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Bifurcation structure of the nonautonomous quadratic map
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The change in the bifurcation structure of a quadratic map due to the introduction of linear time
dependence of the bifurcation parameter is investigated. Although nontrivial fixed points do not ex-
ist for this system, a bifurcation diagram can be constructed provided the sweep rate is not too large.
The characteristic scaling features and hysteresis effects exhibited in this diagram are studied. Since
studies of bifurcation points are often carried out by such parameter variations, the results should
provide guides for the interpretation of experimental data.

I. INTRODUCTION II. BIFURCATION OF THE TRIVIAL SOLUTION

, x, =+A, (x1 —x,, )=f(x, ;A,, ),

where the bifurcation parameter A, is assumed to vary
linearly with time,

A,,+1——X, +U . (1.2)

The essential difference between this system and the usual
U =0 case is that there are no fixed-point solutions, except
for the trivial solution x, =0. It is obvious that for u &&0
the notion of a bifurcation diagram loses its meaning and
this limit will not be discussed here. The more interesting
limit is u —+0 where it usually has been implicitly assumed
that deviations from u =0 are negligible. We analyze this
situation below.

The experimental study of a bifurcation point is often
carried out by sweeping the bifurcation parameters of the
system across the region where the bifurcation point is be-
lieved to lie. ' When there are many bifurcations in a
given parameter range, as in a subharmonic cascade to
chaos, this procedure has been used to obtain the entire bi-
furcation diagram in a single sweep. However, in such a
process the dynamical equations are fundamentally al-
tered and it is not clear how the bifurcation structure thus
obtained is related to that where the system parameters
are independent of time. For instance, it has been shown
for the laser I.orenz equations that the introduction of a
time-varying parameter may produce results significantly
different from those with a stationary parameter, even
when the sweep rate is small.

The onset of chaotic motion in dynamical systems can
frequently be analyzed in terms of a discrete-time map
with a quadratic extremum. Because of its wide use in
both experiinental and theoretical studies it is of interest
to investigate the bifurcation structure of a nonauto-
nomous quadratic map. We consider the dynamical sys-
tem,

Regardless of the value of the sweep rate v, Eq. (1.1)
has one fixed-point solution, x"=0. For v=0 this solu-
tion is stable if 0&A, &1. Even if u&0 it is possible to
perform a linear-stability analysis of this solution. Equa-
tion (1.1) linearized about x =0 is

(2.1)

whose solution is
t —1

x, =xp + A,; . (2.2)

Thus, the condition for marginal stability of this solution
1s

A,;=1,
i=0

(2.3)

—1

ink, ;=0, ,

i=0
(2.4)

and defining an intermediate time ttt by the condition that
be equal either to one or to the last value of A, which is

smaller than one for a particular sweep rate. We may
then write Eq. (2.4) as

g ( —1nA, ;)= g ink,;,
i=0

(2.5)

where each element of both sides of this equation is posi-
tive. The left-hand side represents an accumulation of
stability during that part of the sweep for which A, &1.
Conversely, the right-hand side represents an accumula-

which defines the critical time t at which x, begins to
diverge from the trivial solution. The properties of this
bifurcation equation are reminiscent of those derived for
the trivial steady-state solutions of laser Lorenz equa-
tions. This analogy may be seen more clearly by writing
Eq. (2.3) as
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X'(1 —ink') =Xo(1—lnzo) =a, (2.6)

tion of instability since ink, ; & 0. Finally, the condition for
dynamical instability will be realized after the accumulat-
ed instability has compensated for the accumulated stabil-
ity. . This has several consequences which make the
nonautonomous map rather different from its usual auto-
nomous version: (i) It is obvious that t* & t~ implies a de-

layed bifurcation; (ii) the new bifurcation value,
A, =A,o+ Ut', is a function of both A,o and U.

In the limit v~0, t" diverges like U
' since Ut*=O(1).

In such a limiting case we may approximate the sum in
Eq. (2.4) by an integral and the resulting implicit equation
1s

ure we see that x, closely follows the solutions of the au-
tonomous map, except near bifurcations, until the chaotic
region is reached. This property can be utilized to discuss
the character of the bifurcations for the nearly periodic
solutions.

For the sake of clarity consider the bifurcation of the
period-1 solution. Taking advantage of the fact that x, is
nearly equal to x,*=1 —1/A, , and letting x, =x,*+4„we
obtain

c,= U—/A, ~,x, +e, (2 x—, x—,c, ) . (3.1)

If 40 satisfies the inequality No &0(v), then 4 will remain
small until the next bifurcation at Ao. We may therefore
linearize Eq. (3.1) with respect to 4, to obtain

with A, &1 and A,0&1. Since a &1, the explicit solution
of Eq. (2.6) is @'~+i =f(x~* ~i) —x~*+ i+f'(x~* }@'~ . (3.2)

k' =exp 1 —gj J '(a/e }Jlj!
J =1

(2.7)
This equation may be solved to give

r

4, =40 ff (2—A,;)—U g A, ) 'A, , +i g (2—XJ) (3.3)
Hence, A; decreases monotonically from e when A,o ——0 to
1 when A, o

——l.

