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Use is made of the macroscopic cold-fluid Poisson equations to investigate the electrostatic stabili-
ty properties of nonrelativistic, non-neutral electron flow in a cylindrical diode with applied magnet-
ic field Boe,. The cathode is located at. r =a and the anode is located at r =b. Space-charge-limited
flow with E, (r =a) =0 is assumed. Detailed stability properties are investigated analytically and
numerically for electrostatic flute perturbations with 8/Bz =0. Particular emphasis is placed on the
influence of the neutral anode plasma on stability behavior assuming uniform cathode electron den-

sity (nb) extending from the cathode (r =a) to r =rb, and uniform anode plasma density (n, =Z;n;)
extending from r =r~ to the anode (r =b). Depending on the cathode electron density (as measured

by sb:Dpb/co ), the anode plasma density (as measured by s, =co~/co„), the diode aspect ratio,
etc., it is found that there can be a strong coupling of the anode plasma to the cathode electrons, and
a concomitant large influence on detailed stability behavior for both the high-frequency (electron-
driven) and low-frequency (ion-driven) branches. Detailed stability properties are investigated over a
wide range of cathode electron density, anode plasma density, diode aspect ratio, etc.

I. INTRODUCTION AND SUMMARY

There is a growing literature on the equilibrium and
linear stability properties of sheared, non-neutral electron
flow in cylindrical' and planar models of high-voltage
diodes with application to the generation of intense
charged-particle beams for inertial confinement fusion.
These analyses' 6 have represented major extensions of
earlier work " to include the important influence of
cylindrical, ' relativistic, electromagnetic, and kinet-
ic effects on stability behavior at moderately high elec-
tron density. However, none of these treatments' has
included the influence of active plasma components in the
anode-cathode gap. Indeed, it would be expected that
plasma ions and electrons could interact effectively with
the cathode electrons and modify stability behavior. For
example, it is well established in applications related to
heavy ion accelerators' '" and electron ring accelerators 15

and in basic theoretical studies' ' of non-neutral plasma
stability properties that the collective interactions associ-
ated with an active ion component in an electron-rich
background can lead to an instability known as the ion
resonance instability. ' The strength of the ion resonance
instability depends on a number of factors, including ion
density, the relative motion of electron and ion com-
ponents, and the strength of the equilibrium self electric
fields As such .an instability may have deleterious effects
on stable diode operation and/or the production of well-
collimated ion beams, one purpose of the present analysis
is to investigate detailed properties of the ion resonance

instability in geometry particular to cylindrical diodes
(Fig. 1). In addition, we investigate the stability behavior
associated with the (high-frequency) interaction of the
plasma electrons with the cathode electrons.

In the present analysis, we make use of a macroscopic,

Anode

4e «=b)=v

FICx. 1. Cylindrical diode configuration with cathode located
at r =a and anode at r =b. Equilibrium flow is in the 8 direc-
tion, and the equilibrium space-charge density g nj(r)ej pro-
duces a radial electric field E, (r) [Eq. (5)].
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cold-fluid model to investigate the electrostatic equilibri-
um and stability properties of nonrelativistic non-neutral
plasma in a cylindrical diode with applied magnetic field
Boe,. As illustrated in Fig. 1, the cathode is located at
r =a and the anode at r =b, and space-charge-limited
flow with E„(r=a)=0 is assumed. In general, the non-
neutral plasma is assumed to consist of three components:
electrons in the cathode region (j =b), positively charged
ions (j =i), and plasma electrons (j = e). The macroscop-
ic cold-fluid model used in the equilibrium (Sec. II) and
stability (Secs. III—VI) analysis is based on the continuity
and momentum transfer equations for the density nJ(x, t)
and mean velocity VJ(x, t}. Moreover, the electric field
E(x, t) = VP(x, t—) is determined self-consistently from
Poisson's equation, and 8/Bz =0 is assumed for both
equilibrium and perturbed quantities.

Under steady-state conditions (8/Bt=0), the equilibri-
um analysis (Sec. II) allows for general density profiles
nj (r) (j =b, e,i) and corresponding self-consistent radial
electric field [Eq. (5)]

I'

E„=+4m.el dr'r—'nj (r') .
p' 6

J

Moreover, equilibrium force balance in the radial direc-
tion [Eqs. (8) and (11)]can be used to determine the angu-
lar rotation velocity co„z(r)=Vsj(r)/r of the jth com-
ponent fluid element. For slow rotational equilibria satis-
fying co,z(r =a)=0, the rotation velocities are given by
[Eqs. (13) and (14)]

r)]'"I, J =b, e

co„,(r) = ,' I co„+—[—co~i+4m~gcoE(r)]' I, j =i

and vi(r, co) is defined by [Eq. (47)]
r

vj(r, co) =(co leo—„~ ) — co,j +2e~co,jeux(r)

4m.ej
eknk rIJ.

The summations g. and gk are over all plasma com-
ponents (b,e, i), and Eq. (42) is to be solved subject to the
boundary conditions 5$ (r =a) =0=5/ (r =b) Th.e exact
eigenvalue equation (42) is simplified in Sec. III 8 for the
special case of rectangular density profiles for the cathode
electrons and for the neutral plasma ions and electrons in
the anode region (Fig. 2). The resulting eigenvalue equa-
tion (48), together with the definitions in Eqs. (19}—(21)
and (49)—(54), have a wide range of applicability and are
analyzed numerically in Sec. VI. That is, in Eqs.
(48)—(54), there is no a priori assumption that the diode
aspect ratio is large, that the density is low, etc.

As an example that is analytically tractable, in Sec. IV
(see also Fig. 5) we simplify the eigenvalue equation (48)
in circumstances where the anode plasma density is low
[Eq. (55)], the cathode electrons are strongly magnetized
[Eq. (56)], the diode aspect ratio is large [Eq. (57)], the
perturbation frequency is low [Eq. (58)], and the anode
plasma is in contact with the cathode electrons [Eq. (59)].
This gives the approximate eigenvalue equation [Eq. (66)]

$2
r(1+X, ) 5y' —,(1+X,)5P'

I' 8p'
l

i 5y' (~~b/~, .)
5(r —rb),r co l cox(r)—

1+gX, 5$'
t'2

1+gX~ 5P

in the regions where nj (r) is nonzero. Here,
cox(r)= cE„/r80 is t—he E &(Boe, rotation frequency,
Q)~~ =e80/Ulcc and co~( Zi 880——/17k;c are the cyclotron fre-
quencies, and Z; is the degree of ionization of the ions.
As specific examples, detailed equilibrium properties are
investigated for two cases: a neutral plasma in the anode
region (Sec. II B and Fig. 2), and ion-contaminated
cathode electrons (Sec. II C and Fig. 4).

Stability properties are investigated in Sec. III for
small-amplitude electrostatic gerturbations about general
equilibrium profiles nj(r), E, (r), and ~„~(r). Expressing
5$(r, &,t)=+&5/'(r)exp(ile idiot}, wh—ere Imago) 0 corre-
sponds to instability, the linearized cold-fluid Poisson
equations give the eigenvalue equation for 5$(r) [Eq.
(42}]20
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where X;(r,co) is defined by [Eq. (64)]

A e

~.i«&~ i+~ J }

Q) —$N dr VJ

where uzi(r) =4m nj (r)ez /mJ. , ej sgnej, th——e effective sus-
ceptibility Xi(r, co) is defined by [Eq. (43)]

2

XJ.(r, co)=—
vj(p, co)

FIG. 2. Plots of equilibrium density nj (r) and angular veloci-
ty co„j(r) vs r obtained from Eqs. (15)—(17) and (19)—(21). Elec-
tron& in the cathode region have a rectangular density profile ex-
tending from r =a to r =rb. The plasma in the anode region is
electrically neutral with Z;n; (r) =n, (r), and extends from r =r~
to r =b.
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X;(r,co) =,
0, a(r(rb

A. 2
CO pg l'b(P (6

(co —lto „; ) —(~&i+2~~tQF. )

(n, /nb)[1 (blr~) ]—1+ '
2 2'

2co/coD l(rb —a )Ir~—
2I

rt,
'

1 —(a/rt, )
'

+ 2l 2 2 2
co/coD —I ( pb —a ) /t b

which determines the complex oscillation frequency co in
terms of geometric factors, the density ratio n, /nt„and
the diocotron frequency con ——c3&t, /2'«. In Sec V, the.
dispersion relation (93) is used to investigate detailed sta-

Here, QE to——E(rt, )=(~~t, /~, )(rt a)—«b [Eqs. (60) and

(62)J, to;=4~n;Z; e /m;, cozt, =4nn~e /m„
to„.= —,

'
[ ~„.+(~2, +4~„QE)'~2] [Eq. (61)]. It is clear

from Eq. (66) that the surface-charge perturbation on the
cathode electron layer can couple to the dielectric
response of the plasma ions in the anode region. Solving
Eq. (66) for a large-aspect-ratio diode with (b —a)/a « 1

gives the approximate dispersion relation [Eq. (75)]
r

~u ~t'
~b (co —Ico „t ) —(coq, +2coq, QE )

IQE

~b co —lQE

where b z ——rt, —a and bz b rt, (—F——ig. 5), and
hq, Az «rb is assumed. The dispersion relation (75) is
analyzed in Sec. IV and stability properties are investigat-
ed over a wide range of the dimensionless parameters
~„/Q~ =(Z;m, /m; )(co„/co~q )(rt, /b t, ) and co ~/Q E
=(Z;n; Int, )(rt, /AI, )(co„./QE). A strong variant of the
ion resonance instability' is found for a wide range of
system parameters. Although the assumptions in Sec. IV
are somewhat restrictive, the analysis clearly establishes
the existence and qualitative features of the ion resonance
instability and the fact that the plasma ions in the anode
region can strongly couple to the cathode electrons.

