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Transport on a dynamically disordered lattice
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We consider diffusion on a lattice governed by a master equation in which the bond transition
rates fluctuate dynamically between two different values with a relaxation time r. The effective-
medium bond transition rate in the Laplace domain is g(z+ 1/r), where P(z) is the known solution
in the static limit ~~ oo. This solution exhibits no percolation transition for any finite ~, but it inter-

polates smoothly between the static solution and the solution in the limit of rapid fluctuations
(&=03.

We consider here diffusive transport on a spatially and
dynamically disordered lattice as described by the master
equation

dP; /dt= gw, j(t)[PJ(t) P;(t)]—

in which P; (t ) is the probability that the walker is on site
i at time t, and w;I(t) is the transition rate from site j to a
nearest-neighbor site i at time t.

In previous work, the transition rates have been treated
as spatially random but constant in time. The special case
where any nearest neighbor m,j equals 1 with probability

p and vanishes with probability q =1—p provides a clas-
sic model' of percolative transport, with a percolation
threshold p, determined by the specific lattice geometry.

%'e are concerned here with what happens when the
transition rates are temporally random. That is, any indi-
vidual w,J can fluctuate in time between the values 1 and
0 with some characteristic relaxation time ~, and p and q
are now the fractions of time spent in the two states.

With static disorder, the effective transition rate van-
ishes below the percolation threshold. With dynamic dis-
order, the effective transition rate behaves differently. In
one dimension where p, = 1, for example, any static w

that vanishes will completely suppress diffusion, but when
the w's fluctuate dynamically between 0 and 1, spatial dif-
fusion is still possible, because the "gates" open and close
at random. If the relaxation time is long compared with
the time scale for diffusive transport, the effective transi-
tion rate changes smoothly but rather abruptly in the
neighborhood of p„but if the relaxation time is short,
nothing dramatic happens at p, .

In this paper the effects of dynamic disorder are found
by means of a time-dependent version of the effective-
medium approximation (EMA). The result can be stated
very simply. Suppose that the static disorder problem has
been solved in the EMA, giving the effective transition
rate w, =g(z), where z is the Laplace transform variable
conjugate to t. Steady-state migration is described by
g(0). Then the effective transition rate including dynamic
disorder is g(z+ I /~), and steady-state migration is
described by g(1/v). Thus one can take advantage of pre-
viously obtained EMA solutions of the static disorder
problem. To illustrate the consequences of dynamic dis-

order, w, is calculated numerically for one-dimensional,
square, and simple-cubic lattices, and the results are
displayed graphically.

While our primary interest was in the problem
described above, it appears that the procedure is some-
what more generally applicable. This is discussed in the
Appendix.

To begin, following Kirkpatrick s scheme, we rewrite
Eq. (1) in matrix form

P = —W P= —g o.a( t )Va P
dt

where the vector P is

P=gP, ~i& .

a refers to a particular nearest-neighbor bond (ij), the
sum is over all bonds, and the matrix V is given by

I' =( ~i &
—

( j&)(&i )
—&j

~
) . (4)

Dynamic disorder is accounted for by a "Liouville mas-
ter" equation, suggested by the treatment of gated dif-
fusion by Szabo et al. Consider first a single bond a.
The probability that o (t) =o is fa(o, t). This satisfies a
two-component master equation

Bf (1)
at

or, in more compact notation

df
Bt

=0 f =—[p(cr)% p(1 —cr—)]f

which defines Q~. The operator H~ replaces any func-
tion A(oa) by A(1 —oa). The time r is a characteristic
relaxation time for approach to the equilibrium solution

fa(o-, equilibrium) =p(o ),
and p(0) =q and p(1)=p. As is well known, this master
equation corresponds to a continuous time random walk
between the states 0 and 1, with exponential waiting time
distributions for the transitions.
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As an initia1 condition, we suppose that the walker states
are known precisely, and that the bond states are in equili-
brium (eq)

f(P,cr «0) =5(P—Po }peq(a)

with

p„(a)=+p(cr ) .

(10)

Our goal is to determine the average of P at time t.
This average is performed in two steps. First, we look for
the partial average P(o, t) defined by

P(o, t) = f dP Pf(P, cr, t) . (12)

On using (8), we find that the partial average obeys

The state of the entire system is specified by the two
vectors P (for the possible states of the walker) and o (for
the possible bond states). The corresponding distribution
function f(P, cr, t ) satisfies the Liouville master equation

.[W.Pf]+Of,ap
(8)

where, if the bonds all fluctuate independently,

n= gn. .

W=Q(z) g V~+cr)V),
a(+1)

Q=Q) .

In case (ii) we suppress all indices and write

F.=[zl+W +(a y—)V n—(a)] 'p-(a) .

(18)

(19)

The effective-medium condition is that F~ should repro-
duce the result of case (i)

g(z)=(zl+W~) '= Q I ~. (20)

By taking appropriate linear combinations, and using the
effective-medium condition, we find

l(V.F,—(1—lt)V F,=O, (22)

Equation (19) is equivalent to a pair of equations for 1 0
and I (

z+ —1+W~ fV .—I o ——I )
——ql,q

'T 7-

(21)

z+ —1+W +(1—f)V I —&F =pl .
7

P = —W.P+QP, (13)
1z+ —1+W fV .(pI—0—qI ))—qV. I ) ——0 .
7

with the initial condition (23)

P(cr,o) =Pop, (cr) . (14)

The full average of P is given by g P(a, t ).
It is convenient to introduce Laplace transforms.

