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The rapid fragmentation of two-dimensional high-pressure disks of Lennard-Jones fluid was stud-
ied using molecular dynamics. The free expansion of 169-, 721-, 2611-, and 14 491-particle systems
was studied for several sound-traversal times. The breakup into fragments (or clusters) can be
roughly described by Grady’s model, which balances the surface energy with the comoving (dilation-
al) kinetic energy of the fragments. The model predicts that the number of fragments varies as the
cube root of the system population and the 2D /3 power of the initial pressure where D (2 or 3) is
the dimensionality of the system. The molecular-dynamics results confirm these predictions within
about +0.1 and thereby rule out three other fragmentation models. The relatively high monomer
temperatures and relatively uniform fragment temperatures found here correspond to temperatures
found in recent three-dimensional Lennard-Jones simulations by Vicentini, Jacucci, and Pandhari-

pande.

I. INTRODUCTION

The expansion of a high-pressure hot fluid into a low-
pressure volume many times the original volume is a
strongly nonequilibrium process. Wave propagation, fluc-
tuations, negative pressures, surface tension, vaporization,
viscosity, and heat conduction all play roles as a single-
fluid mass is converted to a time-dependent collection of
diverging liquid and solid fragments or clusters. A com-
plete theoretical or computational study of such a process
lies well beyond our capacity. Thus, fragmentation is pri-
marily “understood” on the basis of experimental correla-
tions and relatively crude “theories” (models). The expan-
sion of an isochorically heated fluid is a challenging prob-
lem involving nonequilibrium statistical mechanics,
dynamics, and fluid mechanics. Three diverse fields pro-
vide sample applications which could benefit from the
ability to predict fluid fragmentation. Lithium jets in
inertial confinement fusion (ICF) reactors are heated by
neutrons much more rapidly than the tens of mi-
croseconds required for pressure relief.! Pressurized
fluids leaving nozzles fragment.? Colliding heavy-ion
beams produce compressed “nuclear matter” which exhib-
its fragmentation and a vapor-liquid—like phase transi-
tion.3

While fragment size is a crude description of the frag-
mentation process, it is useful because it is easily mea-
sured and calculated. Four hydrodynamic models have
been proposed! to predict the mean fragment size. Two of
these models balance fragment surface forces against pres-
sure, either (i) the increased static pressure P, or (ii) the
dynamic expansion pressure mpv?/2 where m is the
atomic mass, p is the atom density, and v is the jumpoff
velocity, P/mpc, with c indicating the sound speed. Two
other models minimize the sum of the fragment surface
and dilational energies, considering (iii) the total fragment
dilational energy, or (iv) the dilational energy near the
fragment surfaces. These four models have markedly dif-
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ferent dependences on the original system size and pres-
sure.

Vaporization has also been proposed as an expansion
and fragmentation mechanism. Two phase-change mech-
anisms are “spinodal decomposition” and “nucleation
and growth.” Neither mechanism suggests any depen-
dence of mean fragment size on original system size.

Molecular dynamics provides a test of the size-
dependence predictions of the various theoretical models.
Here, we apply molecular dynamics to a two-dimensional
system because it can simulate relatively large radius sys-
tems, because it is easily diagnosed graphically, and be-
cause it best simulates the quasi-two-dimensional expan-
sion of cylindrical jets in inertial fusion reactors.

II. FRAGMENTATION MODELS

A. Hydrodynamic models

The simplest model requires the surface tension (2y or
27ry in two or three dimensions) to balance the initial
pressure, 2rP, or 7r 2P. Thus, the “fragment” or “cluster”
size N¢ (in atoms) is
D— D
D=1y

D41
D P

N,=m , (1)

where the dimensionality D is either 2 or 3. A more real-
istic model accounts for the relief of the static pressure,
producing a dynamic expansion pressure and replacing P
in (1) by mpv?/2, where v is the jumpoff velocity,