As a second example that is analytically tractable, in
Sec. V we investigate the eigenvalue equation (48) in cir-
cumstances where the anode plasma is not in contact with
the cathode electrons [Fig. 2 and Eq. (81)]. Assuming
high-frequency perturbations [Eq. (83)], unmagnetized
ions [Eqs. (82) and (84)], and low-density electrons [Eq.
(85)], it is found that the cathode electrons and anode
plasma electrons combine to give the diocotron instability
driven by electron velocity shear over the interval
a &r &b. For infinitely mas'sive ions, the resulting ap-
proximate eigenvalue equation (86) is solved exactly to
give the dispersion relation [Eq. (93)]

b" 1 —(a/rt, )
'

1 — 1+
co/coD l(rt, a)/rb— —

bility properties over a wide range of system parameters
n, /n~, rzla, rqla, and harmonic number /. In the unsta-
ble region of parameter space, it is found that the instabil-
ity growth rate can be substantial (in the range of O. la&D),
even within the context of the low-density assumption
made in Sec. V [Eq. (85)].

In Sec. VI, we make use of the exact eigenvalue equa-
tion (48) to investigate numerically electrostatic stability
properties for the choice of rectangular density profiles il-
lustrated in Fig. 2. The anode plasma is assumed to be
electrically neutral hydrogen plasma (n, =n;) No. a priori
assumption is made that the cathode electron density (as
measured by s~=cozt, /co„) or the anode plasma density
(as measured by s, =8&, /co«) is small. In the absence of
anode plasma (s, =0), the conventional diocotron instabili-
ty' driven by the cathode electrons is recovered. At low
cathode electron density, this instability is extremely weak
[(Imto)/to«&10 for sb —0. 1 and s, =O], although the
growth rate does become substantial as sb is increased to
larger values. In the presence of anode plasma (s,&0),
the numerical analysis in Sec. VI shows that both the
anode plasma ions and the anode plasma electrons can
have a large influence on stability behavior, even at low
density. Indeed, the presence of the anode plasma intro-
duces a new low-frequency mode (ion resonance instabili-
ty) in which there is a strong coupling between the
cathode electrons and the anode plasma ions. Moreover,
the conventional high-frequency stability properties calcu-
lated for s, =0 are significantly modified by the coupling
between the cathode electrons and the anode plasma elec-
trons. For example, for the parameters chosen in Fig.
12(b), it is found that (Imago)/co«=3. 5&&10 for s, =O
and s&

——0.2, whereas (Imago)/co« ——10 for s, =0.1 and
sb ——0.2. In Sec. VI, the numerical studies of detailed sta-
bility properties are carried out for a wide range of system
parameters sb, s„diode aspect ratio, etc.

Finally, it is important to note that inclusion of the ef-
fects of finite resistivity of the anode or cathode plasma
can also have an important influence on stability proper-
ties, particularly for low-frequency perturbations. ' We
refer here to the recent investigations by Chang et al. '

and Desjarlais and Sudan who assume a thin (5 «b —a)
resistive plasma layer with current Jp ——o.-5E adjacent to
the cathode, ' or to both electrodes. Here, o. is the con-
ductivity tensor, and the electron-ion collision frequency v
is assumed to satisfy ' v»

~

co ~, v &co&z, /
~

co (, and
v &co„. The sheath electrons (treated as a relativistic,
collisionless, cold fluid in Refs. 21 and 22) interact with
the resistive electrode plasma. One of the most important
consequences of finite plasma resistivity ' is the appear-
ance of a resistivity-driven unstable mode in which the
growth rate exhibits a pronounced peak at the zero fre-
quency of the slow-mode branch, which separates the re-
gions of positive and negative wave energy. In terms of
sheath thickness (5) and conductivity (o-co&, /4n. v), the.
characteristic maximum growth rate of this low-
frequency instability ' scales as (5/o )' -(5v)'

Depending on the parameter regime, it is evident that
the effects of finite plasma resistivity can play an impor-
tant role, ' particularly for low-frequency perturbations
and a collisional electrode plasma. In this regard, we wish
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to emphasize some of the features of the present analysis
and model that are complementary to the work '
described in the preceding paragraph.

First, the present analysis is electrostatic, and treats the
sheath electrons nonrelativistically in ' cylindrical
geometry On the other hand, the analysis in Refs. 21 and
22 is fully electromagnetic and treats the sheath elections
relativistically in planar geometry. While the range of ap-
plicability of the present electrostatic, nonrelativistic
model is necessarily restricted to low values of applied
diode voltage V„ the analysis does incorporate cylindrical
effects and the influence of finite aspect ratio of the diode
in a fully self-consistent manner. Indeed, it is found (Sec.
IV—VI) that the instability growth rate and real oscilla-
tion frequency of the modes considered here exhibit a
strong dependence on diode aspect ratio. In addition, no a
priori assumption is made in the present analysis that the
electrode plasma layer is thin (5 «b —a).

Second, the present analysis treats the electrode plasma
as collisionless (v—+0), and describes the collective interac-
tion of the plasma electrons and ions with the cathode
electrons. That is, the present analysis assumes perturba-
tions with sufficiently high frequency that

and the plasma electrons and ions are treated as active
components interacting with the applied and collective
fields. The assumption that

~
co

~
&» is the most impor-

tant aspect in which the present analysis complements the
work in Ref. 21 and 22 (which assume

~

co
~

&&v). This
requires perturbations with much higher frequency
and/or a sufficiently "warm" electrode plasma that the
collision frequency is much lower. In this regard, at
moderate values of co~t, /co„, it is evident from the analysis
in Sec. VI (e.g., see Figs. 13 and 14) that even the "low-
frequency" (ion resonance) branch has a relatively high
frequency, which must exceed the collision frequency v
for the present analysis to be valid.

Third, the present model treats the collisionless dynam-
ics of the plasma electrons and ions in a self-consistent
manner, retaining both electron and ion inertial effects.
In the parameter regime considered here, these effects
have an important influence on stability behavior. Indeed,
the ion resonance instability is associated with the active
interaction of the plasma ions with the collective fields of
the sheath electrons. This is in contrast with the resistive
model used in Refs. 21 and 22, where the active ion
dynamics are neglected and the plasma current J& ——o'6E
is carried by the plasma electrons colliding with the back-
ground ions.

To summarize, it is evident that the present analysis
complements the work in Refs. 21 and 22. Moreover, it is
important to keep in mind the different ranges of validity
of the two models. For example, to investigate the de-
tailed features of instabilities driven by collisionless anode
plasma in a high-voltage diode, it is necessary to extend
the present analysis to include both electromagnetic ef-
fects and relativistic electron dynamics In contra. st, elec-
tromagnetic effects and the relativistic dynamics of the
sheath electrons are incorporated in the analyses in Refs.
21 and 22.

II. COLD-FLUID EQUILIBRIUM
FOR A CYLINDRICAL DIODE

A. Equilibrium model and assumptions

n~ (x)=nj (r),

VJ (x)= Vej (r)ee,
(2)

where e~ is a unit vector in the 0 direction, and
r=(x +y )' is the radial distance from the axis of
symmetry.

(b) Equilibrium diamagnetic effects are assumed to be
negligibly small in comparison with the applied magnetic
field Boe, . That is, the equilibrium azimuthal current

nj (r)ej Vej. (r) generally produces an axial self magnetic
field 8,'(r). The present analysis assumes that
~&,'(r) (

«&o.
(c) In general, the plasma is electrically non-neutral and

there is a corresponding equilibrium radial electric field

Eo(x) =E„(r)e„, (3)

where E„(r) is determined self-consistently from the
steady-state Poisson equation

[rE„(r)j =+4nej nj (r) .
87

(4)

Here, the summation is over j =b, e,i, where ej ———e for
the cathode electrons (j = b) and plasma electrons (j = e).
Moreover, e; = +Z;e for the positive ions, where Z; is the
degree of ionization.