Without changing notations, functions of t will be re-
placed by functions of z. After a simple rearrangement,
we find

V~ H V~=h~V~, (24)

where h is a scalar. We take the special choice

Now the matrix V, defined by Eq. (4), has the proper-
ty that for an arbitrary matrix H

P(o,z}=g(o,z) Po.

The partially averaged Green's function g(o,z) is given
formally by

g(a,z)=[zl+W(cr) —0] 'p, q(o) . (16)

The fully averaged Green's function is g(z}= g g(o,z).
An exact calculation of g(o,z) is at least as difficult as

the general solution of the static bond disorder problem.
But it is easy in the effective-medium approximation.
The EMA can be formulated in a variety of equivalent
ways; we choose the following one. We want to find an
effective transition rate g(z) such that the fully averaged
g(z) is the same for the two media: (i) an effective medi-
um in which W and Q are replaced by

W=W =y(z)QV. ,

l.O

Ne
0.5

and (ii) a medium in which all but one bond have the
effective-medium behavior, and that bond is allowed to
fluctuate in time,

O.O 0.5 I.Q
P

FIG. l. Effective transition rate g for a one-dimensional lat-
tice whose bond transition rates w;~ fluctuate between 0 and 1.
Here ~ is the characteristic time scale of the fluctuations, and p
is the mean proportion of bonds with ta;J- = 1.
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FIG. 2. Same as Fig. 1, but for a square lattice.
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FIG. 3. Same as Fig 1, but for a simple-cubic lattice.

(25)

—qg(1+6 fh )+p(1——P)(1—Ph ) =0 . (27)

Because Ii is an explicit function of P, via (17), (24), and
(25), this is the equation that determines the effective P.
But the Laplace variable z appears explicitly in h only in
the combination z+1/r. It follows that g is a function
of z+1/r. Thus it is clear that if g is known in the limit
of static disorder, w~ oo, it takes the form g(z+1/r) for
arbitrary r. This is what was claimed in the beginning of
the paper.

The static disorder problem has been solved in the
EMA, by Webman, Odagaki and Lax, and Summer-
field, and is discussed extensively by Sahimi et al. If we
take their results, replace z by z+ 1/r, and then take the
stationary limit z~0, we obtain

multiply Eq. (23) on the left by VH, and use (24) to obtain

p( 1 fh )V I 0——q(1+5 —PIi )V I'i ——0 . (26)

But (22) and (26) can have a nontrivial solution (V I 0 and
V.I i not both zero) only if the determinant of coeffi-
cients vanishes,

pressed in terms of the complete elliptic integral X. In
three dimensions, the Chebyshev approximation presented
in Ref. 9 is useful.

It is easy to see that the expected behavior

m, = (p, &p (1)Pc
1 —p,

is found in the static limit, and that

(30)

(31)
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APPENDIX

The procedure described in the main text can be used
for the class of models defined by

holds for the limit of rapid fluctuations r—+0. It is also
clear that m, can vanish only at p =0; there is no percola-
tion threshold.

In Figs. 1, 2, and 3 we have plotted w, as a function of
p for various values of r, for the one-dimensional, square,
and simple-cubic lattices. These show graphically the
changes from large r to small r.

=1—YG(0, 1 —F) .
p, (1—w, )

(28) W=U+ g cr~(t)A~ (A 1)

G(o,z) =(1—z')-'" . (29)

For a square lattice in two dimensions G(O,z) can be ex-

Here, p, is 2/n, where n, is the coordination number of
the lattice. This is the percolation threshold for static dis-
order in the EMA. The new variable F is (1+n, to, r)
and G(O, z) is the ordinary lattice Green's function
evaluated at the origin. Notations and normalizations
differ among the various authors cited. We use the nota-
tion of Ref. 8. In one dimension, for example, the Green's
function is

where U is a matrix with the translational symmetry of
the lattice, the index a refers to a location on the lattice
(e.g., a site or a bond), and the matrix A has the repre-
sentation

(A2)

where F is a vector. Because the matrix U can be in-
cluded in W~, and A~ still has the property [Eq. (24)],
the preceding argument is still valid.

As an example, consider bond disorder where any w,j
can fluctuate between two nonzero values, for example, p
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and 1, with probabilities q and p. The appropriate choices
of U and Aa are

U=p+V
(A3)

A =(1—p)V
The resulting steady state m, is determined by

(A4)

with the same Fand G(0,z) as before.

Note added. Druger, Ratner, and Nitzan have recently
published a paper related to ours. ' After describing some
physical problems where a treatment of dynamic disorder
might be useful, they propose a model that leads to results
essentially the same as ours. In their model, the entire
disordered lattice is randomly "renewed" at a constant
rate. This contrasts with our model in which individual
bonds are changed randomly in time. The result that we
obtain in the EMA is exact for their model, but only ap-
proximate for ours. (This can be seen easily by looking at
terms in the perturbation expansion that are omitted in
the EMA. )
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