D-2 2D

D+l PD+1[2(D—1)’}’]D

D

N.=w (2)
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An energy-minimization model (proposed by Grady®
and extended by Glenn® and Blink!) minimizes the sum of
the surface-energy density plus the fragment dilational-
energy density. The surface-energy density is Dy/r
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where r is the fragment radius. For a homogeneous

expansion, the dilational-energy density is (rp')z/
[2D(D +2)p] where —p/p=Dv/R. Thus
D41 (D=2)/3
—173 (D+1)/3
NC o D
2D/3
X[D+2yP? | < | N, 3)

The inhomogeneity of the expansion can be partly con-
sidered by including the radial dependence of the velocity
divergence. Then, the fragment radius predicted by Eq.
(3) is reduced by 1 to 2 orders of magnitude for the inner-
most fragments,! but most of the system mass is included
in fragments within a factor of 2 of the size predicted by
‘the uncorrected Eq. (3). i

If only the dilational energy in an outer shell of thick-
ness 8 is used in the energy-minimization model, N, is
proportional to N,

D/2 D

207 N. @)

)

£

N, = =

If Eq. (3) proves to be a more nearly correct model than
Eq. (4), fragmentation must be driven by collective effects,
including energy in the fragment core as well as the ener-
gy at the fragment surface.

In summary, the hydrodynamic models (1), (2), (3), and
(4) predict N,~N°P~2, NOP—* N?2/3p—4/3 and NP2
respectively, in two dimensions. In three dimensions, the
four 1311odels predict N, ~N°P—3, N°P—6, N2/3p—2 and
NP,

B. Phase change as a fragmentation mechanism

It is easy to see that phase change is too slow and too
weak a mechanism to drive fragmentation. For example,
Fig. 1 shows the response to 800 kJ/kg of isochoric neu-
tron heating in a 0.2-m-diam lithium jet in the HYLIFE
(high-yield lithium-injection fusion-energy-converter)
(Ref. 7) ICF reactor, using Young’s soft-sphere equation
of state.® The sudden heating causes the liquid tempera-
ture (500°C) and pressure (essentially zero) to quickly rise
to 735°C and 380 MPa with no change in density (485
kg/m?). As the relief wave moves into the jet, a nearly
isentropic éxpansion occurs. During expansion to the
saturation line (and P, ~0), the liquid temperature falls
to 695°C, and the internal energy falls by ~16 kl/kg.
This energy corresponds to a jumpoff velocity of about
175 m/s as internal energy is converted to kinetic energy
by the tensile wave. When the expansion continues
beyond zero pressure into the two-phase liquid-vapor re-
gion, phase separation or fragmentation must eventually
occur, returning the fluid to the saturated liquid and va-
por lines. If the isentropic expansion could continue all
the way to the isentropic spinodal [where (0P /0V)g van-
ishes], only 3.4 J/(kg of liquid) would be needed for
equilibrium vaporization. This is about 4400 times less
energy than the jumpoff kinetic energy produced by the
hydrodynamic expansion. Thus, vaporization utilizes in-
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FIG. 1. P-V diagram of the heating and expansion of a lithi-
um jet. Due to the restricted specific-volume range of the dia-
gram, the coexistence curve appears to be flat at ~0 pressure.
The critical pressure of 114 MPa is at 0.011 m®/kg (not shown).
The dashed isothermal and isentropic spinodal lines cross the
lower-right corner. The “two-phase” isotherms are analytic
continuations of the single-phase isotherms.

sufficient energy to drive the hydrodynamic expansion
and fragmentation.

It is unlikely that either spinodal line would even be ap-
proached in a real liquid-lithium ICF reactor. At the spi-
node, the liquid tension is ~1560 MPa, much larger than
the tensile strength of solid lithium. In an ICF reactor,
the entrained gas, target debris, and corrosion products
provide an abundance of potential nucleation sites.
Vapor-bubble growth (by nucleation and growth) is also
ineffective from a kinetic standpoint since the growth
times (milliseconds) are much longer than the liquid’s ex-
pansion time. Hence, it is concluded that hydrodynamic
fracture is the fragmentation mechanism and that phase
separation occurs later to fill the consequent voids.