(d) Space-charge-limited flow with E„(r=a)=0 is as-
sumed. Integrating Eq. (4) then gives for E„(r)

r
E, (r) =+4~e/ f dr'r'n (r');-

J

We consider here the steady-state equilibrium proper-
ties (8/Bt =0) of a cold, non-neutral plasma" confined in
the cylindrical diode configuration illustrated in Fig. 1.
The non-neutral plasma is generally assumed to consist of
three components: cathode electrons (j=b), positively
charged ions (j =i), and plasma electrons (j =e). The
plasma electrons may overlap spatially with the ions, e.g.,
for the case of a neutral plasma in the vicinity of the
anode (Fig. 2). As illustrated in Fig. 1, the cathode is lo-
cated at. r =a and the anode at r =b, where d =b —a is
the anode-cathode spacing. Moreover, the non-neutral
plasma is immersed in a uniform applied magnetic field

o=&oc

For simplicity, the present analysis is based on a nonrela-
tivistic, electrostatic, cold-fluid model for each plasma
component (j = b, e,i) In eq.uilibrium (9/Bt =0), the fol-
lowing simplifying assumptions are also made.

(a) All equilibrium properties are uniform in the z
direction (8/Bz=0), and there is no equilibrium electric
field parallel to Boe„ i.e., E (x).e, =O. All equilibrium
properties are assumed to be azimuthally symmetric
(8/GO=0) about the diode axis, e.g., the equilibrium den-
sity and azimuthal flow velocity components satisfy
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Expressing E, = dP—/dr, where P (r) is the equilibrium
electrostatic potential, we impose the boundary conditions

nb ——const, a ~r &rb

0, rs&r&b . (15)

Po(r =a) =0,

$0(r =b)= V, ,
(6)

where the anode voltage V, consistent with Eq. (5) and
E, (r =a) =0 is given by

n; (r)=
n; =const, ~& ~ r & b . (16)

Moreover, there is a neutral plasma in the vicinity of the
anode with ion density profile

0, a&r&r&

pr rr

V, =go(b) = +—4mej f „ f dr'r'nj (r') .
J

(7) The electrons are assumed to provide complete charge
neutralization in the region r& ~ r & b with

(e) Finally, within the context of the present nonrela-
tivistic, cold-fluid model, equilibrium radial force balance
on the jth component fluid element can be expressed as

mJ( VeJ )
=ej E, (r)+ Vej(r)Bop 1

C
(8)

for the cathode and plasma electrons, and

(14)

for the plasma ions. Here, coE(r) is defined in Eq. (10),
and co„=eBO/m, c and co„.=Z;eBO/m;c are the cyclotron
frequencies.

B. Neutral anode plasma

As a first equilibrium example, we consider the case il-
lustrated in Fig. 2. The cathode electrons (j =b) are as-
sumed to have the rectangular density profile

corresponding to a balance of centrifugal, electric, and
magnetic forces in the region where nJ (r) is nonzero.

In the subsequent analysis, it is convenient to introduce
the equilibrium angular rotation velocity cori(r) defined by

Vei(r) =a)„)(r)r, (9)

and the E )&Boe, rotation frequency coE(r) defined by

cE, (r) 4ireJ c r
coE(r) = — = —g z f dr'r'ni~(r') . (10)

rBO BorJ

Making use of Eqs. (9) and (10), the equilibrium force bal-
ance equation (8) can be expressed as

co„~(r)+ejco,jco„J(r) ejco,JOE(r)—=0,
where

/ej. /Bo
EJ =sgn8)

777J.C

Equation (11) generally supports two solutions for ai„j.,
corresponding to fast (corj ) and slow (corj ) rotational
equilibria. For present purposes, we consider slow rota-
tional equilibria satisfying co„j(r =a)=0. Therefore, in
the regions where nj (r) is nonzero, Eq. (11) gives

COrj =CO„(r)= —,
' {CO„—[COce 4'„mE(r—)]'~ I, j=b, e

(13)

n, (r)=Z;n;(r) . (17)

E =' —2'ITll b 8
(rb —a ), rs&r&b.2 2

(18)

D«ininy ei»=4irnbe /m„and making use of coE(r)
= —«r /rBO, Eqs. (13) and (18) give for the electrons in
the cathode region

1 2 ~2 r —a2 2

~rb(") = ' ~ce — ence 2~ pb2 r 2

1/2

a &r &rb . (19)

On the other hand, from Eqs. (13) and (18), the plasma
electrons in the anode region have equilibrium rotation
velocity

~re(r) = cice ~ce '2eipb
1/2

rb —Q

rr &r &b (20)

and from Eqs. (14) and (18), co„(r) is given .by

1s (r)= —s .
2 cE

1/2
Zi~e 2 b+ ~ci+2 ~ pb r

r~ &r &b (21)

for the plasma ions in the anode region. The rotation ve-
locities co„J(r) (j=b,e,i) are illustrated schematically in
Fig. 2.

It is convenient to introduce (for a & r & rs)

~E(r) = (22)
2' c~ r

in Eq. (19). For
A. 2

267 Ipb

2
~ce

2 2
rb —a

2
rb

(23)

it is clear from Eq. (19) that co„q can be approximated by

Making use of Eqs. (15)—(17), Poisson's equation (4) can
be integrated to give

r

—27TPl b 8
(r —a ), a&r&rb2 2
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co„b(r)=coE(r), 0 (r (rb (24)

where coE(r) is defined in Eq. (22). For a large-aspect-
ratio diode with (rb a—)/rb «1, note that Eq. (23) is
easily satisfied even at moderately high electron densities
with 2co~b (co„. Making use of Eq. (23), the angular
velocity of the plasma electrons is given by the approxi-
mate expression

(31)

is satisfied.

Therefore, the region Qz/co«»1 in Fig. 3 corresponds to
sufficiently high density of the cathode electrons that the
inequality

~2 2 2
co &b rb —a Z; oz~))

rb mi

2

co„,(r) =Qz, rz & r & br''
where

6)pbQb:coE(rb ) =
2~ce

rb —a2 2

2
rb

1
co„;(r) =—

2

' 1/2
2 rb—~ci + ~ci +4~ed &E

r

rp&r&b .

Moreover, Eq. (21) can be expressed as

(25)

(26)

(27)

C. Ion-contaminated cathode electrons

As a second equilibrium example, we consider the case
illustrated in Fig. 4 where the cathode electrons are par-
tially neutralized by a positive ion background. In par-
ticular, it is assumed that nb(r) has the rectangular profile

nb =const, a & r & rb
nb(r)= '0 (32)0, rb&r&b

and that the ion density profile n; (r) is related to nb(r) by

Z;n (r)=fnb'(r),

For strongly magnetized ions with Qz «co„/4, Eq. (27)
reduces to the E && Bc rotation frequency

2
rb

co„; (r) =QF, rz & r & b . (28)
r 2

On the other hand, for weakly magnetized ions with
QE »co„/4, Eq. (27) reduces to

where f=const is the fractional charge neutralization.
There is not a second component of electrons in the
present equilibrium example, i.e., n, (r)=0. Making use
of Eqs. (32) and (33), we determine E, (r) from Eq. (5).
This gives

r

—2m.enb (1 f)-
(r —a ), a&r&rb2 2

r

co„;(r)=(co„QE)'" ', rp&r &b .
r (29)

—2menb (1 f)—
(rb —0 ), rb &r &br

(34)

In both cases, for a diode with moderately large aspect ra-
tio, (b —a) /a «1, Eqs. (27)—(29) exhibit only a weak
variation of co„; (r) with r over the anode plasma region
(r~ (r &b)

Figure 3 shows a plot of co„; versus QE/co,+ for the case
rz rb and r =——rb Note f.rom Eq. (26) that Q@/co„ is re-
lated to other equilibrium parameters by

~2 2QE Pli 6) pb rb —a
(30)

~ci Zi ~e 2coce rb

r —a
coE(r) = (1 f)—

coce r

n&
'

ELECTRONS

j=b

Therefore, from Eq. (10), coE(r) is given by

(ib)
~ci

a f
n = —n

i g) b

cu„t,{r )~

/
lONS

/
/

cu„; {r)
(

0 2 6 8 IO

FICx. 3. Plot of m„. (r& ) vs Qz /m„- = (m; /Z;m, )(co /
2co„)[(rb a2)/rb] obtained —from Eq. (27) for rI, =rb and r =rb.