III. SUBHARMONIC BIFURCATIONS

' ~ .

I ~

0
2.9 3.9

Once the bifurcation of the trivial solution has taken
place, the system undergoes a cascade of subharmonic bi-
furcations. Since the nontrivial period-1 solution bifur-
cates to period 2 at A,o ——3 for u =0, and the maximum de-
lay is e, the bifurcation to the nontrivial fixed point will
always occur. A typical bifurcation diagram is shown in
Fig. 1(a) for U=10 ". From an examination of this fig-

i=0 i=0
t2

with the convention that g, ,f; = 1 if t» tz.
We observe that 4, is the sum of two terms; only one

depends on the initial value 40. Furthermore, the value
A,; =2 plays a special role: It corresponds to the superst-
able state for the period-1 solution. If the initial value of
iL is smaller than 2, the crossing of the superstable state el-
iminates the first term in Eq. (3.3} and makes @„and
therefore x„ independent of the initial value. If A, o & 2 the
position of the next bifurcation will depend on the initial
condition but, as shown below, the initial-condition term
will be eliminated upon crossing of the next superstable
point. Hence, when studying the cascade of bifurcations,
the most relevant parameter is the sweep rate U.

From Eq. (3.3) we see that the second (relevant) factor
is explicitly proportional to v. Furthermore, if A, & 3 the
factor 2—AJ. is negative (and larger than unity) and gives
rise to an oscillatory growth of N, . Thus, beyond A,o there
is oscillatory growth away from the "adiabatic" solution
1 —1/A,

The above procedure can be generalized to the higher
subharmonic bifurcations. Consider the bifurcation from
period 2"~2"+' and define the 2" adiabatic fixed points

(1) (2) (2") (i) (i)Ix, ,x+i, . . . , x+2„ i I, where x+; i ——x (A+, i),
i.e., a fixed point of the 2"-th power of the map with X
fixed at A, =A,, +, i. The 2"-th composition of the map is

x, ~2 f( . f(x, ;A,, );;A——,, „,) . (3.4)

0
2.9

ug

5.9

Suppose that at time t the system is on branch 2" of the
(almost) period-2" orbit. At times t+ m 2" the system will
return to this branch and we want to compute the devia-

tion of x, „ from the x,' ' „"fixed" points. Let

x, =x,' '+@,. Substitution into Eq. (3.4}, linearization in
@, and use of the chain rule leads to

FIG. 1. Bifurcation diagram for tbe nonautonomous quadra-
tic map. The sweep velocity is 10 ". (a) Forward sweep; (b) for-
ward and reverse sweeps showing the characteristic form of the
hysteresis.

2"—1

+ +f'(," ) c', .
i=0

(3.5)
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Thus, as in Eq. (3.2), there are two factors. The first is
(2k)the difference between the actual evolution of x,' ' under

2" steps of the nonatonomous map and the adiabatic solu-
(2k)tion at time 1+2", x,' '„; the second is the product of the

slopes along the adiabatic orbit times @,. Hence, passage
through the superstable point will again eliminate the
dependence on the initial condition. We have verified this
result by calculations for different initial values.

Hysteresis is another typical feature of systems with a
variable sweep rate. Figure 1(b) shows the same bifurca-
tion diagram as Fig. 1(a), but with the reverse sweep in-
cluded. In contrast to the abrupt change in x observed in
a forward scan, the pairs of branches are attracted to-
wards the same fixed points and the fall to these new
fixed points in the reverse scan is smooth. The solutions
are seen to track the adiabatic solutions closely except in
the vicinity of a bifurcation point. This type of plot clear-
ly delineates the lengths of the bifurcation regions. The
structure of this diagram is a signature of a system with
incomplete relaxation at aH parameter values.

