrogenic wave function as

g„(r)X"„(r)

ness, when calculating I'~ we assume that ~~0 so that
(o r) appears with the small component as in Sec. III.

We first calculate the density matrix Pg of (2.16) by in-
troducing the expansion (3.4) into the definition of g so
that

g~p. (q) = 2
7T

a„X",(q)

b (o q)X"„(q)
(5.3)

with

a„=E "f g„(rj)~ (qr)rdr,

.I „+1b„= i —" f f„(r)J~ (qr)r dr .

(5.4a)

(5.4b)

From (5.3) the density matrix Pg" can be directly derived,
in analogy to (3.7). For an unpolarized ensemble we may,
however, again take advantage of the powerful density-
matrix formulation. With the aid of the readily verified
property

2j„+1g X"„(q)[X",(q)]t=
8m.

(5.5)

the unpolarized density matrix Pz is simply given by

2j +1
PK

4m a*b„(o"q)

a„b*,(o q)
(5.6)

h„„(kg)=
1/2

2 a„X„"(kg)

b„(~ k, )X~(k„).
(5.7)

with

which immediately reduces to (3.8) for ~= —l.
In a similar fashion we derive the density matrix P~

(where, of course, v need not be the same) for the initial
state by introducing the complex vector k~ as in (3.9). We
then can write

P„„(r)= if„(r)y"„(r)
(5.1)

oo

a„(A)=i "[I (iv)] ' f g (rj)~ (k~r)e "'r dr

where 7"„ is the we11-known spin-angular function obeying
the relation

and

(5.8a)

(o r)y"„=—y" „. (5.2) b„(A)= i "
, [I (iv—)]

With the aid of (S.2) it is convenient to express the spin-
angular function with the higher orbital angular momen-
tum by that of the lower one. For example, if ~= —1

( —2), corresponding to a large component with s &/z

(p3/3 ), one may rewrite the small component in (5 ~ 1 ) asso-
ciated with p]/p (d3/p) by using (5.2). If, on the other
hand, ~=1, corresponding to a large component with

p&/2, it is advantageous to express the large component by
(o"r) acting on the small (s, /z) component. For definite-

&& f f„(rj)( (kyar)e "r dr . (5.8b)

In constructing PP from (5.7) we have to observe that the
(complex) angles k~, k~ are generally not the same and
hence (5.5) is not applicable. Instead, the addition
theorem for spherical harmonics yields' a Legendre poly-
nomial P~ for the difference angle between the two. As a

K

result, we have for (2.17a)
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a, (A, )a ', (A, ') a„(A,)(o"k g )b '„(A,')

4~ o b (A, )(o"kx)a „*(A.') b„(k)(o"k~)(o"k g )b *„(&')

X A,
'" '(A, ') " 'P~ „[p~+p +ip (k—A, ') +l,l, ']1

A. A.

(5.9)

In order for the A, and A,
' integration to factor one has, in

general, to expand PI in a power series and then separate
the terms in X and A, '. For l (1 the task is trivial, and
cross-section formulas similar in structure to (3.17) and
(3.18) can be worked out. The results are displayed in the
Appendix for initial 2s&&2, 2p&&z, and 2p3/2 states and
have previously been evaluated numerically in Ref. 10.
For arbitrary combinations of I~; and I~f one has to work
out (5.6) and (5.9) and insert the results into (2.18).

As in Sec. III the OBK approximation is easily derived
as a special case. While Pg of (5.6) remains unchanged,
P~ assumes the same structure as Pg, except for the re-
placement q~p, Zp ~ZT, and in the calculation of a, b
the integrands in (5.4) which include the I/r of the
Coulomb potential have to be multiplied by r.

VI. RESULTS AND DISCUSSION

1.05 1.1 1.2 1.5 2
I I I I

4 6 10 20 40 80
I I I 1 I I I I

1O4

figure that in the extreme relativistic limit the cross-
section curves begin to fall off more slowly (as E ') than
in the nonrelativistic theory (as E or E " ). The ap-
proximate expression (4.1) also allows one to distinguish
contributions that arise from the interaction of the rela-
tivistically induced magnetic field of the projectile with
the electron magnetic moment from contributions due to
relativistic modifications of the initial and final electron
orbits.

From both the exact and the approximate eikonal re-
sult, we can easily recover the corresponding OBK result.