FIG. 4. Plots of equilibrium density nj (r) and angular veloci-
ty co„~(r) vs r obtained from Eqs. (32) and (33j and Eqs. (36) and
(37). The cathode electrons are partially charge neutralized by
positive ions with Z;n; (r) =fnb(r), where the fractional charge
neutralization f=const.
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over the interval a & r & r~ F. or coF(r) &&co„/4, it follows
from Eq. (13) that the angular rotation velocity of the
cathode electrons can be approximated by

co„b(r)=coF(r), a &r &rb (36)

co,;(r)=—1
2

2
2—

CO~I + N~I +4CO~I QE
r

1/2
r —a

2 2
rb —Q

where coE(r) is defined in Eq. (35). Finally, defining
QE =coF(rI, ) =(co&~/2co„)(1 f)(—rI, a)—/r~, and making
use of Eqs. (14) and (35), the ion rotation velocity can be
expressed as

otherwise identical to Sec. IIA. Moreover, the perturbed
potential amplitude 5$ (r) is determined self-consistently
in terms of 5nj(r) from Poisson's equation

1 8 8 ~ lr 5$ — 5$ = +—4n.e 5n. ,
1

r. c)r 5r J
(41)

where the summation gj is over all plasma components

j=b, e,i.
After some straightforward algebra that utilizes Eqs.

(38)—(40) to express 5nj in terms of 5P', Poisson's equa-
tion (41) can be expressed as

a &r &rb (37) r 1++Xj 5P'
r Br

I2
1++Xj 5$'

r
The rotation velocities in Eqs. (36) and (37) are illustrated
schematically in Fig. 4. In contrast to Eq. (27), where the
ions in the anode region satisfy co„;(r)=const, we note
from Eq. (37) that co„; (r) generally has a strong depen-
dence on r for the case where the cathode electrons are
partially charge neutralized by the background ions.

III. ELECTROSTATIC EIGENVALUE EQUATION

A. General eigenvalue equation

We now investigate stability properties for electrostatic
perturbations about the general class of cold-fluid equili-
brium profiles described in Sec. II A. The stability
analysis is based on the nonrelativistic cold-fluid equa-
tions of continuity and momentum transfer together with
Poisson's equation for the perturbed electric field
5E(x, t) = —V5$(x, t). Flute perturbations with c)/Bz =0
are assumed, and all perturbed quantities are expressed as

5$(r, O, t)= g 5g'(r)exp(ilo icot), —
1=—00

where I is the azimuthal harmonic number, and co is the
complex eigenfrequency, with Imco&0 corresponding to
instability. For electrostatic perturbations about a
cylindrically symmetric equilibrium characterized by den-
sity Profiles nj(r) (j=b,e,i), radial electric field E, (r)
[Eq. (5)), and equilibrium rotation velocity co„j(r) [Eqs.
(11), (13), and (14)j, the linearized continuity and cold-
fluid momentum transfer equations are given by2

2
a copj ej~ j+c2Q)pj)

6)—7Ct7 J VJ.
(42)

vj(r, co) = (co —lco„j )

1 0(ej„+2„)ej„+ ( „)r Br

(44)

For general equilibrium profiles nj (r), the rotation veloci-
ties co„j(r) occurring in Eqs. (42) and (44) are determined
self-consistently from Eqs. (13) and (14) for plasma com-
ponents j=b, e,i The eig.envalue equation (42) for 5p'
must of course be solved subject to the boundary condi-
tions

5$'(r =a) =0=5/'(r =b) (4S)

at the cathode (r =a) and anode (r =b). Making use of
the equilibrium force balance equation (11) and Poisson's
equation (4), the expression for vj(r, co) in Eq. (44) can be
further simplified. In particular, it can be shown that

where cozen(r)=4nnj (r)ej /mj, and the effective suscepti-
bility Xj(r,co) for comPonent j is defined by

Xj(r,co)—
vj (r, co)

% here

1 8
(ej ~cj +2~rj ) ej ~cj + (r ~rj )

r Br(38)i(co Ico,z )5—nj+ —— (rnj 5Vj„)+ nj 5Vje 0, — ——
r Br ' '" r

i (co lco,~ )5Vp—(ejcocj+2co„) )5V—je — 5$, ——l

mJ r
=cocj +2ejcocjcoE(r)—

4neJ. 0get, nk(r), (46)IJ

i (co lco,j )5Vje+——ejcocj+ — (r co„j ) 5Vj„r Br

(39) where coz(r) is defined in Eq. (10), and the summation

gk extends over all plasma components k =b, e,i. Sub-
stituting Eq. (46) into Eq. (44) then gives

vj(r, co) = (co lco,~)—
il5$

( )
7PlJ. r

Here, 5nj(r), 5Vj, (r), and 5Vje(r) are the Fourier ampli-
tudes for the perturbed density, radial flow velocity, and
azimuthal flow velecity, respectively, and the notation is

, 2 4~e 0
cocj +2ejcocjcoE(r) geknk (r)—

(47)

To summarize, Eq. (42) is the electrostatic eigenvalue
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equation that determines the eigenfunction 5$ (r) and the
complex ei~enfrequency co for general equilibrium density
profiles nJ (r), j= b, e,i .The quantities XJ(r,co) and
vj(r, co) are defined in Eqs. (43) and (44), and coE(r) and
co,j(r) are determined self-consistently from Eqs. (10),
(13), and (14).

r 1++X~ 5Pr c}r "c}r
1+QXJ 5$'

r

[XJ(ejcoqJ +2coIJ' )],I5$' 1 c}
1 J &J

where Xz(r, co) is defined in Eq. (43).
For the electrons in the cathode region (j =b), referring

to Sec. II B and Fig. 2, the effective susceptibility is

Xb(r co)= '

A 26) pb a (r (rb
Vb

0, rb(r(b
where vb is defined by [Eq. (47)]

B. Eigenvalue equation for rectangular density profiles

We now simplify the eigenvalue equation (42) for the
perturbations about the equilibrium discussed in Sec. II8
and illustrated in Fig. 2. The density profiles are assumed
to be rectangular [Eqs. (15)—(17)] and there is a neutral
plasma in the vicinity of the anode. The eigenvalue equa-
tion (42) can be expressed as

X,(r, co) =
0, a &r(r&

QP pe
rp (r (b

Ve

(53)

where co, =4nn, .e /m„and v, is defined by [Eq. (47)]

v (r, co) =(co Ico —
e ) [core 2co«coE(r)]

2 ~2 b
r r —a

=(co—lco„e ) — co« —co&b
r

(54)

IV. ION RESONANCE INSTABILITY DRIVEN
BY ANODE PLASMA IONS

for r~ & r & b. Here co„,(r) is defined in Eq. (20) for the
plasma electrons in the anode region.

To summarize, the eigenvalue equation (48), together
with the definitions in Eqs. (19)—(21) and (49)—(54) con-
stitute the final eigenvalue equation for electrostatic per-
turbations about the equilibrium density profiles specified
by Eqs. (15)—(17). In this regard, within the context of
the present ndnrelativistic, electrostatic, cold-fluid model,
the eigenvalue equation (48} is exact. That is, there is no a
priori assumption that the diode aspect ratio is large, that
the density is low, etc. Therefore, Eqs. (48)—(54) have a
wide range of applicability.

The detailed stability properties predicted by Eq. (48)
are analyzed numerically in Sec. V for a wide range of
equilibrium parameters. In Sec. IV, we investigate Eq.
(48) in the low-density, low-frequency regime where the
solutions are analytically tractable.

vb (r, co) = (co Icorb } ——[coce co pb
—2co«coE—( r) ]

2 2n2= (co —Ico~b ) — co« co pb
—copb-

r 2

(50}

A. Simplified eigenvalue equation

As an example that is analytically tractable, we consid-
er the eigenvalue equation (48) for the case of a low-
density anode plasma with

for a &r &rb Here, . cozb 4anbe /m——„and co„b(r) is de-
fined in Eq. (19).

For the plasma ions in the anode region (j = i), the ef-
fective susceptibility X; (r, co) is

0, a&r&r&
(51)

X;(r,co) = co~;
rp (r (6

VI

where co&, 4~n;Z; e /m;, and v; ——i.s defined by [Eq. (47)]

vg ( r, co ) = (co —Ico„c ) —[conc +2coqcco E ( r )]2 —2 2

ni ~lee ((7gb

and strongly magnetized cathode electrons with

(55)

(b —a) ((1 . (57)

The equilibrium configuration, effective susceptibilities,
etc., correspond to the rectangular profiles considered in
Secs. II 8 and III 8 with the following additional simpli-
fying assumptions.