IV. SCALING PROPERTIES

L = lim t ' g ln
~

f'(x;;A, )
~

i=0
(4.1)

where x; is on the attractor. Although it is impossible to
compute this quantity for the nonautonomous map since
the state of the system is continually evolving, a dynami-
cal substitute for the I.iapunov number can be calculated
by averaging over small segments of the system's history;
such a construction is possible because the system remains
close to the adiabatic solution provided the sweep rate is
not too large. To this end we define the quantity,

t+d/2
L(t;d)=d ' g ln

~

A,;(1—2x;)
~

(4.2)
1 =t —d/2

If d is selected to be larger than the highest resolvable
period for a given u, L(t;d) will closely approximate the
usual Liapunov number evaluated at A, This is, in fact,
true as is borne out by the results in Fig. 2. Such dynami-
cal I.iapunov number plots display a number of charac-
teristic features. As noted above, in the resolvable period-
ic regime the. result is essentially the same as for the auto-
nomous map. (In this regime the results for the nonauto-
nomous map are superimposable on those of the auto-

In spite of the fact that there is no real fixed-point
structure for the nonautonomous map, the bifurcation di-
agram does exhibit a number of scaling features provided
the sweep rate is not too large. The introduction of time
dependence in the bifurcation parameter is analogous, in
many respects, to a noise source: both act like a disorder-
ing field on the dynamics. In this section we shall dis-
cuss some of these scaling features.

Qualitatively, it is very easy to see that a finite sweep
rate will tend to disturb the subharmonic bifurcation se-
quence in a characteristic way. For the autonomous map,
the width of a window corresponding to a given periodic
orbit scales according to Feigenbaum's 5 parameter. The
reduction in window size by 5 places a strong constraint
on the periodic orbit which can be resolved with a sweep
rate u. Since A,, =A,o+ut, the change in k during one cycle
of an orbit of period 2" is b,A,„=2"u. If AA, „&A,„+,—A,„
it will be impossible to resolve the orbit. Let u„be the
value of the velocity for which one can resolve an orbit of
at most period 2". %'e may then write A,„+&—A,„=~2"U„,
where ~ accounts for the relaxation time onto the attrac-
tor. From this expression we have u„/u„+~ ——25-9.3984.
Thus the sweep rate must be reduced by a factor of nearly
10 in order to resolve one additional subharmonic orbit.
A similar feature exists for the noisy quadratic map: the
exponent P determines the factor by which the noise must
be reduced in order to observe an additional subharmonic
bifurcation.

The above discussion has been qualitative in nature and
what is meant by a bifurcation point has not been precise-
ly defined. Since the entire structure of the bifurcation di-
agram is actually transient behavior, some way of sys-
tematically identifying its features must be given. The na-
ture of the attractor supported by an autonomous map
can be determined easily by computing the Liapunov
number defined as

0.25

0

-0.25
3.0 3.6

0.25
(b)

'0

-0.25
3.0 3.6

FIG. 2. "Liapunov number" in the parameter region of the
first subharmonic cascade. The sweep velocity is 10 and the
results were obtained by averaging over 128 points. (a) Forward
sweep showing overshoots of the usual bifurcation points and
premature truncation of the subharmonic cascade; (b) reverse
sweep illustrating hysteresis and stabalization of the resolved
periodic orbits.
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nomous map on the scale of the figure. ) There is no dis-
cernable shift in the usual bifurcation points, A,„, but the
system overshoots before crashing precipitously to the
next nearly stable subh arm onic orbit. In the regions
where the Liapunov number is positive it follows the
smooth extension of the negative periodic branch; this is
another confirmation of our earlier statement that the sys-
tem remains very close to the (unstable) adiabatic solution
for some time after the normal bifurcation point is
crossed. The fact that the crash back to the next periodic
solution is sharp permits shifted bifurcation points to be
accurately determined and the scaling features to be dis-
cussed in a quantitative way.

Consider first the structure for a fixed value of u. Let
be the range of A. values for which the

Liapunov number remains positive for the bifurcation
from period 2"—+2"+'. From an examination of Fig. 2 it
is clear that the maximum positive value of the Liapunov
number at this bifurcation, L„, increases and b,A,*„de-
creases with increasing n As .a consequence of the self-
similarity of the subharmonic orbit structure the accumu-
lated instability at each bifurcation, i.e.,

O

O

I

l

6

n

(4.3) FICx. 3. Plot of —log~phA, „* vs n for several values of the
velocity: 4, 10;0, 10;, 10;0, 10

is the same. Here t„and t„' refer to the value of the time
at A. =iP„and A, =A,„', respectively The . scaling of hA, &

then follows from the scaling of L and b, A,„=A,„+,—A,„.
An approximate calculation of this scaling can be carried
out as follows. The positive Liapunov number is very
nearly a linear function of A, until the crash to the next
subharmonic attractor occurs. Hence,

regions. Parallel straight lines with slope equal to 0.50 are
obtained, indicating that EA,*„-U' . In addition, the ac-
cumulated instability, as reflected in the area of the
overshoot region at each subharmonic bifurcation, scales
as U. This is confirmed by the results shown in Fig. 5

where s„ is the slope of L at A,„and the subscript n on
L„(A,) is used as a label for the overshoot region near A,„.
We may then write 2 =s„(b,A,*„) /2, from which it follows
that

