PHYSICAL REVIEW A

VOLUME 32, NUMBER 2

AUGUST 1985

Spin-glass models of neural networks

Daniel J. Amit and Hanoch Gutfreund
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

H. Sompolinsky
Department of Physics, Bar-Ilan University, 52100 Ramat-Gan, Israel
(Received 22 March 1985)

Two dynamical models, proposed by Hopfield and Little to account for the collective behavior of
neural networks, are analyzed. The long-time behavior of these models is governed by the statistical
mechanics of infinite-range Ising spin-glass Hamiltonians. Certain configurations of the spin sys-
tem, chosen at random, which serve as memories, are stored in the quenched random couplings.
The present analysis is restricted to the case of a finite number p of memorized spin configurations,
in the thermodynamic limit. We show that the long-time behavior of the two models is identical, for
all temperatures below a transition temperature T,. The structure of the stable and metastable
states is displayed. Below T, these systems have 2p ground states of the Mattis type: Each one of
them is fully correlated with one of the stored patterns. Below T ~0.467T,, additional dynamically
stable states appear. These metastable states correspond to specific mixings of the embedded pat-
terns. The thermodynamic and dynamic properties of the system in the cases of more general distri-

butions of random memories are discussed.

I. INTRODUCTION
A. Models of neural networks

Recently, a number of models have been proposed
which view the human memory as a collective property of
large interconnected neural networks. Two such models,
one proposed recently by Hopfield! and a closely related
model, proposed some ten years ago by Little,> are the
focus of this paper. We briefly review the physiological
background of these models. For more details the reader
is referred to Refs. 1 and 2 and to a recent study of these
models by Peretto.> In both models each neuron is viewed
as an Ising spin with two possible states: an “up” position
or a “down” position depending on whether the neuron
has, or has not, fired an electrochemical signal (within an
interval of time of the order of a millisecond). The state
of the network of N such neurons at time ¢ is defined as
the instantaneous configuration of all the spin variables at
time t:

|a,t)=|S¢%,8%,...,SK:t) . (1.1)

The dynamic evolution of these states, in the phase
space of 2V states, is determined by the interactions
among the neurons. The neurons are interconnected by
synaptic junctions of strength Jj;, which determine the
contribution of a signal fired by the jth neuron to the
postsynaptic potential which acts on the ith neuron. This
contribution can be either positive (excitatory synapse) or
negative (inhibitory synapse). The potential ¥; on each
neuron is the sum of all postsynaptic potentials delivered
to it in an integrating period of time, of the order of a few
milliseconds, i.e.,

Vi= S Jy(S;+1) . (1.2)
J

In the absence of noise, or external perturbation, each
-neuron fires a signal if its potential V; exceeds a threshold
value U;. Thus the stable states of the network will be
those configurations in which each of the spin variables
S; is aligned with its molecular field h;=V;—U,, i.e.,

S;h; =S(V;—=U;)>0. (1.3)

It will be assumed throughout the paper that the J;;’s are

symmetric, i.e., J;=J;. In such a case Eq. (1.3) is

equivalent to the requirement that the configurations {S;}

be local minima (i.e., stable to all single-spin flips) of the
Hamiltonian :

H=—33nSi=—7 3J;55;, (1.4)
i ij

where it is usually assumed that the threshold potentials
satisfy U;~3 ;Jij- Thus there is no external field term in
H. In the presence of noise there is a finite probability of
having configurations other than those given by Eq. (1.3).
This can be taken into account by introducing an effective
temperature 1/f3, characterizing the level of noise in the
system,* as will be described below.

For the network to have a capacity for learning and
memory its stable configurations must be correlated with
certain configurations, which are determined by the learn-
ing process. This is achieved by choosing the interactions
Jij to be given by

2
Jij:_f%’-gn e ik . (1.5)
The p sets of {£'} are certain configurations of the net-
work which were fixed by the learning process. The &/
are taken to be quenched random variables, assuming the
values + 1 and —1 with equal probabilities. Note that

according to Eq. (1.5) every pair of neurons is connected.
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The model (1.3)—(1.5) will have the capacity of storage
and retrieval of information if indeed the emergent
dynamically stable configurations {S;} are correlated with
the “learned memories” {£}. This question is at the
center of the present study. However, in order to com-
plete the definition of the model one has to prescribe a
dynamic mechanism, by which the network evolves from
an arbitrary initial condition.

B. The generalized Hopfield model and the Little model

Hopfield’s dynamic model is essentially a 7=0 Monte
Carlo® (or Glauber) dynamics. Starting from an arbitrary
initial configuration the system evolves by a sequence of
single-spin flips, involving spins which are misaligned
with their instantaneous molecular fields. This process
monotonically decreases the value of H, (1.4), and leads
eventually to steady states, which are the local minima of
(1.6). A natural generalization of this model to a system
with noise is to adopt Glauber single-spin dynamics at a
finite temperature 1/83. The distribution of configura-
tions (1.1) relaxes, in this case to a Gibbs distribution

P{S} <exp(—BH{S}) , (1.6)

with H of (1.4). We refer to this finite-temperature model
as the generalized Hopfield model. Note that stability of
a state to all single-spin flips is not sufficient for dynamic
stability at finite temperatures.