(a) The cylindrical diode has large aspect ratio with

2 2Zm, 2 rb —a=(co—lco„; )— (b) We examine Eq. (48) for low-frequency perturba-
tions with

(52) r
co Ico„b(r)

r

2 « co2, .— (58)

for rz &r &b. In obtaining Eq. (52) from Eq. (47),
have made use of charge neutrality [gj, ,nJ (r)e =0] of
the anode plasma [Eq. (17)]. Moreover, co„; (r) is defined
in Eq. (21).

Finally, for the plasma eIectrons in the anode region
(j= e), the effective susceptibility X,(r, co) is

rp rb (59)

as illustrated in Fig. 5.
Consistent with Eqs. (56} and (57}, the angular rotation

(c) The anode plasma extends to the edge of the cathode
electrons with
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~pb r —a
2' e r 2

A. 2
~Ib r —a

(60)

for a & r & rb In. Eq. (60), we have approximated
( r +a)/r =2/rb for the case of a large-aspect-ratio diode
[Eq. (57)]. Furthermore, from Eqs. (27) and (57), we
neglect the (slow) r-variation of co„; (r) and approximate

~,c(r) =~ ~7 =
2 [ ~,—c+(~'~+4~.cQE)'"1

for rb & r & b, where QE coE(rb——) is given by
A, 2

CO pb
Q~ ——

~ce rb
(62)

Similarly, the rotation velocity of the electrons in the
cathode region [Eqs. (20) and (25)] is approximated by
co„,(r)=Qg for rb &r &b

We now examine the susceptibility factors occurring on
the left-hand side of Eq. (48). Referring to Eqs. (49) and
(50), and making use of Eqs. (56), (58), and (60), we find
vb ——co„. Therefore, Xb can be approximated by

velocity of the cathode electrons can be approximated by
[see also Eqs. (19) and (24)]

co„b(r) =coE(r)

I2
r[1+X;(r,co)] 5$ —

z [1+X;(r,co)]5/
r

15$ co pb /coce

r co IcoE—(r)

where X;(r,co) is defined in Eq. (64).
To summarize, Eq. (66) is an excellent approximation

to the exact eigenvalue equation (48) in circumstances
where the anode plasma density is low [Eq. (55)], the
cathode electrons are strongly magnetized [Eq. (56)], the
diode aspect ratio is large [Eq. (57)], and the perturbation
frequency is low [Eq. (58)]. It is clear from Eq. (66) that
the surface-charge perturbation on the cathode electrons
can couple to the dielectric response of the plasma ions in
the anode region.

B. Dispersion relation and analytic results

In this section, we solve the approximate eigenvalue
equation (66) subject to the boundary conditions
5$ (r =a)=0=5/ (r =b) Referr. ing to Fig. 5, in region I
(a &r &rb), Eq. (66) reduces to (1/r)(c)/Br)(rc)5$ /c)r)
—(l /r )5P =0, which has the solution

'I ' 'I
5gt(r) = A

r a
a r

A 2
CO pb

Xb(r, co) =b r'~ Nee

(63) rb
a&r &rb . (67)

Note that
~
Xb

~
&&1 since co~b &&co„ is assumed. Simi-

larly, from Eqs. (53) and (54), it can be shown for the elec-
trons in the anode region that X,(r, co)=co&, /co„over the
range rb &r &b Moreover. , ~X, ~

&&1 by virtue of Eqs.
(55) and (56). Finally, from Eqs. (51), (52), (61), and (62),
the ion susceptibility X; (r, co) can be expressed as

Moreover, in region II (rb & r & b), Eq. (66) again reduces
to (1/r)(B/c)r)(rc)5$/c)r) —(l /r )5P =0. The solution
for 5$ (r) in region II that is continuous with Eq. (67) at

I

REGION I i REGION 2

X;(r,co) =
0, a&r&rb

67 pg.

rb &r &b
( co —lco „( ) —( coq~I +2 conc QE )

Qb oc

where co „; and QE are defined in Eqs. (61) and (62).
With regard to the right-hand side of the eigenvalue

equation (48), we retain the perturbed surface-charge con-
tribution from the cathode electrons, which is proportion-
al to dco~b(r)/dr= co~b5(r rb). H—owe—ver, we neglect
the perturbed surface-charge contributions from the anode
plasma electrons and ions (j =e,i) by virtue of the low-
density assumption in Eq. (55). Approximating

no (r)
j

ELECTRONS
j=e

lONS
*

a
n =—

I Z

cozb(r) co~b(r)
coce+2co b) =

vb(r, co)
(65)

on the right-hand side of Eq. (48), and ~Xb ~
&&1 and

~
X,

~
&& 1 on the left-hand side of Eq. (48), the eigenvalue

equation can be expressed as

FIG. 5. Model density profiles used for electrostatic stability
analysis in Sec. IV. Anode plasma density is low with

n;, n, «nb [Eq. (55)], and the anode plasma extends to the edge
of the cathode electrons with r~=rb [Eq. (59)].
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r =rb and vanishes at r =b is given by
'I

r b
Syn(r) = a

b r

rb

b

—1

b
rb (r Q6

The remaining boundary condition is obtained by in-
tegrating Eq. (66) across the surface at r=rb (Fig. 5).
Multiplying Eq. (66) by r and integrating from rb(1 —5)
to rb(1+5) with 5—+0+ gives

rb 1—
A2
67 pi

(CO —1CO p~ ) —(COq, +2COq(QE)

15/i(rb) a) pb

co lcoz(rb—) co„
&Pi

8
(69)

Br

Equation (69) relates the discontinuity in (B5$'/Br) at
r = rb to the perturbed surface-charge density.

We define

rb —a =5b

b —rb ——hp,
(70)

where b,b is the width of the cathode electron region and

bi' is the width of the anode plasma region (Fig. 5).
Moreover, from Eqs. (60) and (70),

1+
2,b

A2
CO pi

(CO —lCO „; ) —(CO„+2CO„QE )

lQE

~b CO —lQE
(75)

A +p A
co —lQE ——— lQE

Ab+Ap
(76)

corresponding to stable oscillations on the surface of the
electron layer. For co&,&0, however, Eq. (75) can give in-
stability associated with the coupling of these surface os-
cillations to the plasma ions in the anode region.

Making use of the definitions co&, 4mn——;Z; ~ ™;and
Qz (co&——b /co«)(bblrb) [Eq. (62)], two of the dimension-
less frequencies occurring in the dispersion relation (75)
can be expressed for a large-aspect-ratio diode as

2
COci Z] Pl e Mce rb

(77)
QE mi CO pb ~b

2 2
l me Zi +i ~ce

A2 2
s nb pb ~b

A2
N pi

QE

Z~ ni rb mc

nb &b nE

Moreover, from Eq. (61), co „;/Qz is given by

For the special case of no ions (co&, ——0), Eq. (75) gives the
familiar result

CO pb kb
COE(rb) =QE ——

~ce "b
(71) ~n 1

nE

2
Q)ci
A.
QE

j/2

+4
QE

(79)

Substituting Eqs. (67) and (68) into Eq. (69) then gives

1+(rb Ib)"
(~ la„)z—(~,', —+2~„QE) 1 (rb/b)"—

bp rb

b

6) pi

(CO —lCO„) —(e„.+2e„QE )

rb 5 lQ8

'b CO —1QE
(74)

Taking rb lb=1 in Eq. (74) for a large-aspect-ratio diode
gives the approximate dispersion relation

1+(a lrb) rb 1QE—l
211 —(a/rb) ~b m —1QE

Equation (72) plays the role of a dispersion relation that
determines the complex eigenfrequency co in terms of oth-
er system parameters.

For a laro'e-aspect-ratio diode, we Taylor-series expand
[1+(rblb) ]/[1 (rblb) ]=b/lb& —and [1+(a/rb) ]/
[1—(alrb) ]=a/lbb, where

leap

1kb
(73)

b
' a

is assumed. Equation (72) then reduces to

The dispersion relation (75) is a cubic equation for the
complex eigenfrequency e, valid for a large-aspect-ratio
diode within the context of the assumptions enumerated
at the beginning of Sec. IV A. Making use of Eq. (75), the
marginal stability curves (Imco=0) in the parameter spaceA. 2 A.

