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Electromagnetic fields in layered-inhomogeneous uniaxial media:
Validation criterion and higher-order solutions of the geometrical-optics approximation
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We study the electromagnetic fields in layered-inhomogeneous uniaxial planar structures using the
geometrical-optics approximation (GOA). Explicit expressions for the fields in the higher- (first-)
order GOA are obtained. We also obtain the validation criterion for the zeroth-order GOA. There
results are important for studying the true significance of the geometrical-optics approximation and
the extension of its usefulness. The GOA solution shows that when total internal reflection occurs
in the medium, the field amplitudes become zero and the angle of refraction becomes m/2. The az-
imuthal dependence of the ray direction and total internal reflection is discussed. The results are ap-
plied to a wave propagation in a hybrid oriented uniaxial nematic liquid crystal in an external field.

I. INTRODUCTION

Approximate solutions are of significance in the study
of wave propagation in inhomogeneous media. They in-
clude first of all the geometrical-optics approximation
(GOA), and also the phase-integral method and the
method of perturbation theory. ' For slowly varying
layered-inhomogeneous isotropic media, GOA and its ex-
tension have been shown to be most suitable. GOA has
also been widely used in the study of optics of layered-
inhomogeneous anisotropic media, such as liquid crys-
tals. ' The wide range of applicability of GOA is due to
the fact that the properties of the inhomogeneous medium
usually vary only slowly in space. The variation is said to
be slow if the dielectric properties of the medium change
very little over distances of the order of the wavelength of
the wave. Evidently the propagation in any relatively
small region of the layer may then be regarded as being
the same as in a homogeneous medium, with the corre-
sponding dielectric properties.

Most of the previous study used directly the results of
the homogeneous medium. Recently Ong and Meyer
presented a general GOA formalism for finding the elec-
tromagnetic fields in layered-inhomogeneous uniaxial
structures using the GOA. Explicit expressions for the
fields in the zeroth order GOA-are obtained. By applying
the results to a wave propagation in a periodically bent
nematic liquid crystal, excellent agreement between the
GOA and exact solution is demonstrated. For example,
the difference between the GOA and the exact solutions
for the amplitudes of the fields is always less than
2X10 of the value of the exact solution through all
space. The solutions of the fields can be improved by in-
cluding the higher-order terms. To investigate the true
significance of the GOA and to extend its usefulness, one
should obtain higher-order correction terms. Only in this
way can one place a precise meaning on the term "slowly
varying. " The first-order term is of particular importance
since by comparing the amplitudes of the zeroth-order
and first-order solutions, the validation criterion for the
zeroth-order GOA can then be obtained. It is the purpose

of this paper to present the first-order GOA solutions and
the validation criterion of the zeroth-order GOA. The re-
sults are then applied to a wave propagation in a hybrid
oriented uniaxial nematic liquid crystal in an external
field. The results show that GOA is more accurate for
the slowly varying medium. The GOA solution shows
that when total internal reflection occurs in the medium,
the field amplitudes become zero and the angle of refrac-
tion becomes n/2. In general, the ray direction depends
on the azimuthal angle of the incidence wave but the total
internal reflection is independent of the two azimuthal an-
gles for the case that we are considering.

II. HIGHER-ORDER GEOMETRICAL-OPTICS
APPROXIMATION

A. Geometry

Throughout this paper, the geometry and notations will
be the same as those defined in Ref. 4. We consider a
layered-inhomogeneous uniaxial medium in which the op-
tical axis always lies in the x-z plane of a Cartesian coor
dinate system and whose components depend only on the
z coordinate. It follows that the components of the
dielectric tensor e(x) are functions only of z. The medi-
um is assumed to be nonmagnetic so that the magnetic
permeability can be set to unity throughout all space. We
let 8(z) be the angle between the optical axis and the z
axis. Then the orientation of the optical axis can be
described by the unit vector n(z) =(sin8, 0,cos8). The
components of the dielectric tensor can be expressed in
terms of 8(z) through e~(z) =E&5~+(E'~~ —6'g)n;nJ, where
eq ——n„e~~ ——n„n, and n, are the ordinary and extraordi-
nary indexes of the refraction. An electromagnetic wave
propagating in the z direction is obliquely incident on the
medium with polarization parallel to the plane of in-
cidence (p-polarized wave), which is the x-z plane. Con-
sequently, only the extraordinary wave will be excited in
the medium. (See Fig. 1.)
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FIG. 1. Geometry of the layered-inhomogeneous uniaxial
medium. The optical axis of the uniaxial medium always lies in
the x-z plane of a Cartesian coordinate system and varies in the
z direction. The orientation of the optical axis is described by
the unit vector n{z)={sin0, 0, cosO), where 0{z) is the angle be-
tween the optical axis and the z axis. An electromagnetic wave
is obliquely incident on the medium with polarization parallel to
the plane of incidence, which is the x-z plane. Consequently,
only the extraordinary wave is excited in the medium. Op is the
angle of incidence and $0 is the azimuthal angle of the plane of
incidence. The azimuthal angle assumes either 0 or m for the
case that we are considering.
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B. Geometrical-optics formalism
and the zeroth-order solution

