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Stability of magnetically insulated electron flow
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The stability of magnetically insulated electron flow is studied for wavelengths longer than gyro-
lengths and frequencies lower than gyrofrequencies. This is done by using a general theory that al-

lows for a distribution of electrons of different canonical momentum and total energy. The stability
theory leads to a set of integro-differential equations for the eigenfunctions of the potentials. The
integral portion of the equations relates positions across the flow that are connected by the finite size
of the electron orbits. A general stability criterion is found. The stability of the flow is determined

by the distribution of the electrons in canonical-momentum —total-energy space. The criterion can
be stated roughly as depending upon whether the distribution function increases or decreases with
drift velocity. If it increases, the flow is unstable.

INTRODUCTION

In the effort to achieve inertial confinement fusion with
light-ion beams, magnetic insulation is crucial to the
transport of megavolt- and megampere-level power pulses
along transmission lines as well as to the efficient produc-
tion of multiterawatt ion beams. In this context, magnetic
insulation is the use of a magnetic field to prevent field-
emitted electrons from the cathode of a voltage-stressed
gap from crossing to the anode. This magnetic field can
either be externally applied or can result self-consistently
from the flow of the current in the insulated device.

The theoretical analysis of magnetically insulated sys-
tems dates back to the study of nonrelativistic magne-
trons. ' Developments in the field of pulsed power, how-
ever, have necessitated the treatment of relativistic,
strongly diamagnetic systems. Until recently, equilibrium
theories of these flows have been either laminar, ' in
which all electrons move in straight lines parallel to the
electrodes, or quasilaminar, in which the electrons all
have a single, cycloidlike orbit. ' A more recent theory
allows a continuum of orbits. ' " The study of the linear
stability of these systems is far from complete. The sim-
plicity of the electron trajectories in laminar systems has
allowed the stability of these equilibria to be studied in
some detail.

We present here a linear stability theory for arbitrary
distribution of electron orbits based upon the linearization
of the general, three-dimensional (3D), time-dependent
theory of Ref. 11. This theory assumes that wavelengths
are long compared to electron gyrolengths, and frequen-
cies are low compared to gyrofrequencies.

Particle-in-cell simulations at Sandia National Labora-
tories' using the MAGIC code, ' as well as other labora-
tories using the MASK code, ' and earlier work using static
codes, have indicated that these flows tend to be nearly
laminar, although not the Brillouin flow used in early
laminar theories of magnetic insulation where all electrons
have the same total energy and canonical momentum.
The final distribution of electrons in these simulations is
determined by fluctuations in the electric and magnetic

fields. The stability theory to be presented indicates that
the tendency toward laminar (but not Brillouin) flow may
be due to the system's efforts to reach a stable configura-
tion.

THEORY

%'e will consider the 20, time-dependent case here. It
is convenient to use normalized variables. Time will be
multiplied by the speed of light so that it has dimensions
of meters, and the potentials are given by

a=eV eA

pic plc

In the above, V is in the scalar potential; A is the x com-
ponent of the vector potential, where x is the dimension
along the direction of power and electron flow; m and e
are the electron mass and the magnitude of the electron
charge, respectively; and c is the speed of light. The di-
mension across the flow is y, and the magnetic field is in
the z direction (Fig. 1).

The relevant equations" are the equations for the scalar
and vector potentials in terms of the charge and current
density (Lorentz gauge). The current and charge densities
involve integrals over the distribution function J

Anode

e

Cathode

FIG. 1. Magnetically insulated flow. For this problem there
is no z dependence, but the magnetic field is in the z direction.
The shape of the particular orbits is determined by the values of
P, 8. The distribution function J(P, 8') determines how many
electrons are in any interval of P, 8' space, and also determines
the equilibrium potentials a(y), P(y).
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where the function H is an adiabatic constant of motion
defined by

where U is the unit step function [ U(x) = 1 for x & 0,
U(x) =0 for x & 0] and G is the pressure integral

G(x,y, t)= f dP f dWU(Q)Q'/ J(x,t,P, W) (lb)

and Q is defined by

Q(x,y, t,P, W) =[1+/(x,y, t) ~ W]2

—1 [a(x,y—, t)+P]2 .