(co„/Qz, co&, /Q z) are Plotted in Fig. 6 for several values
of azimuthal harmonic number 1 and for b,b/bz ——3 [Fig.
6(a)], hblbz ——1 [Fig. 6(b)], and b,bib& ———,

' [Fig. 6(c)].
For specified 1, the regions above the curves in Fig. 6 cor-
respond to instability with Imm & 0, whereas the regions
below the curves correspond to stable oscillations with
Imco=O. Moreover, for the choice of system parameters
CO„/Qz ——0. 1 and 6b/b. =1, shown in Fig. 7 are plots of
normalized growth rate (Imco)/QE [Fig. 7(a)J and real
frequency (ReCO)/Qz [Fig. 7(b)] versus c3&, IQ E obtained
from Eq. (75). Several features of the stability behavior
are noteworthy from Figs. 6 and 7.

(a) First, for weakly magnetized ions with co„./Qz «1,
it follows from Fig. 6 that instability can exist over a rela-
tively wide range of ion density as measured by co';/Q z.

(b) Typically, for specified co„/Qz, hb/bz, and har-
monic number l, there is a threshold value of ion density
above which instability occurs. For example, for
co„/Qz ——0.01 and a relatively thick cathode electron
layer with b,b/A~ =3, it follows from Fig. 6(a) that insta-
bility occurs when mp,-/0 E & 0.06 for the l = 1 mode, and
when co&,./Qz&0. 5 for the 1=2 mode. Qn the other
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I.O

, Q.8

(o)
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I.Q

0.8

I.O

0.8

0.6
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Mpi
h 2
QE 04

Q.6
h p
~pi

0.4

0.6
h2
Q)p I

h P 0.4

0,2 Q.2 0.2

0
O.O I Q. I

Z Ale

m,.

I

2"ce "b
"2"b ~b

IO
0
0.0 I

~Cl
h

O. I

Z i™e ~ce b
2 r

A 2m. ~pb &b

o~ 1

O.O I 0. 1

2=Z
fA

( GJ@ b

~ /Q, co /0 ) obtained from Eq. (75) for several values ofFIG. 6. Plots of marginal stability curves in the parameter space (m„/QQ cop E)
harmonic number I and (a) h p

— $ p
— $ p

—
3 .) 6 /6 =3 (b) 6 /6 =1 and (c) 6 /6 =—.Regions above the curves are unstable (Imago&0), and re-

gions below the curves correspond to stable oscillations (Imm =0).

hand, for co„/Qz ——0.01 and b,b/hz ———,, which corre-
sponds to a relatively thick anode plasma region and thin
cathode electron layer (see Fig. 5), we find from Fig. 6(c)
that the threshold for instability occurs at much lower
values of co&, /Qz than the b,b/6~ =3 case analyzed in

(c) From Eq. (75), it can be shown that the minima in
the marginal stability curves plotted in Fig. 6 occur or

/0 z ——0 and values of co„/Qz determined fromPl
r

= (q'+4q)'" q+ (q'+—2~)'"—
p

(80)

for l=1,2, . . . . When co«. /Qz is less than the value of
(co«/Qz)M for /=1, it is evident from Fig. 6 that the
l = 1,2, . . . modes switch on sequentially as co&, /0 z is in-
creased. On the other hand, when ~„/QE exceeds the
value of (co„/Qz)M for I = 1, it follows from Fig. 6 that
selected higher mode numbers have a lower threshold
value of co&, /0z for instability than the l =1 mode (see
also Fig. 7).

(d) As a general remark, for specified co&, /Qz and
mode number /, it is evident from Fig. 6 that the range o
co„/Qz corresponding to instability shifts upward as the
thickness of the cathode electron layer is increased relative
to the thickness of the anode plasma region. For example,
for co ./Qz ——1 and I =7, it follows from Figs. 6(a) andpt

I.O

0.8—
&b
h, p

{o)

0

—0.4— {b)

—0.8—

I fA(al
h

QE

0.6

0.4

—l.2—
Re~-ZQE

A

QE

0.2
—I.8—

—2.2—

0
0 0.2 0.4

OJ Pl

Q E

0.6 0.8 l.0
—2.6i

0 0.2 04
h 2
4) Pl

Q E

l

O, B I.O

FKx. 7. Plots of (a) normalized growth rate (Imm)/QE and (b) normalized real oscillation frequency (Reer —lQE)/QE vs Q, /
obtained from Eq. (75) for Aq/b, p = 1, co„/QE ——0. 1, and several values of harmonic number I.
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V. DIOCOTRON INSTABILITY DRIVEN
BY ANODE PLASMA ELECTRONS

As a second example that is analytically tractable, we
consider the eigenvalue equation (48) in circuinstances
where the anode plasma is not in contact with the cathode
electrons, i.e.,

r& &rb (81)

as illustrated in Fig. 2. In this case, the cathode electrons
and the anode plasma electrons can combine to give the
diocotron instability driven by electron velocity shear over
the interval a & r & b. To simplify the analysis and to dis-
tinguish this instability from the ion resonance instability
discussed in Sec. IV, we make the following additional as-
sumptions.

(a) The maximum rotation frequency of the cathode
electrons, co,b(rb)=QE is much higher than the ion cy-
clotron frequency, i.e.,

6(c) that instability exists for 0.026&co„./Qz &0.65 when
b,b/bz ——1, and for 0.26 & co« /Qz & 1 when hb /6& ——3.

(e) In Fig. 7, we plot the normalized growth rate
(Imco)/Qz [Fig. 7(ag) and real frequency (Reco)/Qz [Fig.
7(b)] versus co z, /Q E obtained from Eq. (75) for

b,bib~= 1, co„/Qz ——0. 1, and 1=1,2, . . . , 5. Referring
to Figs. 6(b) and 7(a), we find that as co~;/Qz is in-
creased, the unstable modes switch on sequentially in the
order 1=2, 1=3, 1=1 and 1=4, and 1=5. Moreover,
the growth rates for the ion resonance instability inferred
from Fig. 7(a) can be substantial. For example, for 1=3
and co z, IQ E ——0.5, it follows from Fig. 7(a) that
Imam=0. 5QE ——0.707~&,-. Moreover, for I =3 and
co z, /Qz ——0.5+ the real oscillation frequency is
Reco= —1.42QE ———2co~; [Fig. 7(b)].

To summarize, in Sec. IV we have investigated analyti-
cally properties of the ion resonance instability'i in cir-
cumstances where the anode plasma density is low [Eq.
(55)], the cathode electrons are strongly magnetized [Eq.
(56)], the diode aspect ratio is large [Eq. (57)], the pertur-
bation frequency is low [Eq. (58)], and the anode plasma
is in contact with the cathode electrons [Eq. (59) and Fig.
5]. Although these assumptions are somewhat restrictive,
the analysis clearly establishes the existence and qualita-
tive features of the ion resonance instability and the fact
that the plasma ions in the anode region can strongly cou-
ple to the cathode electrons.

15yI copb 5(r rb)—
COee CO 1QE—

n, 5(r rp )—
nb co —1Qzrb Ir&

2 2 (86)

Here, cozb 4~nbe ——Im„and QE co,b(rb) =——coz(rb) is de-
fined by [Eqs. (22) and (24)]

2 2
rb —a

+E +D 2 (87)
rb

where

CO pb
COD =

2'~~

is the effective diocotron frequency in the absence of an
internal conductor (a =0). It is clear from Eq. (86) that
the two source terms on the right-hand side correspond to
surface-charge perturbations at the surface of the cathode
electron layer (r=rb) and the anode electrons (r=rz).
Also note in Eq. (86) that no a priori assumption has been
made that the diode aspect ratio is large. That is, Eq. (86)
is valid for arbitrary b /a & 1.

Referring to Fig. 2, the eigenvalue equation (86) reduces
to the vacuum eigenvalue equation
r '(cjIBr)(rd5$ Idr) (1 Ir )5$ =0 within —the cathode
electron layer (a & r & rb ), in the vacuum region
(rb & r &r~), and within the anode plasma (rz & r & b).
Therefore, the solution to Eq. (86) that satisfies
5P (r =a) =0=5/ (r =b) is given trivially by

a (r (rb

it is assumed that

CO pb, N@~ ((CO~~ (85)

which corresponds to low-density, strongly magnetized
electrons.