III. MOLECULAR-DYNAMICS MODEL
OF FRAGMENTATION

The well-characterized Lennard-Jones 6-12 potential
was used,
12
g
:

(r)
€

The potential was truncated at r,=2.50 to save computer
time. The truncation has negligible effect on the evolu-
tion of the system, but it does allow early identification of
fragment sizes. In addition, Thompson’s neighbor-listing
procedure’ was used to reduce computer time, at some
memory expense. The largest run (14491 atoms) required
a memory of 212 000 words and 6.3 sec of central process-
ing unit time on the Cray-1 computer for each time step.
In implementing Thompson’s scheme a list was construct-

6
g

r

=4 (5)
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ed (for each atom) that included all atoms within some
range #;>2.50. After the list was compiled, the cumula-
tive scalar distances traveled by each atom were computed
at each time step, and the maximum was compared to a
test quantity, 0.95[1—1/(n;+1)](r;—2.50) where n; is
the number of time steps the list has been used. The test
quantity anticipated whether or not the next step would
move an atom outside the list range.

The phase diagram for the two-dimensional Lennard-
Jones system was established by Barker!® using perturba-
tion theory for the fluid phases and a self-consistent cell
model for the solid phase. Monte Carlo calculations by
Abraham!! confirmed Barker’s phase boundaries. Exten-
sive equation-of-state data were compiled by Henderson'?
using Monte Carlo calculations. These data were used to
compute the pressure and sound speed in the liquid as a
function of temperature at densities near p*=po?~0.6
(roughly midway between the critical and liquid triple-
point densities). Because no data for the surface tension
were available, molecular dynamics was used to calculate
the size-dependent surface tension, as discussed in Sec. IV.

The initial conditions for 13 fragmentation runs are
shown in Fig. 2 and tabulated in Table I. The four system
sizes (169, 721, 2611, and 14491 atoms) correspond to
crystals in the shape of regular hexagonal crystals with 8,
16, 30, and 70 rows of particles on a side. These configu-
rations were used to initiate the runs. (Each crystal was
melted and equilibrated to approximately the desired tem-
perature and density within a confining wall; the fragmen-
tations runs began when the wall was removed.)

Verlet’s algorithm, with a time step At of ~0.02, in
units of (mo?/€)1/?, was used, ’

r,=2rp—r1_+Fy(At)*/m (6)

where r_, ry, and r_ are the atom locations at three suc-
cessive times, and F, is the total force from all atoms
within 2.50. Velocities were obtained from the coordi-
nates,
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FIG. 2. Initial conditions for the 13 moleéular-dynamics
fragmentation simulations.

vo=(r,—r_)/2At. (7

The potential, translational, rotational, and thermal ener-
gies and the fragment sizes were tabulated. Fragment
translational temperatures were defined as the fragment’s
center-of-mass kinetic energy in the fixed frame of refer-
ence divided by the product of Boltzmann’s constant k
and the corresponding fragment’s size (in atoms). Frag-
ment rotational temperatures were defined as LZ2/kN_I
where L is the angular momentum around the fragment
center and I is the moment of inertia. Fragment thermal
temperatures were given by the remaining kinetic energy
divided by the product of k and the corresponding
fragment’s size.

IV. RESULTS

A. Two-dimensional surface tension

Recently, Thompson, Gubbins, Walton, Chantry, and
Rowlinson!3 published an extensive molecular-dynamics
study of three-dimensional surface tension that used time
averages of up to t*=t(mo?/e)!/>=1400. To extend
Thompson’s study to two dimensions, a series of
molecular-dynamics calculations was performed on sys-
tems ranging from 70 to 700 atoms at reduced tempera-
tures (7* =kT /¢) below, near, and above the triple point.
Density and (Irving-Kirkwood) pressure-tensor time aver-
ages were taken for up to t*=1450 in a few cases, with
typical averaging periods being for #*=400—700.
Analysis of the results indicates that the runs below the
triple point did not reach equilibrium. (Low densities and
negative pressures typical of the two-phase solid-vapor re-
gion were measured.) For the higher-temperature runs
(T*=kT/e~0.45), fluctuations and occasional drop frag-
mentation obscured the results. Only near the triple point
were reasonable time-averaged pressure-tensor profiles ob-
tained.