In the above, P, W are the canonical momentum (along
the flow) and total energy of the electrons. When Q & 0,
Q =(yu~), where y is the usual relativistic factor and uz
is the y velocity component, and those values of y where

Q &0 represent regions of the transmission line which are
inaccessible to electrons with that P, R'. The equation
governing the distribution function is

P~P(y)+5/(y, t)e'

a~a(y)+5a(y, t)e'

J~J(P, W)+5J(t, P, W)e'

H~H(P, W)+5H(t, P, W)e'

These are now put into the govermng equations. In the
potential equations (la), the linearization of the left-hand
side is straightforward. The source terms on the right-
hand side contain two parts: those due to expanding Q'/
in the perturbed potentials, and those due to the perturbed
distribution function J. The expansion in the potentials
may be done by writing the source as a function of the po-
tentials and expanding. In taking derivatives one must be
careful about moving them from outside to inside the G
and H integrals. The higher order derivatives will have
integrals with infinite parts which are canceled by the
derivatives of the endpoints. When done as a limiting
process, all derivatives exist, however, and the first deriva-
tives used here have no such problem in any case. The
equations for the one-dimensional, time-independent sys-
tem are

BGa"=—
acx

(3)
G

a

where a prime denotes derivatives with respect to y, and
the G integral (lb) involves only the zero-order potentials
and distribution function from here on. The first-order
equations become

H(x, t,P, W) = f dy U(Q)Q'/ (2b)
aG aG a5a5a"+ 5a+ 5$ k5a-
Ba' B Ba Bt'

In Ref. 11, the conservation of H is proven only to
second order in the ratio of the gyrolength to scale length
of changes along x, and in the ratio of gyroperiod to the
scale of temporal changes. On the left-hand side of (la)
we have kept changes to all order, and second-order
changes will be important. For the unperturbed solution,
H gives the exact gyroperiod (2BH/BW), gyrolength
( —2BH/BP), change in total energy over one gyration
( —2BH'/Bt =0), and change in canonical momentum over
one gyration (2BH/Bx =0). Since the gradients (along the
flow or in time) are first order, the dynamics are correct
to second order, so we have been consistent. In addition,
it is often true that action integrals such as (2b) are con-
served for faster changes than has been proven. There-
fore, while the result is rigorously correct for

k ~&1, 0 ((1,aa aH
aw

BQ1/2=—f dP f dWU(Q) 5J(P, W),
(4a)

B265~ B2G
5 k25~ B 5$

Ba BP
1/2

P O'U P, S',

k 5J
BP

B5J BH .k5H BJ B5H BJ
Bt BW=' BP Bt BW

The derivatives of G in (4a) are evaluated at the zero-
order solution a(y),P(y). The perturbed Hamiltonian is
given by

where k and 0 are the wave number and frequency,
respectively, it may well be true that the result will be
valid when these numbers are of order one.

The potentials, the distribution function, and the adia-
batic constant are now linearized about a 10, time-
independent state:

&a 1/2 B 1/2
5H= f dy U(Q) 5$+ 5a

I.

Laplace transforming (4a), (4b), and (4c) in time, using

5$(y, s) =f dt 5$(y, t)e

etc., we find

(4c)
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BG — BG5a"+ z 5a+ 5P+ f 'dygKpg (y y)5$(y)+Kpp(y, y)5a(y}]=(k +s )5a+Sp,
&c

BG — BG 5a —f dy[K (y,y )5a(y )+K (y,y )5$(y )]=(k'+s2)5$ —S
BaBQ &c

Kg+(y, y ) = f dP f dw . U(Q(y) ) U(Q(y ))
ika J/aP saJ—/a W aQ''(y) aQ' (y)

(6)

where the bar denotes the Laplace-transformed perturba-
tions, and A, B in the expression for the kernel K are P or
fK The S terms are the source terms at t =0, which have

been lumped together. These terms arise due to the La-
place transformation.

The kernel (6) of the eigenvalue equation shows reso-
nances between electron drift velocity and wave phase
velocity. If s in the Laplace transform of (4b) is replaced
by i 0, it is f—ound that 5J is given by

kaJ/5P+ naJ/aW=
kaH/aP+naH/a W

dH = dP+ dW,aH ea
BP

(Sa)

The derivative of H with respect to momentum P and en-

ergy W are minus one-half the gyrolength, and one-half
the gyroperiod, respectively. Since the ratio of the gyro-
length to the gyroperiod is the electron drift velocity, the
denominator will have a zero when the phase velocity
0/k equals the drift velocity. There will thus be a singu-
larity in the integrands involving 5J for these electrons.
Moreover, it is clear from (5) that when the contours of
equal adiabatic constant, H, and equal density, J, are
parallel, there is no imaginary part to k —0 because the
kernels in (6) will be real. It is convenient to change the
coordinates of the distribution function from P, W to 8,H,
where H is as defined in (2b), and 8 lines are normal to H
contours in P, W space (see Fig. 2). H obeys the differen-
tial equation

of course, so 8 can be defined as

dO= — dP+ dW .
"dH dH

The parameter 8 is given by (Sb), but has a rough relation-
ship with the average distance of a particle orbit from the
cathode. Since 8 can be found on the stable laminar line
L„and each point on L, corresponds to the y of the par-
ticular laminar orbit, there is a simple correspondence
with y. It can be shown that this y is between y and y+
for particles of the same 8, even when those particles are
away from the laminar line.