Making use of Eqs. (82)—(85), it is straightforward to
simplify the eigenvalue equation (48) and the related defi-
nitions in Eqs. (49)—(54). In particular, the ions are treat-
ed as infinitely massive (m;~ oo) and the susceptibilities
Xz(r, co) (j =b, e,i) are approximated by zero on the left
hand side of Eq. (48). Moreover, only the cathode elec-
trons and the anode electrons contribute on the right-hand
side of Eq. (48). Making use of Eqs. (82)—(85); the eigen-
value equation (48) can then be approximated by

1 c) c) 5~( 1

r c)r c)r r2

(b) Consistent with Eq. (82), we consider high-
frequency perturbations with

co = leo„b ( rb ),

rb (r (rp

b
fp (r ($

(89)

and treat the anode ions as a tenuous, unmagnetized plas-
ma component satisfying

f
co

f
))co„,co~;, fico„;(r~) f

. (84)

(c) No a priori assumption is made regarding the rela-
tive size of the plasma electron density and the cathode
electron density (n, /nb). However, for present purposes, lim 5P'(r~ e)= lim 5$ (r~ —e)—.

e—+0+ g—+0+

(90)

Two of the boundary conditions required in Eq. (89) are
continuity of 5p (r) at r =rb and at r =r~, i.e.,

lim 5p'(rb —e) = lim 5$ ( rb +e),
@~0+ g—+0+
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r 5$
Br

lim
e—+0+

=215/ (rb)
6)—lQE

The two remaining boundary conditions are obtained by
multiplying Eq. (86) by r and integrating across the
discontinuities at r =rb and at r =r&. This readily gives

r

r 5P'
Br

and

lim r 5$
8

e 0+ ()T
P

r 5P
8 1

Br

= —215$'(r )
'

(92)
nb ~ 1QE—rb Irr

Substituting Eq. (89) into Eqs. (90)—(92), after some
straightforward algebra we obtain the dispersion relation

b
' 21

(n, lng)[1 —(b/r~) ']
1+ 2 2 2

co/coD —l(r~ —a )/r&

a1—
r&

21
rb [1—(a /rb ) ]+ 21 2 2 2
rp &/COD —1 (rb 6 )Irb

(93)

Equation (93) can be used to determine the complex oscil-
lation frequency u over a wide range of system parame-
ters n, /ns, rb/a, rzla, and b/a. For the special case
where the anode electrons are in contact with the cathode
electrons (r~=rb), Eq. (93) supports only stable oscilla-
tions with Imp=0. This is expected since for rz ——rb the
electron density profile is monotonic over the entire inter-
val a & r & b (Fig. 2).

For rz & rq, the linear dispersion relation in Eq. (93) has
been solved numerically for the complex eigenfrequency
co. Typical numerical results are summarized in Fig. 8
where (a) the normalized growth rate (Imago)/coD and (b)
the real oscillation frequency (Redo)/coD obtained from
Eq. (93) are plotted versus r~/a for the choice of parame-
ters b/a=2, rb/a =1.5, density ratio n, /n& ——0. 1, and
several values of the azimuthal mode number I. Several
points are noteworthy from Fig. 8. First, the maximum
growth rate can be a substantial fraction of the diocotron
frequency con, thereby indicating a strong instability.
Second, for each value of 1, the range of rz Ia correspond-
ing to instability (Imago&0) is relatively narrow. Evident-
ly, from Fig. 8(a), high mode numbers 1 are excited when
the anode plasma boundary (r~/a) approaches the boun-

dary of the cathode electrons (rb/a=1. 5). In the limit,
however, instability ceases (Imp@=0) when r~ =rb. Final-
ly, from Fig. 8(b), for specified value of harmonic number
I, the real frequency of the unstable mode is almost in-
dependent of rz/a.

Shown in Fig. 9 are plots of (a) the marginal stability
boundaries in the parameter space (r~/a, l), and (b) the
maximum growth rate and the corresponding real oscilla-
tion frequency obtained from Eq. (93) for n, /nh =0.2 and
parameters otherwise identical to Fig. 8. The cross-
hatched region in Fig. 9(a) corresponds to instability
(Imago&0). The dashed curve in Fig. 9(a) represents the
conditions for maximum growth rate. For the choice of
parameters in Fig. 9, only mode numbers satisfying I )4
exhibit instability. As shown in Fig. 9(b), the real oscilla-
tion frequency is linearly proportional to 1, although the
maximum growth rate saturates quickly with increasing l.

In order to illustrate the dependence of stability
behavior on the density ratio n, /ns, in Fig 10 are .plotted
(a) the marginal stability boundaries in the parameter
space (rz/a, n, /ns), and (b) the maximum growth rate
and the corresponding real oscillation frequency obtained
from Eq. (93) for 1 =5 and parameters otherwise identical

O. I— 4= io

o.05—

0
l.6 l. 8

rp/a

0
l.6

I

I.8
vp /a

FIG. 8. Plots of (a) the normalized growth rate (Imago)/coD, and (b) real oscillation frequency (Reco)/co& vs r~/a obtained from Eq.
(93) for b/a =2, rI, /a =1.5, n, /n~ ——0. 1 and several values of harmonic number I.



32 COLLECTIVE INSTABILITIES DRIVEN BY ANODE PLASMA. . . 1057

0.2
{b)

20

I.75—
0

I lTI 4P

QJp O. I

Rem/mp

Rem
10 QJp

I.5 I

IO
I

20
0
0

I

lo
I

20
0

30

FIG. 9. Plots of (a) the marginal stability boundaries in the parameter space (r~/a, I) and (b) the maximum growth rate and corre-
sponding real oscillation frequency obtained from Eq. (93) for n, /ng ——0.2 and parameters otherwise identical to Fig. 8. Dashed
curve in (a) corresponds to maximum growth rate.
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FIG. 11. Plots of (a) the marginal stability boundaries in the parameter space (r~/a, rq/a), and (b) the maximum growth rate and

corresponding real oscillation frequency obtained from Eq. (93) for n, /nI, ——0.2 and parameters otherwise identical to Fig. 10.
Dashed curve in (a) corresponds to maximum growth rate.
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from Fig. 11(b), for b/a =2 and n, /nb —0.2, the strong-
est instability occurs for rb/a =1 5.

VI. NUMERICAL RESULTS

In this section, we make use of the exact eigenvalue
equation (48) and the related definitions in Eqs. (49)—(54)
and Eqs. (19)—(21) to investigate numerically the stability
properties for electrostatic perturbations about the equili-
brium density profiles illustrated in Fig. 2. No a priori as-
sumption is made that the anode plasma density or
cathode electron density is low or that the electrons are
strongly magnetized. In solving Eq. (48), we impose the
boundary conditions 5$ (r =a)=0=5/'(r =b), and the
anode plasma between r =r& and r =b is assumed to be
hydrogen' plasma with

Z; =1 and
1

1836
(94)

Typical numerical results are illustrated in Figs. 12 and
13 for the choice of geometric factors

r~ rz=1.2, =1.4, —=1.6,
a ' a ' a

corresponding to a moderate-aspect-ratio diode. The sta-
bility results in Fig. 12 correspond to the high-frequency
(electron-driven) branch (Sec. V), whereas Fig. 13 illus-
trates stability behavior for the low-frequency branch (ion
resonance instability)' in which the anode plasma ions
couple strongly to the cathode electrons (Sec. IV).

Beginning with the high-frequency branch, the normal-
ized real frequency (Reco ) /co«and the growth rate

(Imco)/co„obtained from Eq. (48) are plotted in Fig. 12
versus normalized cathode electron density sb ——co blco„b pb ce
for values of s, =co&, /co„ranging from s, =0 (no anode
plasma) to s, =0.5 (~dense anode plasma). The numerical
plots are presented for azimuthal mode numbers l =4
[Fig. 12(a)], l =8 [Fig. 12(b)], and / = 12 [Fig. 12(c)].

For no anode plasma (s, =0) and low-density cathode
electrons (sb —co~b/co„&& 1), it is clear from Fig. 12 that
the instability growth rate is extremely small
[(Imco)/co„&10 for sb &0.1]. Moreover, for sb «1
and s, =0, the real oscillation frequency in Fig. 12 con-
nects smoothly onto the analytic result [see Eq. (93) with
n, =0]

copb a2
i 1—

COce rg,

[1 (rb/b) —']
[1 (a/b) '—]

(96)

As the cathode electron density (sb) is increased for s, =0,
it is clear from Fig. 12 that the growth rate and real fre-
quency increase monotonically, at least for values of
co~b/co«up to 0.7. In addition, Reco and Imco increase
with mode number l for the range of l presented in Fig.
12. The s, =0 results in Fig. 12 are consistent with earlier
numerical studies of electrostatic stability properties car-
ried out for the rectangular cathode electron density pro-
file in Ref. 1.
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FICx. 13. Plots of normalized real
rb/a =1.2, r~/a =1.4, and b/a =1.6.
frequency branch (labeled by 1) and the

0.5 0.6 0.7
I

0 O. I 0.2 O. 3 0.4 0.5
h

ne /n $
frequency (Reco)/Q)ce and growth rate (Im~)/Mce obtained from Eq. (48) assuming l =8,
Plots are vs. (a) co~q/co„, for n, /nq ——0.5, and (b) n,, /ni„ for 9 p&/co 0 4 Both the high-

low-frequency branch (labeled by 2) are displayed.
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For nonzero anode plasma density (s,&0), it is clear
from Fig. 12 that the instability growth rate and real os-
cillation frequency are enhanced relative to the s, =0 case.
This is due to a coupling between the plasma electrons
and the cathode electrons. Evidently, this coupling can be
particularly strong in the low-density regime (Sec. V). For
example, for l =8 and s& ——co~&/co„=0.2 it follows from
Fig. 12(b) that (Imago)/co« ——3.5X10 for s, =co&, /co,
=0, whereas (Imago)/co« ——1 X 10 for s, =co&~, /co«
=O. l. This corresponds to a 30-fold increase in the
growth rate produced by the strong interaction of the
anode electrons with the cathode electrons. As sb and s,
are increased further, the growth rate is still enhanced rel-
ative to the s, =0 case, but not by the same large factors
as in the low-density regime. For the parameters chosen
in Fig. 12, we also note that the enhancement in growth
rate as s, is increased is more pronounced at larger I
values, whereas the enhancement in real oscillation fre-
quency as s, is increased tends to be weaker at larger I
values.