3.0

(4.5)

and the ratio of the lengths of the overshoot regions scale
as the square root of the ratios of the slopes at bifurca-
tion. Since for the autonomous map the Liapunov num-
ber scales from bifurcation to bifurcation as
L„(A,)-2L„+i(A,) and distances scale as 5, we find
s„+i/s„=5/2, and predict,

(4.6)

CI
C&

I

2.5

Figure 3 shows the results of a plot of —logiohk, *„versus
n for several values of the velocity. As predicted the cal-
culated points fall on a straight line with an average slope
of 1.55. Note that (5/2)'~ =1.S3. Furthermore, since
si ——1 by direct calculation, we have s„=(5/2)" ' and
"„=(b,A,„') (5/2)" '/2. We shall make use of this for-
mula below.

The length of the overshoot region for each subharmon-
ic orbit also exhibits a characteristic scaling behavior in U,

which we now study. The results of a plot of —log~pAA„
versus —logiov are shown in Fig. 4 for several bifurcation

2.0'

l.5
5

I

6
-I og(OV

FICx. 4. Plot of —log~pkk vs —10g~pv for n = 1, 2, and 3.
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the noisy-map problem where noise leads to stabilization
of the periodic orbits.

V. DISCUSSION

C

O

I

6
—Iog) V

FIG. 5. Plot of —log&od„vs —log&ov for n = 1, 2, and 3.

inc= g ln(1+Ui )-ut*(t'+1)/2+O(u ) . (4.8)

Thus, we have t*—U
' and as a consequence

(4.9)

~here —log~OH„ is plotted versus —log&ov. All the results
fall on a common straight line with slope equal to 1.0,
which is in accord with the fact that the accumulated in-
stability at each bifurcation is the same.

An interpretation of this behavior can be given as fol-
lows. The fact that the system parameter is continually
evolving leads to a different dependence on t of the
growth of some initial deviation. Consider the period-1
region for simplicity. Crudely, if the initial deviation
from a fixed point at A, =3 is 5xo, the number of time
steps t it will take for this deviation to grow to some
value, say C5xo, can be found from the equation

C=/
~

(2—A,;)
~

(4.7)
i=0

If we start with an initial deviation at A,o ——3, Eq. (4.7)
leads to

The introduction of a slowly varying time dependence
in the bifurcation parameter leads to a bifurcation dia-
gram with several distinctive features. The characteristic
pitchfork (parabolic) shape of the behavior of the fixed
points as a function of the parameter is modified to a
slowly growing oscillatory form. The reverse trace exhib-
its a gradual fall from one subharmonic solution to anoth-
er. These features are quite striking and should serve as
signatures of the effects described here.

Only a finite number of subharmonic solutions are ob-
servable for a given sweep rate in close analogy with the
situation for a noisy map. In order to observe an addi-
tional periodic orbit U must be reduced by nearly an order
of magnitude, which imposes rather severe constraints on
any experimental studies of the subharmonic cascade by
varying the sweep rate.

Some of the scaling features described above should be
amenable to experimental test. In particular, the depen-
dence of the delay of the bifurcation at each subharmonic
on the square root of v and the (5/2)'~ scaling of this
quantity from subharmonic to subharmonic are likely
candidates for such tests. Furthermore, the bifurcation
diagram should exhibit a characteristic hysteresis in for-
ward and reverse sweeps. The bifurcation regions defined
by the forward and reverse sweeps, which are easily mea-
sured experimentally, will also scale as the square root of
v. Some of the scaling features discussed here have been
observed recently by Dangoisse et al.

The phenomena described above are not limited to the
map model used to illustrate the effects but also occur in
differential equation systems. Calculations on the Rossler
equations with a continually varying parameter have
been carried out. A bifurcation diagram was constructed
by varying the one parameter and the system was allowed
to relax for a number of cycles between each parameter
increment. The results have the same form as those dis-
cussed above for the map and, in particular, exhibit the
characteristic form of the hysteresis displayed in Fig. 1(b).
Clearly incomplete relaxation effects are playing an im-
portant role in this calculation.

The results presented here should aid in the interpreta-
tion of data obtained by time-dependent parameter varia-
tion.

Furthermore, from the expression for A„ it follows that
A~ U.

The hysteresis phenomenon is clearly evident in the cal-
culation of the Liapunov number in a reverse sweep of the
parameter. These results are shown in Fig. 2(b). Rather
than an overshoot of the bifurcation points leading to a
positive Liapunov number, in the reverse sweep there is
added stabilization and the Liapunov number fails to
reach zero at the bifurcation points. This is analogous to
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