The Jacobian of the transformation from P, W to O,H'
gives us

f dPdw f dOdH i ', a'=(-5H/aP}'+(aH/aW}'.

(9)

Changing the partial derivatives of J with respect to P, W
to partial derivatives with respect to O,H then yields

i k dJ/dP sdJ/d W—
ik BH /dP sdH /d W—

BJ t'kdH/d W+sdH/dP i3J
aH i aH/aP saH/aW 58—

It is thus clear that any J which is independent of 8 (i.e.,
isocontours of H and J are parallel) has a real Kzs.
Moreover, this suggests that the sign of BJ/BO determines
whether the wave is growing or damped.

The kernel (6) can be rewritten

( ) f dO f dH[~(H 8)] 2 BJ ikdH/dW+sdH/dP BJ &a~a
BH ikdH/BP sdH/dw BO — Q»2Q ~~~

U(Q(y)) &Q(y) — U(Q(y)) BQ(y)
2 BA

'
2 BA

(10)

where the subscripts on the parentheses indicate that
P(H, O), W(H, O) are to be used for P, W. It is easily
shown that R~ and h are well behaved, and not singu-
lar. The integrand of (10} is singular when Q or Q are
zero.

The function Q is dependent on H, O, and y, i.e.,

Q=Q fy, P[H, O], w[H, O]] .

There are zeros of Q at y+(H, O} and y (H, O), i.e.,
I

Q(y~, H, O)=0. If y+ and y are plotted versus H'
(holding 8 constant) they would look something like Fig.
3. If the H integral were done before the 8 integral to ob-
tain Kzz(y, y ) for the case shown in Fig. 3, the first unit
step function would become one at H~, and the second at
H2, so the integrand would be zero for H &Hq. A.t
H =H2, the denominato'r term [Q(y,H') Q (y,H)]'~'
would vary as (H Hq)' for H &H2—, and the integral
would exist. %'hen y and y are such that Hq ——H2, on the
other hand, that term varies as [(H —H~)(H —H2)]'
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Turning Point at Cath
W Unstable Laminar

Orbits Ya

P

Allowed Domain

FIG. 2. The allowed region of P, W space. Electrons that
have P, S' above the cathode (anode) line will hit the cathode
(anode) in less than one gyration. Those on the laminar line will
be in straight-line orbits. The unstable laminar line refers to the
stability of the orbit, not the entire flow. It is impossible for an
electron to be below the stable laminar line as it would have neg-
ative (yu~) . Several contours of equal H (more or less parallel
to the stable laminar line which is also the H =0 line) and
equal-8 contours (normal to the H contours) are shown.

= ~H Ht
~

and —the integral diverges logarithmically.
This can happen either when y=y which will give a
ln ~y —y ~

term to the kernel, or it can happen when ei-
ther y+ or y is greater than yI and the other is less than
y~, as the case in Fig. 3 shows. This will give another log-
arithmic term. If the curves y+ and y were symmetric
about y =yI the term would look like ln

~
(y+y)/2 —yt ~,

for example. These two terms have simple physical signi-
ficance. The electron charge density per unit H, per unit
0 is infinite at y+, which is to say at the two extremes in

y of the particular orbit. If that electron is perturbed at
one of these extremes, say y+, it has a great effect at both

y+ and y . When the 0 integral is done following the H
integral, the y+ and y will not occur at the same places
for different 0, and the singularity due to y on one branch
and y on the other will integrate out. The singularity
when both are on the same branch can be moved outside
of the 8 integral after the H integral has been performed,

Yo
H2 H

FIG. 3. A plot of y+ and y versus H for constant 0. It is
easily shown that By+/BH &0 and By /BH &0. For a larger 8
both of the lines would move upwards. The function Q is posi-
tive inside the two curves, and therefore when integrating over
H one of the unit step functions would be zero until H2 was
reached. The denominator of the last term in brackets of (10)
would have zeros at H ~ and H2.

aH/aI—
aII/am (12)

Using this, and defining s = i Q= i (co+iv),—th—e kernel
(10) can be written

and consequently will remain. The kernel will always
have a ln ~y —y ~

singularity, as might be expected for a
two-dimensional problem. The singularity will integrate
out when the y integrals are done.