We now consider Fig. 13 where the numerical results
obtained from Eq. (48) are presented for both the low-
frequency (ion-driven) branch as well as the high-
frequency (electron-driven) branch. In Fig. 13, and
throughout the remainder of this paper (Figs. 14 and 15),
the high-frequency and low-frequency solutions are la-
beled by the numbers 1 and 2, respectively. Shown in Fig.
13 are plots of the normalized real frequency (Reco)/co„
and growth rate (Imago)/co« for the mode number 1=8
and geometric parameters specified by rb /a = 1.2,
rz/a =1.4, and b/a =1.6 [Eq. (95)]. In Fig. 13(a), the
real frequency and growth rate are plotted versus
si, ——Dzi, /co„ for fixed density ratio n, /n~ ——0.5. On the
other hand, in Fig. 13(b), the real frequency and growth
rate are plotted versus density ratio n, /n& for a fixed
value of co~b/co„=0. 4. Several features of the stability
behavior are evident from Fig. 13. First, the real oscilla-
tion frequency for the ion-driven branch (curve set no. 2)
is about an order of magnitude lower (or somewhat less)
than the real oscillation frequency for the high-frequency
branch (curve set no. 1), at least for the range of parame-
ters analyzed in Fig. 13. Second, for fixed density ratio
n, /ni, =0.5 and increasing values of

cozen, /co„, it is clear
from Fig. 13(a) that the growth rate for the ion resonance
instability increases monotonically (albeit slowly), whereas
the growth rate for the high-frequency branch exhibits a
secondary maximum for sb —0.25 (see also Fig. 12). On
the other hand, for fixed value of Dzb/co„=0. 4 and in-
creasing density ratio n, /nb, we find from Fig. 13(b) that
the growth rate for the ion resonance instability increases
rapidly and begins to level off at Imps=0. 0045cu« for
n, /n~ & 0.3, whereas the growth rate for the high-
frequency branch increases slowly over the entire interval
0&n, /nb &0.5. Another important feature evident from
Fig. 13 is that the growth rate of the ion resonance insta-
bility can be substantial. Indeed, the growth rates of the
two branches are comparable over most of the parameter
range analyzed in Fig. 13(b). This is a very important re-
sult, since the ions participate as an active component for
the low-frequency branch (curve set No. 2), and would be
expected to exhibit a strong nonlinear response to the in-

stability.
A region of strong ion resonance instability is also illus-

trated in Fig. 14 where the normalized real frequency
(Rno)/co«and growth rate (Imago)/co«are plotted versus

si, ——cozi, /co« for mode number I =8, fixed density ratio
n, /nb =0.5, and diode aspect ratio increased from
a/(b —a) =1.67 (in Figs. 12 and 13) to a/(b —a) =4.76
(in Fig. 14). For the parameter range analyzed in Fig. 14,
the real frequency of the two branches differ by less than
a factor of 2. On the other hand, the growth rate of the
ion resonance instability (curve set no. 2) is substantially
larger than the growth rate of the high-frequency branch
(curve set no. 1) over a wide range of cathode electron
density (sb & 0.4).

The strong dependence of instability growth rate and
real oscillation frequency on diode aspect ratio was evi-
dent from the analytic studies of the two branches
presented in Secs. IV and V. This is further illustrated in
Fig. 15, where the normalized real frequency (Reco)/co«
and growth rate (Imago)/co«obtained from Eq. (48) are
plotted versus normalized diode thickness 5 defined by

b —a
a

(97)

1=1+—6,
3

I'p 2=1+—6 .
a 3

(98)

0&

Red)/(dye
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FIG. 14. Plots of normalized real frequency (Redo)/~„and
growth rate (Imago)/co„vs co~b/co„obtained from Eq. (48) for
l =8, n, /nI, ——0.5, rI, /a =1.07, r~/a =1.14, and b/a=1. 21.
Both the high-frequency branch (labeled by 1) and the low-
frequency branch (labeled by 2) are displayed.

As in Figs. 12—14, the relative thickness of the cathode
electron layer, the vacuum region, and the anode plasma,
each correspond to one-third of the total cathode-anode
spacing. That is, in Fig. 15,
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Moreover, 1=8 and fixed density ratio n, /nb ——0.5 are
assumed in Fig. 15, with sb ——co~blco„=0.4 in Fig. 15(a)
and sb ——0.7 in Fig. 15(b). Comparing Figs. 15(a) and
15(b), it is found that the plots of the real oscillation fre-

quency for both branches and the growth rate for the ion
resonance instabHity (curve set no. 2) are relatively insens-
itive to increasing the cathode electron density from
sb = c3&b /co„= 0.4 [Fig. 15(a)] to co rb /co« ——0.7 [Fig.
15(b)]. On the other hand, there is a significant increase
in the growth rate of the high-frequency branch (curve set
no. 1) as sb is increased. In addition, for the parameter
range analyzed in Fig. 15, there is an abrupt increase in
the growth rate of the ion resonance instability as 5 is in-
creased, with Imago beginning to level off at
Imago 0.005co« for b. )0.5. Moreover, it is evident from
Fig. 15 that the growth rate of the high-frequency branch
exhibits a secondary maximum (for b,=0.1) as 5 is in-
creased. Although the detailed physical reason for this
growth enhancement (secondary maximum) is not under-
stood at the present time, the reader will recall from the
analytic studies in Sec. V that the instability growth rate
of the high-frequency branch exhibits a very sensitive
dependence on the geometric factors rb/a, rb/a, and b/a
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FIG. 15. Plots of normalized real frequency (Redo)/co„and
growth rate (Imco)/cu„vs b, =(b —a)/a obtained from Eq. (48)
for I =8, n, /nq ——0.5, and (a) c3pp /c0„=0.4, and (b)

co p$ /co„= 0.7. In (a) and (b) it is assumed that ( rq —a }/a =6 /3
and (rp —a)/a =26/3. Both the high-frequency branch (la-
beled by 1) and the low-frequency branch (labeled by 2) are
displayed.

VII. CONCLUSIONS

In this paper we have made use of the macroscopic
cold-fluid-Poisson equations to investigate collective in-
stabilities driven by anode plasma ions and electrons in a
nonrelativistic cylindrical diode with applied magnetic
field Boe,. Following a review of equilibrium properties
(Sec. II), the electrostatic eigenvalue equation is derived
(Sec. III) and investigated analytically (Secs. IV and V)
and numerically (Sec. VI) assuming flute perturbations
with B/Bz =0. Particular emphasis is placed on the influ-
ence of the anode plasma on stability behavior assuming
uniform cathode electron density (nb) extending from
r =a to r =rb, and uniform anode plasma density
(n, =Z;n;) extending from r=rr to r =b. Depending on
the cathode electron density (as measured by
sb =co b/aP, ), the anode plasma density (as measured by
s, =co~/co«), the diode aspect ratio, etc. , it is found that
there can be a strong coupling of the anode plasma to the
cathode electrons, and a concomitant large influence on
detailed stability behavior. In particular, the presence of
the anode plasma ions introduces a new low-frequency
mode (ion resonance instability) in which there is a strong
coupling of the anode plasma ions to the cathode electrons
(Secs. IV and VI). Moreover, the conventional high-
frequency stability properties calculated for s, =0 are sig-
nificantly modified by the coupling between the cathode
electrons and the anode plasma electrons (Secs. V and VI).
For example, for Ii/a = 1.6, rb/a = 1.2, rz/a = 1.4, 1 =8,
and sb ——0.2, it is found that (Imago)/co«=3. SX10 for
s, =0, whereas (Imago)/co« = 10 for s, =0.1, corre-
sponding to a 30-fold increase in instability growth rate
[Fig. 12(b)].
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