The surface tension measured at the proper radius R;
(which is significantly different from the equimolar radius
for small drops), is!

D1

! dr , (8)

7/: f() (PN—PT) RS

where D is, again, the dimensionality (2 or 3), Py and Pr
are the normal and tangential components of the pressure
tensor, and the zero of r is within the bulk of the fluid
(where Py =P;). The integrand is nonzero only near the
interface. The normal and tangential components are re-
lated by a force balance, leading to

Py
or

r

Py—Pr=— |5~

) 9

in two or three dimensions. Finally, the Laplace equation
is used to eliminate Ry,

AP———PN(liquid)—PN(vapor)z(2;:——1’)1 . (10

The result is
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FIG. 3. Two-dimensional surface tension at kT /e=0.35
from molecular-dynamics calculations.

APD—I
(D—1)?

« dP
y=— [ =rrar, (11)

or

in two or three dimensions. The resulting surface tension
at T*=0.35 is plotted in Fig. 3 as a function of 1/Nj,
where N, is the number of liquid atoms in the drop. For
interpolation, we assume that the surface tension de-
creases linearly with temperature to zero at the critical
point, and that it also falls to zero for a single-atom sys-
tem, '

T*—0.35

=0.3 _N—1/72y4
=0 5(1—N; ) 0.21

1— (e/o) . (12)

A simple scaling model based on excess energy due to
missing bonds for surface atoms produced' reasonable
agreement between the two-dimensional data and
Thompson’s three-dimensional results.

B. Fragment size as a function of system size and pressure

Fragment sizes were usually tabulated after only a few
sound-traversal times in order to minimize the influence
of vapor-pressure formation (Table I). In cases where
fragmentation was marginal, much more time elapsed be-
fore fragmentation. Examination of the atomic-position
plots for such cases indicates that some regions oscillated
(changed overall shape) several times before fragmenting.

The fragment sizes (in atoms) from two 2611-atom runs
are shown in Fig. 4. The largest fragment, the average of
the ten largest fragments, and the average of the largest
fragments comprising 30% of the nonmonomer popula-
tion are shown. In each case, the raw data have been
slightly adjusted (using the energy-minimization model,
model 3) to uniform initial conditions [2611 nonmonomer
atoms, p* =0.6, c* =c(m/€)/?=4.0, and y*=0.32]. The
only remaining variable in model 3 is the initial pressure.

10t T T
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O 30% population average
010 largest average
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0.1 1.0 10 100
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FIG. 4. Observed and predicted fragment sizes (atoms) as a
function of initial pressure, for two 2611-atom simulations. The
data and model predictions have been slightly adjusted to con-
stant initial conditions. The model numbers refer to Egs.
(1)—(4). The three observed values for each simulation are for
the largest fragment, the average of the ten largest fragments,
and the average of the largest fragments comprising 30% of the
system population (less monomers).

The slopes of the three fragment-size curves are —1.03,
—0.86, and — 1.42, respectively; these values bracket the
predicted slope of —+ from model 3 reasonably well. To
illustrate the sensitivity of the fragmentation to
fragment-size-dependent surface tension, the prediction
curve is also shown using the lower surface tensions at the
actual fragment sizes; the “observed” curves would be
similarly steeper when the surface-tension correction (to
7*=0.32) is eliminated. Pinally, the other model predic-
tions are shown. The slopes of models 1, 2, and 4 (—2,
—4, and —2, respectively) are much steeper than the
molecular-dynamics results.