and

h,(")=O.
(2.9)

For the obliquely incident extraordinary wave, the
fields in the medium can be written as

The solution of the reduced electromagnetic fields in
the zeroth-order GOA are

E(x, t) =(F)(z), 0, F2(z))e'"~" (2.1)

and

Fi =(e» —p )
(0) 2 1/4 (2.10)

H(x, t) =(0, dF~ Idz —ikpFq, 0)e'"~" (2.2)

where k=co/c, and p=(eo) sln8ocosfp, . depending on
the angle of incidence Oo, the azimuthal angle of the plane
of incidence Po, and the dielectric constant eo for the
medium from which the wave is incident. Since the wave
polarized in the plane containing the optical axis, the az-
imuthal angle can have one of the two possible values 0 or
m for the case that we are considering.

In the following discussion, we define a two-
dimensional reduced field F(z) =(F~(z), Fq(z)).
GOA, the solution of F is expressed in the form

n=oo
F( )= '"~" g k "F'"'( )

n=0
(2.3)

in which the amplitudes F'"'(z) are slowly varying func-
tions of z. The phase kP(z) is almost linear in z and
varies much more rapidly than the amplitudes. It has
been shown by Luneberg and by Kline using Duhamel's
principle that this form of solution is an asymptotic solu-
tion of Maxwell's equations. ' We refer to
e' &"k "F'"'(z) as the nth-order GOA solutions. By
substituting Eq. (2.3) into the wave equation obtained
from Maxwell's equations, and equating to zero the terms
in each power of k as we formulated in Ref. 4, we have

I

F("=ZF(" (2.11)

where F'1 ' is defined up to a constant and the phase is
kP(z) with P(z) given by

' none(e33 p) +p—e)3
2 1/2—

p=+ GZ
Sp &33

and R is given by

e&3+pn, n, /(e33 p)—2 1/2

&33

(2.12)

(2.13)

In Eqs. (2.12) and (2.13), zo is some constant and the
upper sign is for wave propagating in the positive-z direc-
tion and the lower sign is for wave propagating in the
negative-z direction. Evidently, F', ' is independent of the
two azimuthal angles but the phase kP(z) and R and
hence F1 ' are dependents of the azimuthal angle.

[a
~

=0. (2.14)

C. Higher- (first-) order solution

A necessary condition for a nontrivial solution to F' ' is
that the determinant

~

a
~

should vanish,
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(2.15)

The relation between b"' and h' ' is given by, according
to Eqs. (2.14) and (2.6),

a11b2 —a12b1 +la12A1(1) (1) ~ (0)

By Eq. (2.5), F2"' can be expressed in terms of F'i" as fol-
lows:

(0)dF1 a 12
F2 ——tp

a 22 dZ a 22
(2.16)

By direct substitution of the components of b"' and with
the use of conditions (2.14) and (2.16), we obtain
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Since dgldz —pR =+n, n, /(@33 p )' and a22 ——e33 p, Eq. (2.18) can be written as
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On making the substitution h'i '= dF'i '—/dz in Eq. (2.15), and with the use of Eq. (2.17), we have

dFi d p dR p d Fi p~ da22 dFi
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(2.18)
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To simplify the discussion, we define two new variables
G and M as follows: E„(x,t) =& Fi '+ Fi" exp[i—kP(z)+ikpx i tot], —

(2.20) (2.26)

and
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Equation (2.22) has the solution of the form

=(e33—p ) M(e33 —p ) dz .(1) 2 1/4 2 1/4
zo

Consequently by Eq. (2.16), the solution of F2" is

F2"——R(z)(pBFi '+F'i"),
where

1 d 633

4R(z)(E33—p ) dz

(2.23)