In the present work we have developed the eikonal
theory for electron capture by relativistic projectiles. This
approach is applicable if the kinetic energy of an electron
traveling with the speed of the projectile is much greater
than the binding energy in both target and projectile, or
specifically for ls-ls capture, if y —1 &&1—(1—a Z )'~
where Z is the larger of the nuclear charges. As in the
nonrelativistic version, ' ' the prior form adopted here
(and appropriate for ZT )Zz) includes multiple-
scattering effects between the electron and target nucleus.
However, it does not involve the small portion of phase
space associated with hard-hard collisions that are respon-
sible for the Thomas peak in the differential cross section.
The asymptotic energy dependence E ' is the same as for
the first or second Born approximation.

The exact eikonal cross section can be expressed as a
double integral (as compared to a one-dimensional integral
for the OBK approximation ) which can be easily evaluat-
ed numerically for any explicitly given combination of ini-
tial and final states. In deriving the capture cross section
for experiments that do not detect the electron spin polari-
zation we have shown how the use of a density-matrix
formalism significantly simplifies the calculations. This
technique is, of course, equally advantageous if used with
any other capture theory.

Since 1s-1s capture is the simplest and most important
case, we have derived an approximate closed-form expres-
sion for the cross section in this case. The approximate
formula is very accurate for small and intermediate
charges' and only for the highest charges may be off by
40—50%. Figure 1 displays calculated capture cross sec-
tions for bare Ne nuclei impinging on one-electron targets
with various nuclear charges. It is clearly seen from the
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FIG. 1. Cross section for electron capture from a hydrogenic
Dirac 1s&j2 orbital of the target with nuclear charge ZT into a
hydrogenic Dirac 1s&~2 orbital of a projectile with nuclear
charge Zp ——10 is plotted as a function of the collision energy
per nucleon. Cross sections are given in barns (10 cm ). On
the upper edge of the figure the projectile velocity U is expressed
in terms of the relativistic parameter y =(1—U /c )

Cross-section curves are calculated according to Eq. (4.1). Each
curve starts at projectile velocities that are about twice the K-
shell electron velocity in the target.
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In order to do so we just have to switch off the final-state
interaction by setting ZT ——0. While in the eikonal ap-
proach, for a one-electron system ZT ——Zz. , it is tempting
to use ZT as an effectiue final-state charge for a mul-
tielectron target. However, in the absence of a detailed
theory for the final-state interaction, such a procedure
should probably better not be applied.

A comparison with the OBK approximation shows that
the eikonal cross section is significantly (by a factor of
5—15) smaller than the OBK and still much smaller than
the second-Born-approximation result. In fact, it has been
shown in Ref. 10 that this reduction is just what is needed
to bring calculated cross sections into rather good agree-
ment with experimental data for a number of collision
systems and energies.
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APPENDIX: CAPTURE FROM INITIAL
L-SHELL STATES

1. 2sq/2-1s~/q transitions

' 1/2
1 —8'

Nf ———Ng 1+8

and

Z(2W+ 1)
W(2s+ 1)

ao ——2( W+ 1), a( ——c) . (A3)

Electron capture from initial 2s&/2 states is completely
analogous to capture from 1s&/2 states, except that the ra-

With the abbreviation A, + A, +g+iki„——where k2 is given
by (3.9) we get the integrals

oo 00

Ao(p)= . coI (s+1) (A,
"+"—A, '*+")A,'" 'dA+c(I (s+2) (i(, '+ ' —A,

'+ ')i(, ' 'dk
I (iv) 2ikg 2ikg

(A4)

oo oo

8~(p)= aoI (s) (X '—A+')A, " '+ di(, —aoI (s+1) (A, '+"+A+'+")1," '+ dA,I (iv) ' 2ik) 0 2k 2

I (s+ 1) f (Z
—(s+1) g —(s+1))giv I+mdg—1

2ikg

—a(l (s +2)
oo

(A, '+ '+X '+ ')A," '+ dA, with m=0, 1.
0 2k 2 — +

A,

(A5)

If these integrals are inserted into. (3.18) we may use (3.17)
for calculating the 2s1/2-ls(/2 capture cross section for a
single electron. Of course, the quantities p+ defined in
(2.15) have to be recalculated using the appropriate iriitial
energies.