The fragment sizes from the highest-pressure run for
each system size (14491, 2611, 721, and 169 atoms) are
shown in Fig. 5. The nomenclature is identical to that of
the previous figure. As in Fig. 4, the data were slightly
adjusted to uniform initial conditions (P*=Po?/e=1.4,
p*=0.6, c*=4.0, and y*=0.32). The only remaining
variable in the models is the system size N (total number
of particles). The slopes of the middle section of the three
fragment-size curves are 0.75, 0.69, and 0.64, respectively.
These observed values bracket the predicted slope of <+
from model 3. The 169-atom data were not used to com-
pute the slope because of minimal fragmentation. The
14 491-atom fragment sizes are probably a bit low. Posi-
tion snapshots and density profiles indicate that a sloshing
motion was present in the system at the time the confin-
ing boundary was removed. However, if the slopes are
computed using line segments between the 721- and
14491-atom data, the results are 0.54, 0.50, and 041,
respectively. Thus, the molecular-dynamics results indi-
cate a possible system-size dependence of the % power
(the illustrated line), but support that slope with an uncer-
tainty of +0.15. This result again is consistent with the
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FIG. 5. Observed and predicted fragment sizes (atoms) as a

function of system size, for similar heating levels. The nomen-
clature is identical to Fig. 4.

energy-minimization model (model 3). Models 1 and 2 in-
clude no system-size dependence and- accordingly predict
very low fragment sizes for this initial condition (0.1 and
18 atoms, respectively). Model 4 predicts a much steeper
slope (1.0) than found in the molecular-dynamics runs.

Although the data in Figs. 4 and 5 support the energy-
minimization model’s power-law dependence of fragment
size on system size and isochoric heating level (initial
pressure), the magnitudes of the observed sizes (in atoms)
are about ten times lower than the model-3 prediction.

C. Time evolution of the system

As time evolved in the thirteen numerical experiments,
snapshots of the atomic positions were used to visualize
the fragmentation; a sample sequence is shown in Fig. 6.

t* =33.0

t* =t/ e/m/o = 13.7

t*=714

1000
|

FIG. 6. Snapshots of the atomic configurations at four times

during the fragmentation process of a 14491-atom system
(kT /e~1.0).

Time, tc/R

FIG. 7. Thermal- and translational-temperature evolution in
the fragmentation simulations.

Inspection of this figure indicates that the average frag-
ment size is smallest near the system center, in agreement
with model 3 when the variation of velocity divergence
with radius is considered.

A more quantitative description of the fragmentation
process is contained in Table I and in Figs. 7 and 8 which
show the translational and thermal temperatures and the
largest cluster size as functions of time, system popula-
tion, and initial temperature. The abscissa of each plot,
tc /R, is the time divided by the sound-traversal time.
The initial temperature corresponds to the y intercepts in
Fig. 7. To decrease the influence of vapor-pressure for-
mation on the results, both thermal and translational tem-

25 T T ' '
—_—T* =1t01.2
—+— T* =0.751t0 0.8
sl —— T* = 0.6 to 0.65 4
P I R T* =0.5 to 0.55
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< 5[ 2611 |
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- N
5 N\ -
E 10 721 \
g S, S
§ 169 j S e
g sF R—‘:{ —— e ]
\;\_.. T —
0 s 1 : : '
o 2 8 12

Time, tc/R

FIG. 8. Size of the largest cluster as a function of time in the
two-dimensional fragmentation simulations. The ordinate is
scaled according to model 3 to eliminate the system-size depen-
dence.
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peratures are based on the total number of nonmonomer
atoms in the system. The rotational temperature was not
plotted because it was always negligibly small.

The thermal temperature typically relaxes to a “post-
fragmentation” level of about 0.35—0.4 (near the triple
point) after two or three pressure-relief times (R /c) (Fig.
7). The translational temperature reaches its “postfrag-
mentation” value at about the same time, but this value
depends on the initial temperature. For the highest
initial-temperature level (T* ~1.15), the final translational
temperature was ~0.4, somewhat higher than the final
thermal temperature. For the lower initial temperatures,
the final translational temperature was 0.1 or lower. As
predicted by model 3, there was an observable system-size
dependence for the translational temperature, with the
larger systems attaining higher values. The total of the fi-
nal translational and thermal temperatures was always
less than the initial thermal temperature; the remaining
energy was either carried as kinetic energy by monomer
atoms in the vapor, or stored as potential energy in the
fragments. The system potential energy increases due to
bond breaking during vaporization and surface-area
growth (fragmentation), and decreases slightly due to the
increase in bulk density caused by the lower liquid tem-
perature.