(2.24)
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Therefore the approximate solutions for the electromag-
netic fields up to and including first-order CrOA are

Then by Eq. (2.19), Fi" satisfies the following first-order
differential equation with coefficients containing deriva-
tives of F i "

dF l dl 6
(2.22)

dz 2 dz 6

3' '
(& p2)i/2

X exp[ikP(z)+ikpx i tot] . —(2.28)

We now discuss the following two important cases:
(i) Homogeneous anisotropic media. For homogeneous

media, de33/dz=dFi /dz=0. Thus F =0 and the
only nonvanishing terin in the solution of F is the
zeroth-order term F' 'e' ~. Therefore Eqs. (2.26)—(2.28)
reduced to the exact solution described by F' 'e' ~ in the
homogeneous anisotropic media.

(ii) Total internal reflection. The amplitude of
F' ' [=(e'33—p )' "] and the phase kP(z) are real only if
F33 p )0. At the point z' satisfying @33(z')=p, the
field amplitudes become zero and the phase is still real.
However, for z having e33(z) &p, both the field ampli-
tudes and the phase become complex and the wave is at-
tenuated in the medium. Since the components of the
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dielectric tensor are real, absorption is absent and energy
is conserved in the medium. The damping of the wave
without damping signifies that the average energy flux
from the incident wave to the medium having @33(z)&p
is zero. Therefore the energy of the incident wave is
transformed to the reflected wave and total internal re-
flection occurs at the point z' satisfying @33(z')=p . We
will show in Sec. IV that when total internal reflection
occurs, the angle of refraction becomes ~/2 and the ray
direction becomes parallel to the x axis. Since total inter-
nal reflection depends only on

~ p ~, it is independent of
the two azimuthal angles. (0 and m ).

III. GEOMETRICAL-OPTICS APPROXIMATION
VALIDATION CRITERION

The solutions we have obtained in Sec. II allow us to
obtain the limits of applicability of GOA. Clearly, GOA
may be considered a sufficientl good approximation to
reality if the higher-order waves can be neglected in com-

p(&)

p(0)
1

(3.1)

Since the amplitudes of the field become imaginary and
the wave will be attenuated if @33(z)&p, in the following
discussion we consider only that e33 Q p . Using the solu-
tions (2.10) and (2.23), we obtain the following integral
condition for the GOA to be valid:

parison with the primary wave. Since the higher-order
approximations are not used, we shall refer the condition
for the zeroth-order GOA to be valid as that for the GOA
to be valid.

From the form of solution Eq. (2.3), the approximation
of GOA is valid only if the first term need to be taken in
Eq. (2.13). For definiteness we will take the component
E„ in the following discussions. Then by assuming that
all second- and higher-order terms are less than the first-
order term and comparing the amplitudes of the zeroth-
and first-order solution, we obtain that GOA is valid if
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We now consider the case in which the function @33 is monotonic in the range (zo,z). Using integration by parts, we
have
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In the expression (3.3), the factors in the integrals are either both positive or both negative. For z &zo, the integral is
positive so that
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where m =3,5 and the subscript max signifies the maximum value in the range (zo,z). Thus we see that the inequality
~

F'&" /(kFP')
~

&& 1 is satisfied if throughout the range we have

, 1 1 P 2 dE'33

8knpn~ (e33 p2)~/2 dz (e33—p2)3/2 dz
d 1

4kn, n, dz (p33 —p }2 i' (3.5)



1102 HIAP LIE% ONG 32

and the value of
2~33(z)—S

ln
633(ZO ) —P

does not become very large. The latter requirement is
usually quite unimportant [the requirement

~

ln(a)
~

& 10
corresponds to 10 &a & 10 ] so that (3.5) can be taken
to be the sufficient condition for the GOA. Therefore the
sufficient (but not necessary) condition for the GOA to be
valid when @33(z) is monotonic in the range (zo,z) is

d 1

4k&l~ ne dz (g33 —p )
2 ~/2 (3.6)

Similarly one can show that Eq. (3.6) is also the sufficient
condition for the GOA to be valid when e33(z) is mono-
tonic in the range (z,zo) with zo &z.