In this paper we wish to find a stability criterion for the
distribution function J(O,H). To do this we will assume
small growth rates. The drift velocity of an electron with
I', 8'is given by"

IC„z(y,y )= f dH f d8[h (H, O)] +
1+(co/k)vd +i(vlk)vd gJ RzRz

dH d8[h(H, O)]
(jJ [I+(co/k)u~](ud —ru/k) —(v/k) ud QJ
BH (ud —co/k) +(v/k)

.(1 2) v/k BJ
(ud —ro/k) +(v/k) g I/2g t/2

H, B

(13)

Since we assume
~

v
( &&

~

co ~, we would like Kz~(y, y) in the limit of v—&0. Taking the limit of (13) as v~0, we obtain
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r

hm K&z(y, y) =f dH f dg[h(H, g)] , aJ &~&a
v—+0 g I/2g I/2

+f dH fdg[h(H, g)] z I+(co/k)ud gg RzR~

t

' —1

Bvd ()z RgRg
+in f dH[h(H, g)] (1+v~)

()8 Qg Q 1/2Q )/2 s (H)

where f indicates the Cauchy principal-value integral, and the sign of the last term depends upon whether v has ap-
proached zero from the positive or negative side. The function 8„(H) is the value of 8 at which the electrons with H
resonate with the wave, i.e.,

ud(g, (H),H) =-
k

The side from which v approaches zero is determined by the requirement that the contour of s integration for the inverse
Laplace transform pass to the right of any singularities in the integrand. This requires that the real part of s (which
equals v), approach zero from the positive side. Therefore the plus sign applies in this case. Since we will only need the
imaginary part of K„~ in what follows, we define kq~ by

kzz(y, y)= lim 1m[K&z(y,y)]
v—+0+

aod aJ=m f dH h '(1+vd)
88 Bg g)/2g &/& e (H)

We wish to find the growth rates for the normal modes of (5). Rewriting (5) and dropping the source terms

4p+ + k + 2 Zp+
g g

4w+ dy[Kpw(y y %w(y )+Kpp(y y)Sp(y )]
BG BG
Bcx 8 Ba

(16)

(17a)

kw+ & —k —,kw 4——f dV[Kwp(y yap(y)+Kww(y y Vw(y)l=o
BG BG

Ba BP
(17b)

where gw are the normal modes of 5$, and gp are the normal modes of 5a. Multiplying (17a) by gp, and taking the
complex conjugate of (17b) and multiplying by gw, we get

kpkp+ + k + 2 Ep(p+
g g

kpkw+Cp f dy[Kpw(y y )(w(y )+Kpp(y y)4(y )1=oBG
Bcx 8 Ba Vc

8 6 8 6Ewe+ &*'—k' — kwPw — Ewe —kw f dy[Kwp(y y)Fp(y)+Kww(y y Cw(y)]=o
$/2 Ba BP Vc

which can be added and integrated over y =y, to y, to yield

BG a'G
dy kpkp 0' k—ww+ &—'—k' — kpkp+ &*'—k'+ kwkw

J

—f„dy f dy[Kww(y y)awk w+Kwp(y y)awk p Kpw(y y )—Cpkw Kpp(y y )k—pk p]
C C

+ (5P5P +kwkw )

where we have integrated by parts to get the first and last terms. By subtracting (19) from the complex conjugate of (19),
and repeatedly using Kz~(y, y )=K~& (y,y ) from (10), and the fact that y and y can be switched in any term of the double
integrals, we get the expression

V~—2cov f dy[gz g w —gpgp]+Im(gpgp+gwg w)& + f dy f dyI™[Kww(y,y)](we'*w+Im[Kwp(y, y)]g wg p

+ Im[Kpw(y y )Npk w+ Im[Kpp(y y )lkp0 p I

Taking the v~0+ limit and using (16),
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&a
2cov — f dy [gwow —/pe'p]

—1

Im(dpkp+ kwCw },'

= rr f dH h ( 1+Ud ) (F F* +F F*~F Fw+FpFp) (20)
8„(H)

where

—I /2

FA (P ~)= f» dy(ewkw epkp }

x f dy4&~Q '"
and we assume for the moment that the integral term in
the parentheses is positive.