In Little’s model the probability that the ith spin be in
a state S; at time 7+8¢, given a configuration {S;} of the
network at time ¢, is proportional to

exp(—pBS; h;{S;})
P(S])= DL—F5i hyi5i) o
exp(—BS; h; {S;})+exp(+BS{ h; {S;})
where h;=V;,—U;= EJJ,,S,, as before. The matrix W,
of transition probabilities from the state |a,t) to
| B, t+8t ), is just a product of the probabilities (1.7), i.e.,

(B|W1a>—H[z

i=1

hSFsec h(BhZSP)] . (1.8)

Thus, at each time step all the spins check simultaneously
their states against their molecular field. Each step may
consist of many, even N, spin fhps
It has been shown by Peretto’ that as long as Jij is sym-
metric, the master equation, based on the transition rates
given by (1.8), obeys detailed balance and hence leads to a
stationary Gibbs distribution of states, exp(—BH) with
the effective Hamiltonian,
S ] ] . (1.9)

The synchronous dynamics of this model seems at first
glance to lead to a very different collective behavior from
the asynchronous mechanism of Hopfield. The dynamics
of real systems is, most probably, in between. Thus it is
important to investigate to what extent this difference is
relevant.

H=_%§ln [Zcosh [ﬁ?-’ij

C. Relationship to models of random magnets

The study of the models described above is interesting
not only in the context of models of memory but also in
the context of the statistical mechanics of disordered mag-
netic systems. The Hamiltonian defined in (1.4) and (1.5)
is a special case of infinite-range spin glasses® where every
pair of spins is interacting via a quenched random ex-
change Jj;. In the canonical infinite-ranged spin-glass
model, introduced by Sherrington and Kirkpatrick’ (SK),
each Jj; is an independent random variable. In this model
the disorder leads to the appearance of an infinite number
of ground states (in the N— oo limit) with static and
dynamic properties, which are very different from the
usual ferromagnetic case.

The other extreme is the case of (1.5) with p =1, which
is an infinite-range Mattis model.> Here the disorder can
be gauged away, hence it is irrelevant thermodynamically.
There are two ground states ({S;}==x{&;}) with no frus-
tration: Each “bond” S;S;J;; in the ground state is posi-
tive. The model (1.4) and (1.5) with p > 1 represents an
intermediate case. There is always a finite fraction of
frustrated bonds. Nevertheless, the correlation between
the bonds may be sufficiently strong to yield a structure
of broken symmetry phase considerably simpler than that
of the SK model. Van Hemmen® introduced and solved a
related model with p=2. His mean-field equation has
been generalized to arbitrary p by Provost and Vallee.!
However, the structure and the properties of the mean-
field solutions for general p have not been investigated,
nor have the possible existence and the properties of meta-
stable states. These issues are the main focus of this pa-
per.

A similar model was also studied in the context of the
mean-field theory of random-axis ferromagnets.!! In the
limit of strong local anisotropy the system is mapped onto
a spin-glass Ising model with Jj; « fi;*fi; where @; is the
direction of the local easy axis. These J;; are similar to
Eq. (1.5) but with & which are the Cartesian components
of random unit vectors, rather than independent and
discrete random variables. This raises the issue of the sen-
sitivity of the properties of the models to the form of the
distribution of &%.

D. Outline and summary of results

In this paper a statistical mechanical study of the Hop-
field and the Little models is presented. This study is ex-
plicitly restricted to the limit N— « and finite p. In Sec.
IT the solutions of the mean-field theory of the Hopfield
model are studied. It is shown that at all T <7,=1 the
free energy ground states are all Mattis states: Each one
of them is correlated with one of the p memories, {£}}.
At T=1, additional mean-field solutions with higher free
energy appear. These are symmetric states which have
equal overlap with several memories.

Section III presents the stability analysis of these solu-

tions. It is shown that as the temperature is decreased
below
T~0.461 (1.10)
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some of these solutions become local minima. At 7'=0
all symmetric saddle points which overlap with an odd
number of memories become local minima. These states
are truly metastable: They are separated by free energy
barriers proportional to N.

In Sec. IV mean-field asymmetric solutions which have
unequal overlaps on some memories are discussed. They
appear only below 7'~0.57 and none of them are stable at
temperatures higher than that of (1.10).

The properties of the Little model are studied in Sec. V.
We show that the model has the same thermodynamic
properties as the Hopfield model, including the properties
of the metastable states.

It has been remarked® that in the Little model the sys-
tem may in certain cases get trapped in indefinite oscilla-
tions between several configurations, unable to reach the
allgned states given by (1.3). We show that with the Jj;’s
given by (1.5) this does not happen.