The sufficient condition (3.6) for the GOA to be valid is
violated in three cases: (a) if the gradient of @33(z) is suffi-
ciently steep (i.e., if the derivative de33/dz is large); (b) if
'E33 is sufficiently small; (c) if e33(z) is not monotonic.
Since min(ei, e~~) & e33& max(ei, E~~) and for a typical uni-
axial medium, ej and e~~ are greater than 2, @33 is usually
sufficiently large. The criterion (3.6) will not be valid if
the properties of the medium vary periodically in the z
direction. It could happen that even small amplitude
waves reflected from the various layers would add in
phase, thereby creating a resultant reflected wave, com-
parable in amplitude with the incident wave. This is the
so called Bragg reflection.

When condition (3.6) holds, the two waves propagating
in the opposite z directions are independent of each other.
If there is a sharp boundary where condition (3.6) fails,
the two waves are no longer independent: One transforms
into the other and reflection occurs.

IV. DISCUSSIONS: HYBRID ORIENTED NEMATIC
LIQUID CRYSTAL IN AN EXTERNAL FIELD

The wave propagation in the optically uniaxial liquid
crystals has been studied extensively, but the problem is
extremely complicated and the exact solution for the
fields has only been found for the fields in a cholesteric
liquid crystal and in a periodic bent nematic liquid crys-
tal. As an example of the application of the GOA, we
have considered in Ref. 4 the electromagnetic wave propa-
gation in a periodic bent nematic liquid crystal. The re-
sults showed excellent agreement between the GOA and
exact solutions: The difference between the GOA and the
exact solutions for the amplitudes of the fields is always
less than 2X 10 of the value of the exact solution for all
z. Whereas the difference between the GOA and the ex-
act solutions for the tangent to the extraordinary ray as
well as for the path of the extraordinary ray are always
less than 8&&10 of the value of the respective exact
solution for all z.

As a second example of the application of the GOA, we
consider the electromagnetic wave propagation in a hybrid
oriented nematic liquid crystal ' (HNLC) in an external
electric field. Figure 2 shows the spatial orientation of the
optical axis in the HNLC cell. The optical axis of the

FIG. 2. Spatial orientation of the optical axis in the hybrid
oriented nemetic liquid crystal (HNI C). Solid line describes the
orientation of the optical axis. Dashed line describes the angle
between the optical axis and the z axis normalized by the coher-
ence length g, 8(z). An external orientating field (electric field
Eo or magnetic field 80) is applied along the z direction. The
orientating effect of the applied field conflicts with the orienta-
tion imposed by the surface boundary condition at z =0.

nematic liquid crystal (NLC) is oriented along the long
axis of the elongated molecule. The space between
0 &z &d is filled with a HNLC in which the optical axis
always lies in the x-z plane which is also the plane of in-
cidence. An orientating external field (electric or magnet-
ic field) is applied along the z direction. For electric field,
we require that the NLC has positive dielectric anisotro-
pic at the applied electric field frequency. Then the orien-
tating effect of the applied field conflicts with the orienta-
tion imposed by the surface boundary condition at z=0.
Molecules far from the surface align with the field. Be-
cause of the surface orientating condition, there is a tran-
sition region in which the molecular orientation changes
from parallel to the x axis at z =0 to parallel to the z axis
at z ~~1, as shown in Fig. 2. The depth of this transition
region is measured by a coherence length g, which is
called the electric or magnetic coherence length, depend-
ing on whether the external field is an electric or magnetic
field. For an applied electric field Eo,

1/2
4mk22

e
E'g

where kz2 is the bend elastic constant. e', is the dielectric
anisotropic defined by e,'=@It—ez &0, where ez and e~~ are
the dielectric constants perpendicular and parallel to the
director at the applied electric field frequency. The mag-
netic coherence length is given by

1 /2
22 1'= x. a,

where 7, &0 is the magnetic susceptibility and Bo is the
applied magnetic field. The angle made by the optical
axis with the z axis, 8, is given by tan(8/2)=e ~~. The
orientation of the optical axis can be described by—ln[tanh(z/2g)], as illustrated in Fig. 2. We consider
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the HNLC layer is sufficiently thick (say d & 10/) so that
at z=d the NLC is orienated parallel to the field. The
orientation of the NLC molecules can be described by the

unit vector n = (sin8, 0, cos8) = (sech(z/f), 0, tanh(z/g) ).
Using e;~ =@~5;J+(all —eq }n;nj, the dielectric tensor of the
HNLC medium is given by

e[1—5+25tanh (z/g)] 0 2e5sech(z/g)tanh(z/g)
0 E'g 0

2e5sech(z/g)tanh(z/g) 0 @[1+5—25tanh (z/g)]

(4.1}

whe~e E e~+Ell 2 (n0+n~) 2 5= ~~ ~ll / e~+~ll) ("o—n, )/(n, +n, ). »nce n, &n, for all NLC's, we have
5 (0.