2. 2p~/~-1s~/2 transitions

In this case, the large component of the initial state has
a p&/2 spin-angular function while the small component
has s1/2. It is hence advantageous in (5.1) to express X"„
by X~ „using (5.2). This means that (o"r) appears in the

(2Z )s+1/2

2(2 W)'+ '
2s+1

I (2s + 1)(2W —1)
Ng ——

' 1/2
1 —8

Nf ———Ng 1+8

(A6)

large component and, consequently, the role of the A, B
integrals is inverted, i.e., A0,B ~A,80. Again using
s=(1—a ZT)', W=[ —,'(1+s)]', and g=ZT/(2W)
the radial wave functions are given by (Al) but now
with 1/2

(1+W)'",
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and

ZT(2W —1)
co ——2( W —1), ci ———

W 2s+ I

ao ——28', a~ ——
. cI .

(A7)

When (A8) is inserted into (3.17) we obtain the 2pi~2-
Is»2 capture cross section for a single unpolarized elec-
tron.

3. 2@3/2 1s~qq transitions

Owing to the formal interchange of large and small com-
ponents as compared to the 2sl~q case, the integrals are
easily obtained by the following prescriptions: A~(p),I=0, 1 is derived from 8~(p) in (A5) by the replace-
ments Xf—+Ng and ao, aI~co, cI. Similarly, Bp is de-
rived from Ao in (A4) by the substitution Xs~ —Xf and

co,cl ~ao, a&. However, Q has now to be redefined as

Q=m»[
I
Ao

I
(pb+p' )+2Im(AoAi)p —+

I
AI I']

+ (2m i2/q)[Re(AoBo )(pb+p+p ) —Im(A iBo )p+ ]

+2m i2[Re(AoBo )p —Im(A IBo )]+m22 I
Bo

l

Zs+ I/2

[2r(2.+1)]'"

1 —8'
Xf———Ng

(A9)

Since i~ &0 in this case, the procedure is similar as for
the sl~2 initial state and is outlined in Sec. V. The result
for the unpolarized density matrix Ph is given in
(5.9) with Pi (x)=PI(x) =x. With the definitions

s =(4—a ZT)' and W=s/2 we have the normalization
constants

(A8) In terms of A+ A+Z——T/,2+iki„we get the A, integrals

r

A (p)= 1(s) (A.
'—A, ')i(,'" '+ dX —I"(s+1) (1, '+ "+A, '+")V '+ dA,

oo 00

I (iv) o 2iki„o 2k~~

I=0, 1 (A10)

(p) f 31 (~ 1) (g (s —I) g
—(s —1))giv ]+md—g I (&+1) (g

—(s+1) g —(s+1))pi~—i+mdg
cc

I (iv) o 2iki„o 2ikq

Oo—31(s) f „(X '+A, ')A, '" '+ dA, , m=0, 1,2.
P 2 4 (A11)

Evaluation of the trace in (2.18) then yields [with q =(pb+p+ )'~ ] the integrand to be used in (3.17) as

Q,=~ii[
l
Ao (pi', +p )+2Im(AoA& )p —+

l
Ai I']

+(2m I2/q )[Re(BoA o )(ps +p+p )(pb +p ) —Im(8& A o )(pbp+ +pbp +2p+p )

—Re(82Ao )p+p +Im(BoA I )(pb+p+p )p —+Re-(BIA i )(pi, +2p+p ) —Im(BzA I )p+]
+2m I2[Re(BoAp )(pb+p )p —Im(BIAo )(pt +2p )—

—Re(82Ao )p —+Im(BoA I )p +2Re(B,A
& )p —Im(82A*, )]

+m22[ ~Bo
~

(pb+p ) +41m(BoB& )(pb+p )p

+2
~

BI
~

(pb+2p ) —2Re(BoBz )p +41m(8&Bz)p +
~

82
~ ] . (A12)

With this Q Eq. (3.17) yields the cross section per electron for 2P3/p 1si&2 capture assuming an average over initial angu-
lar momentum projections and a sum over final spin states.

The formulas given in this appendix have been used in Ref. 10 for evaluating the cross sections for L-shell capture.

'On leave from Bereich Kern- und Strahlenphysik, Hahn-
Meitner-Institut fur Kernforschung Berlin, and Fachbereich
Physik, Freie Universitat Berlin, D-1000 Berlin 39, West Ger-
many.