The second term on the left-hand side of (20) is zero for
the following reason. The potentials g'p and g'w are zero
at the cathode because that was assumed in the definitions
of P and W. The tangential electric field, e„, at the anode
is given by

e„= i (kg—w Qgp )— (22a)

and is zero since the anode is metal. The Lorentz condi-
tion is given by

i (kgp Qgw )+—gp ——0, (22b)

where g'py is the y component of the vector potential (re-
call that g'p is the x component). At the anode gp is zero
since it is zero inside the anode, and integrating the y
component of Ampere's law

Q, —(k —Q )gp ——jy (22c)

tells us that it is also zero at the anode surface. We there-
fore know from (22a} and (22b) that the potentials are
both zero at the anode. These are the same boundary con-
ditions that are found for all slow (sub-speed-of-light), or
non- TEM (transverse-electromagnetic mode) modes in
transmission line theory. Using these boundary condi-
tions the second term on the left-hand side of (20) is zero
and consequently,

9J
2cov=m f dH k (1+Ud)

X(Fw+Fp }(Fw+Fp)* '8 (M)

=~f dH
' aII

aw

—2
BUd BJ

B8

X
I
Fw+Fp

I

' (23)

Finally we must argue the assumption that the integral

f, dy(k*wSw Gap}— (24)

is positive. Equations (17) are merely the expressions

gp+ (k Q—)gp ——j,
km+ «' —Q'4 w =S»

where j and p are the current and charge perturbations,
respectively, and (k —Q } is positive for these slow
(phase velocity less than the speed of light) waves. All
zero order terms in the continuity equation are zero. The
first order continuity equation is

Q Jyikj —i Qp+ j~ =0 or j=—p-a ik
(25)

Clearly, if j» were zero, we would get that gp ——(Q/k)gw
and since

I
Q

I
&

I
k I, (24) would be positive. For this

case we can make an even stronger statement, however.
The perturbed currents in the x direction (j) and the y
direction (j») are of the same magnitude. This must be so
since the x and y velocities are similar, so the magnetic
forces, which are comparable to the electric forces, must
be about the same. But j» —j»/(y, —y, ), and since we as-
sume that k(y, —y, ) « 1, the two terms on the right-hand
side of (25) must be much larger than j. If this is so, then

Ij I « I (Q/k}s I & Ii I
»d leap I

«
I Cw I

Therefore
(24) is positive.

The r)vd/88 term in (23) is always positive for flows
with only electrons, so the sign of v is the same as that of
BJ/B8. The criterion derived is global in the sense that it
depends upon all of the electrons that drift with the phase
velocity. There is no a priori reason for BJ/88 to have
the same sign over the entire H integral along the 8,(H)'
path. For a case where the sign does change, the positive
part of the integral must dominate the negative part for
instability to occur.

In many flows the drift velocity is dependent mostly
upon 8. For these flows the ratio of the partial derivatives
of J and Ud looks like BJ/Bud, and so the question is ap-
proximately whether electron density in P, R' space in-
creases with drift velocity If so th. e flow is unstable. It is
important to look at the density gradient in P, R' space
and not x,y space. For example, for Brillouin flow' the
charge density and drift velocity both increase with dis-
tance from the cathode, so that dn, /dud is positive.
However, in P, 8' space the distribution function is
nonzero only at the point P=0, 8'=0, and the criterion
for stability is met. This is a moot point in this particular
case, however, because of the highly-degenerate nature of
the Brillouin flow solution. For these flows, it can be
shown that all of the electrons lie at the intersection be-
tween the stable and unstable laminar lines (Fig. 2), and
all'electrons at that point can be shown to have infinite
'gyrolength and gyroperiod. Therefore, the assumptions of
the theory are not met. For the case of the quasilaminar
flows ' the distributiori function is also infinite at P =0,
8'=0 and zero elsewhere. Unlike the Brillouin case all
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electron orbits have the same shape. For this case the
gyrolength and gyrofrequency are finite and the theory
predicts stability.

The growth or damping of the waves predicted by (23)
is very similar to the growth or damping of Landau
waves. ' In either case, the wave tends to slow the elec-
trons moving slightly faster than the wave and accelerate
those moving slower than the wave. If there are more
electrons moving faster than the wave, there will be a net
transfer of particle energy to the wave and it will grow.

CONCLUSION

We have found a general criterion for instability of
magnetically insulated electron flow for long wavelengths

and low frequencies compared to the gyrolengths and
gyrofrequencies of the electrons involved. The growth
rate is determined by (23). For many situations the stabil-
ity criterion can be stated roughly as the following: Flows
with electron populations in P, R' space increasing with
drift velocity are unstable. This criterion has been helpful
in understanding two-dimensional, time-dependent simu-
lations.
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