We consider a wave incident from z & d with the polarization parallel to the plane of incidence which is the x-z plane.
The exact solution for the fields are complicated and the solutions have only been found for the case of normal incidence.
However, the zeroth-order GOA approximate solutions for the fields propagating in the negative-z direction in the
HNLC for normal incidence as well as oblique incidence can easily be found from Eqs. (2.10)—(2.13) and (2.26)—(2.28) as
follows:

E„(x,t) =A I @[1+5—25 tanh (z/g)] —p I
' exp[ikg(z)+ikpx itpt], —

(4.2)

E,(x, t) =R(z)E„(x,t), (4.3)

Hy(x, t) = E„(x,t),
I@[1+5—25tanh (z/g)] —p I'~

where P(z) 'and R (z ) are given by

s n, n, I@[1+5—25tanh (z/g)] —p I
'~ +Zpe5sech(z/g')tanh(z/g)

Qz,
d m[1+5 —25 tanh'(z/g)]

(4.5)

(4.6)
2@5sech(z/g)tanh(z/g) —pn, n, I @[1+5—25 tanh (z/g)] —p ]R(z) =-

@[1+5—25tanh (z/g)]

As we did in Ref. 4, we choose the liquid-crystal material 4-n-penthyl-4-cyanobiphenyl (PCB, also referred to as
5CB,K15) as an example. PCB is a nematic liquid crystal between 22 and 35'C with n, =1.562, and n, =1.806. Figure
3 shows the field amplitudes as a function of z for op=1, 8p n./6, Pp

——0, —a—nd P=m. The amplitudes of the fields are
normalized so that

~

E„(z=d)
(
=1. The results show that

~
E„(z)

~

and
t H~(z)

~

are independent of the two values of
the azimuthal angle but

~
E,(z)

~

depends strongly on the azimuthal angle. Figures 2 and 3 show that as z ~~/, the mol-
ecules align along the orientating field direction so that 8=0 and the field amplitudes become constants.

Let us now consider the applicability of GOA. Since @33(z)=@[1+5—25 tanh (z/g)] is monotonic in the range (0, ao ),
by Eq. (3.6), the sufficient condition for the GOA to be valid is

e
i
5

i [1+5—25tanh (z/g)]tanh(z/g)sech (z/g) (( l
2k('n, n, I @[1+5—25tanh (z/g)] —p I

~
(4.7)

The estimate of the validity of GOA, L, depends mainly
on two terms: (i) The first main factor is kg (=2~//A, )

which describes the rate of the spatial variation of the
dielectric properties (g) with respect to the wavelength of
the light (k=2m/A, ). (ii) The second important factor is
('E33 p ) [= (F33—epsin 8p) ] which relates the spa-
tial variation of the dielectric properties (@33) with the an-
gle of incidence (8p) and the dielectric properties of the
medium from which the light is incident (ep).

Figure 4 shows the criterion L as a function of the
product of coherence length and wave vector, gk, for PCB

with e'p= 1 8p=7T/3 and 8p=w/6. For /=1 pm,
g'k —10—20 for visible light but L ~ 0.003. Thus GOA is
still valid for g-1 pm. When the coherence length is
comparable with the wavelength of the light, gk-2~,
L-0.005. This shows that when the wave is incident
from air into the HNLC, GOA is a good approximation
even when dielectric properties change quite rapidly as
compared to the wavelength of the light. However, when

ep is of value comparable to or greater than eq or all, L de-
pends strongly on the angle of incidence. The dependence
of L as a function of the reduced wave vector ~p ~
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FIG. 3. Amplitudes of the fields in the zeroth-order GOA as
a function of z for a HNLC with PCB as the material. In the
calculation, we put n, = 1.562, n, = 1.806, eo——1, 0O

——a/6,
Po ——0, and $0 n T——he .amplitudes of the fields are normalized
so that

l
E„(z=d)

l
=1. The amplitudes of E„and H„are in-

dependent of the two azimuthal angles $0 (0 and n), but th. e am-
plitude of E, depends on the azimuthal angle.