R. Anholt, Phys. Rev. A 31, 3579 (1985).
2H. J. Crawford, Ph.D. thesis, University of California,

Lawrence Berkeley Laboratory Report No. LBL-8807, 1979
(unpublished); M. J. Crawford, L. Wilson, D. Cxreiner, P. J.

Lindstrom, and H. Heckman (unpublished).
M. H. Mittleman, Proc. Phys. Soc. London 84, 453 (1964).

4R. Shakeshaft, Phys. Rev. A 20, 729 (1979).
5B. L. Moiseiwitsch and S. G. Stockman, J. Phys. B 13, 2975

(1980).
D. H. Jakubassa-Amundsen and P. A. Amundsen, Z. Phys. A

298, 13 (1980); and unpublished.
7W. J. Humphries and B. L. Moiseiwitsch, J. Phys. B 17, 2655



32 RELATIVISTIC EIKONAL THEORY OF ELECTRON CAPTURE 121

(1984); and unpublished.

R. Shakeshaft and L. Spruch, Rev. Mod. Phys. 51, 369 (1979).

M. R. C. McDowell and J. P. Coleman, Introduction to the

Theory of Ion At-om Collisions (North-Holland, Amsterdam,

1970).
R. Anholt and J. Eichler, Phys. Rev. A 31, 3505 (1985).

~ D. P. Dewangan, J. Phys. B 8, L119 (1975); 10, 1953 (1977).
F. T. Chan and J. Eichler, Phys. Rev. Lett. 42, 58 (1979); J.
Eichler and F. T. Chan, Phys. Rev. A 20, 104 (1979).
F. T. Chan and J. Eichler, Phys. Rev. A 20, 1841 (1979);T. S.
Ho, D. Umberger, R. L. Day, M. Lieber, and F. T. Chan,
ibid. 24, 705 (1981).

"J.Eichler, Phys. Rev. A 23, 498 (1981).
J. Eichler and H. Narumi, Z. Phys. A 295, 209 (1980).
L. J. Dube and J. Eichler, J. Phys. B (to be published).

E. Horsdal-Pedersen, C. L. Cocke, and M; Stockli, Phys. Rev.
Lett. 50, 1910 (1983);J. H. McGuire, M. Stockli, C. L. Cocke,
E. Horsdal-Pedersen, and N. C. Sil, Phys. Rev. A 30, 89

(1984).
~8J. H. McGuire and J. Eichler, XIV International Conference

on the Physics of Electronic and Atomic Collisions, Palo

Alto, 1985, Book of Abstracts, p. 521 (unpublished).
~9J. Macek and S. Alston, Phys. Rev. A 26, 250 (1982); J. Macek

and R. Shakeshaft, ibid. 22, 1441 (1980); J. Macek and K.
Taulbjerg, Phys. Rev. Lett. 46, 170 (1981); K. Taulbjerg,
XATO AdUanced Study Institute on Fundamental Processes in
Energetic Atomic Collisions, edited by H. O. Lutz, J. S.
Briggs, and L. Kleinpoppen (Plenum, New York, 1983), pp.
349—388.

0D. P. Dewangan and J. Eichler, J. P'hys. B 18, L65 (1985).
2'J. J. Sakurai, Aduanced Quantum Mechanics (Addison-Wesley,

Reading, Mass. , 1967).
The eikonal phase in Refs. 12—14 differs from the correct one
used here by a b-dependent term which has no influence on
the tota1 cross section [T. Ishihara (private communicationi].

~ J. N. Gau and J. Macek, Phys. Rev. A 10, 522 (1974).
~4M. E. Rose, Relatiuistic Electron Theory (Wiley, New York,

1961)~

25J. D. Bjorken and S. D. Dre11, Relatiuistic Quantum Mechanics
(McGraw-Hill, New York, 1964).

z61. S. Ciradshteyn and I. M. Ryzhik, Tables of Integrals, Series
and Products (Academic, New York, 1980), p. 490, No. 3.944.
The post version appropriate to Zp & ZT is obtained from the
prior form (2.18) of the cross section (see Ref. 14) by replacing
Zp~ZT ZT~Zp =Zp and by interchanging initial and final
states except for the statistical factor (2j + 1).