The evolution of the largest cluster size is shown in Fig.
8. The ordinate is scaled by 1/N2/? to remove the
system-size dependence predicted by model 3. When it
was widespread, fragmentation typically occurred at about
two to four sound-traversal times. The T* ~0.75 experi-
ments appear to be borderline for the three smallest sys-
tem sizes, with fragmentation occurring in steps over an
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FIG. 9. Pressure-density paths followed by two fragmenta-
tion simulations. The densities were calculated in an average
sense; actual local density in the fluid did not reach such low
values. Most of the fragments had densities and temperatures
characteristic of saturated liquid cooler than the saturation tem-
perature associated with the initial density.  This cooling was
probably due to the formation of vapor pressure.

extended period of time much longer than a few sound-
traversal times.

The paths followed on a T-p diagram are shown in Fig.
9 for two 2611-atom runs. The paths shown use spatially
averaged densities up to the fragmentation point, but in-
spection of the position plots shows marked heterogeneity
much earlier. (The definition of fragmentation used here
requires a minimum fragment separation of 2.5¢0). Inter-
nal voids which eventually become fragment surfaces ap-
pear much earlier. The internal voids decrease the
“prefragment” average density; hence, density appears to
increase upon fragmentation. Temperature also decreases;
as a new daughter fragment is born, its center-of-mass
translational energy is instantaneously subtracted from
the “internal” energy of its parent cluster. Most of the
fragment temperatures lie along the saturated-liquid-
phase line. Finally, although the low-temperature run ap-
peared to penetrate the unstable region under the iso-
thermal spinodal (and may have reached the isentropic
spinodal which lies below the isothermal spinodal), the
regular density patterns!* characteristic of spinodal
decomposition were not observed. This is because the
fragmentation expansion is inhomogeneous. If the inter-
nal voids that precede fragmentation were not included in
the density calculation, then the spinodal lines would not
be reached.

D. Fragment-size distribution

The integrated (cumulative) population distributions for
three experiments with similar heating levels and varying
system sizes are shown in Fig. 10. The smallest (721-
atom) system has a significant portion of the population
concentrated in an intermediate fragment-size range (indi-
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FIG. 10. Integrated population distributions as a function of
fragment size for three fragmentation runs with similar heating
levels but different system sizes. The dashed lines give integrals
as functions of the fractional fragment size N,/N and the solid
lines are normalized to the largest fragment size, i.e., the abscis-
sa is N./N¢max- The fragment data were taken just as fragment
sizes became well defined.
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cated by the steep portion of the curve). The larger sys-
tems’ populations were peaked at relatively lower frag-
ment sizes and exhibited decreasing population density
with increasing fragment size. The overall effect of in-
creasing system size was to concentrate population in
smaller fractional fragment sizes; 50% of the population
was in fragments smaller than 36%, 18%, and 17% of
the largest fragment size for the 721-, 2611-, and 14491-
atom systems, respectively.

E. Translational energy of the fragments and monomers

The translational temperatures (ignoring monomer en-
ergy and mass) are shown in Fig. 11 as a function of sys-
tem size and initial pressure. The inset shows the ob-
served translational temperatures which properly increase
with heating level (initial pressure). All the values exceed
mv?/2k, where v is the jumpoff velocity (dashed line). In
two dimensions, model 3 predicts’

1N
2 N

mv?
2k

T, = (13)

For extreme fragmentation (N,—0), Eq. (13) produces
the correct upper bound, but for no fragmentation Eq.
(13) predicts + the upper bound, rather than zero. The
failure at no fragmentation is a consequence of the as-
sumption of a homogeneous expansion in model 3.

The main portion of the figure shows the ratio of the
observed to the predicted [Eq. (13)] translational tempera-
tures. The additional kinetic energy is from two sources:
vapor-pressure formation (which is limited in Fig. 11 by
the elimination of monomers from the calculation), and
fragmentation due to fluctuations (a phenomenon ob-
served for small systems on the saturation line with no
isochoric heating).