FIGt 5. Estimate of the validity of GOA, L, as a function of
the reduced wave vector

l p l
=(Eo)'~ sin00 for PCB (4- n-

pentyl-4'-cyanobiphenyl) at g= 1 pm. GOA becomes inap-
propriate for

l p l
& 1.45.

[=(eo)' sin8c] with g'= I pm is shown in Fig. 5. Clearly
I. increases as p is increased. GOA becomes inappropri-
ate for

l p l
& 1.45. For wave incident from air, eo ——I, we

have
l p l

(1 and L &0.004. This shows that GOA is a
good approximation for all angles of incidence. For
lp l

&1.45, L &0.02 and GOA becomes inappropriate.
At that region, strong reflection in the layer occurs. Al-
though GOA is not appropriate for the case where strong
reflection occurs, as will be shown below, GOA does con-
sistently predict that when the field amplitudes become
zero, the ray direction becomes para11e1 to the x axis. We

(4.8)

consider a wave incident from a medium with index of re-
fraction equal to 1.7, i.e., eo ——3.89. Then 80——30' corre-
sponds to

l p l
=0.85 and 80——70' corresponds to

lp l
=1.60. The amplitude of the x component of the

electric field as a function of z for 6)o ——30' and 80——70' is
shown in Figs. 6 and 7, respectively. The field amplitude
decreases to zero in the layer for eo ——70', i.e., for

l p l
=1.60. Therefore the energy of the incident wave is

transformed into the reflected wave and total reflection
occurs in the medium. The rays turn around in the layer
at the point z' satisfying @33(z')=p, i.e., at the point

1/2
p —e(1+6)

—2@5

10

10

0.95

10
10 10 10

FIGt 4. Estimate of the validity of GOA, L, as a function of
the coherence length and wave vector, gk (=2m//A, ) for PCB
(4-n-penyl-4'-cyanobiphenyl) with eo ——1, 80——~/'3, and t9o ——~/6.
For g= 1 pm, gk —10—20 for visible light. When the coherence
length is comparable w'ith the wavelength of the incident light,
gk -2w and L -0.005. GOA is still a good approximation even
when g-A, .

FIG. 6. Amplitudes of the electric fields and the angle of re-
fraction as a function of z for a wave incident from a medium
with eo ——2.89, and 80 ——30. The amplitude of the field is nor-
malized so that

l
E„(z=d)

l
=1. In general, the ray direction

depends on the two azimuthal angles.
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90 we have

cn, n, iA /S(z)= ( —R,O, 1) .
Sm

(4.9)

- 70
The direction of the ray is given by 8„/S, = —R, thus we
find the angle between the ray vector and the z axis to be

P= —tan '(R)

e'13 pn, n,—(@33—p )
=tan —'

&33
(4.10)

FIG. 7. Amp1itudes of the electric fields and the angle of re-
fraction as a function of z for a wave incident from a medium
with eo ——2.89 and Oo ——70'. The amplitude of the field is nor-
malized so that j E„(z=d)

~

=1. When the amplitude of E„be-
comes zero, the angle of refraction becomes m/2 and the ray
direction is parallel to the x axis. In general, the ray direction

depends on the two azimuthal angles, but total internal reflec-
tion depends only on eo and Oo, and is independent of the two
azimuthal angles $0 (0 and m).

To complete the description, we will discuss now the
direction of the energy flow. The energy flux vector in
the medium is described by the time average of the Poynt-
ing vector S=cRe(E)&&Re(H)/4n. . By Eqs. (4.2)—(4.4),
we have

In Figs. 6 and 7, the angle of refraction P is shown as a
function of z for Oo

——30' and Oo
——70'. The results show

that as the field amplitude becomes zero, the angle of re-
fraction becomes n. /2 and the ray direction becomes
parallel to the x axis. Thus total internal reflection occurs
in the layer. Equation (4.7) also indicates that L depends
only on

~ p ~, i.e., L depends only on the absolute value of
p and is independent of the two azimuthal angles Po (0
and n) This. .is also evident from Figs. 6 and 7 that in
general, the ray direction depends on the azimuthal angle
but total internal reflection is independent of the two az-
imuthal angles. For a wave incident from z &0, because
633 p increases as z is increased, there will be no total
internal reAection in the slowly varying layer. However,
if ~p ~

&n„ then the wave will be total reflected at the
boundary z =0, but not in the layer.
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