For macroscopic systems, model 3 suggests that both
vapor-pressure formation and fracture due to “equilibri-
um” fluctuations are negligible. Glenn’s three-
dimensional (macroscopic) hydrodynamic code calcula-
tions® confirmed the upper bound of mv?/2k when no
tension is allowed in the material. Our molecular-
dynamics calculations (Fig. 11) show that the translational
temperature tends to increase with system size, at least for
systems of a few thousand atoms or less. However, the
14491-atom result shows a decreased translational tem-
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FIG. 11. Translational temperatures (scaled to the prediction
of model 3) for the 13 molecular-dynamics simulations.
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perature with increasing system size (even though its ini-
tial sloshing motion would be expected to produce more
translational energy than an initially quiescent system).
Thus, these limited molecular-dynamics results are not in-
consistent with model 3. Finally, we note that the peak in
the excess translational temperature is in the region of the
critical nucleus size. Systems smaller than the critical size
are naturally unstable, leading to fragmentation even in
saturated systems.

The monomer temperatures at the time of fragmenta-
tion for each run are listed in the last column of Table I.
The average liquid temperature during the monomer for-
mation period lies somewhere between the peak listed in
the second column of the table and the saturation tem-
perature (~0.5). The monomer temperature exceeds both
the average and the peak liquid temperatures in every
case. Similar results have been found by Vicentini, Jacuc-
ci, and Pandharipande'® using three-dimensional molecu-
lar dynamics for systems of 250 atoms. Vicentini, Jacuc-
ci, and Pandharipande also observed that the thermal tem-
peratures of most of the fragments are similar and essen-
tially independent of the initial heating level, in agreement
with our results.

V. CONCLUSIONS

Two-dimensional molecular-dynamics fragmentation
simulations were performed for five levels of heating and
four system sizes. The numerical experiments produced
agreement with only one of four proposed models (the
energy-minimization model, model 3). The model’s
power-law dependence of fragment size (atoms) on system
size ( %—) and initial pressure (— %) were both supported by
the data. The larger fragment sizes were about an order
of magnitude smaller than the model-3 predictions. There
was an unexpectedly large level of translational energy
generated in these molecular-dynamics runs, probably due
to the combination of small system size (fluctuations) and

_near-critical saturation temperature (vaporization). In

macroscopic systems, model 3 (with the 0.1 correction
factor) predicts

271/3

bi2, )| c 10-1/PR= (14)

P Ie
where 7 is the fragment radius, R is the system radius, D
is the number of dimensions (2 or 3), I" is the Griineisen
parameter, e is the added heat per unit mass, p,, is the
mass density, and a¢=0.583+0.083 (% to 2). When Eq.
(14) is applied to the HYLIFE (ICF) reactor initial condi-
tions (two dimensions, 0.1-m-radius lithium jets, 800
kJ/kg added energy, 485 kg/m? density, 1.0 Griineisen pa-
rameter, 0.35 J/m? surface tension, and 4500 m/s sound
speed), the predicted fragment-radius range is 0.3—0.45
mm. Thus, fragmentation will produce more than a 2
orders-of-magnitude increase in the surface area, making
it plausible that the required pulse rate of 1.5 Hz can be
achieved.

Grady® obtained excellent agreement between the un-
corrected version of Eq. (14) and fragmentation experi-
ments with oil shale and steel. He used fracture data to
estimate surface energy, thereby predicting much larger

r=
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fragments than would be obtained using the surface ener-
gies for clean cleavage cracks. If we were to use fracture
data to estimate the surface tension, the discrepancy with
the molecular-dynamics results would become even worse.
We have no quantitative argument to account for our
tenfold-smaller fragment sizes. Evidently a part of the in-
itial heat energy (which greatly exceeds the kinetic energy
of dilation) contributes to fragmentation in hot fluids. An
analysis of the catastrophic fragmentation of compressed
cold crystals would be a useful complement to the fluid
simulations.
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