In Sec. VI we consider distributions of {£}} other than
+1. It is shown that the low-temperature properties of
the models depend strongly on the details of the distribu-
tion of {&}. If the probability density at &=0 is suffi-
ciently large, the “mixed” states, rather than the Mattis
states, become the ground states of the system. On the
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other hand, certain continuous‘ distributions may elim-
inate the “mixed” states, leaving the Mattis states as the
only dynamically stable states of the system.

II. THE GENERALIZED HOPFIELD MODEL
A. Mean-field theory

We now turn to the investigation of the thermodynam-
ics of the Hamiltonian
1
-7 E [ 2 gl g j
ij
i

SiS; (2.1)

#_

where & are independent random variables with zero
mean. This system will be studied in the limit N — oo
and finite p. The ensemble averaged free energy density is
given by

—Bf(B)= lim [N~'(InTrexp(—BH))],  (2.2)
—> s
where B=1/T (with units in which kg=1). The notation
- -+ ) stands for the average over the distribution of
{&}'}. The partition function is rewritten, for a given real-

ization of the &’s, as

2
Z=Trexp(—BH)=exp(—Bp/2)Trexp |(B/2N) 3, |3 S;&
s s m i
2
- 72, —Bp/2 —NpBm .
=(NBP/%e =07 [ H = exp S+ §ln[2cosh(b’1g £)] (2.3)
r
where a vector notation for the p components of £ and mt=(E&(S;) ), (2.8)
m* has been introduced. As long as p remains finite, the h
integral over m is dominated by its saddle-point value, where
(S;) =tanh(Bm-&;) 2.9)
—Lnz=tm—-L Sm2cosh(Bm-£)]. 24 : &
NB NB 4 is the thermal average of the spin at site i.

The order parameter m is determined by the saddle-point
equations dInZ /dm#* =0,

m= % S £;tanh(Bm-£,) 2.5)

At any finite N the right-hand sides of Egs. (2.4) and
(2.5) depend on the particular realization of {£}'}. Howev-
er, in the limit N— « the random fluctuations are
suppressed and both InZ and m are self-averaged, as dis-
cussed in Refs. 9 and 10. The sums (1/N)3,; are, there-
fore, replaced by averages over {£;}, leading to the mean-
field equations!®

(( 1n[2 cosh(Bm-£)1) , (2.6)

f(B)=5m’—
m=((§tanh(,8m‘§ .

To interpret the order parameter m one adds an external
source conjugate to £/'S;, to find that m is just the average
overlap between the local magnetization and the £€’s. Ex-
plicitly, one has

(2.7

The detailed structure of the solutions of Eq. (2.7) is
essential for the determination of the correlations of the
spin states {(S;)} with each of the p quenched
“memories” {&/].

B. The Mattis states

We will restrict ourselves in this subsection to the case
in which the distribution of £; is given by

P& =11p(& ,

Wi
PEN=FE —D+T8(&+1) .
Expanding Egs. (2.6) and (2.7) in powers of m one obtains
f=—Tn2++(1—B)m?+0(m*) (2.11)
mt=Bm#*+ 3B (m*) —BmFm*+0(m*) ,
p=12,...,p (2.12)

from which it is seen that above T'=1 the only solution is

(2.10)
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the paramagnetic state m=0, with f=—T1n2. This
solution becomes unstable below 7,=1 where solutions
with nonzero m appear. We will denote by n the dimen-
sionality of m, i.e., the number of nonzero components of
m in a particular solution below T,. It is clear from Egs.
(2.7) and the form (2.10) that permuting the m*’s or
changing the signs of each of the n nonzero components
independently generates entirely equivalent solutions.
Hence without loss of generality we can restrict ourselves
to solutions in which the first n components (i.e., m* with

u=1,2,...,n) are positive; the rest of them are zero.
We first discuss solutions with n =1. Assuming
mt=0forallu>1,
f:%(ml)z—%ln[Zcosh(Bml)] , (2.13)
m!=tanh(Bm!) . (2.14)

These are the usual mean-field equations of Ising fer-
romagnets. Indeed, this solution corresponds to a state in
which all the local magnetizations (up to a negligible frac-
tion as N — o0) are equal to

(S;)=EManh(Bm ") .

This state is thermodynamically equivalent (via a Mattis
transformation®) to the ferromagnetic state. There are 2p
equivalent states of this form corresponding to different
w’s and different signs of m. We refer to these states as
Mattis states.

The Mattis states are the global minima of the free en-
ergy both near T=1 and T =0 and most probably at all
T <1. Near T =1, we show explicitly in the next subsec-
tion that the Mattis free energy is the lowest of all other
saddle points [see Eq. (2.29)]. At T =0, Egs. (2.13) and
(2.14) read

m(7'=0)=(1,0,0,...

(2.15)

,0), (2.16)

(2.17)

note that the general mean-field equations [Egs. (2.6) and
(2.7)] yields as T—0 the following:

E=—1m?, (2.18)

m={(Esgn(m-£))) . (2.19)
We have used here the limits
tanh(Bm-£)—sgn(m-§) ,
(2.20)

T In[2 cosh(fm-£)]— |m-£ |

which, by defining sgn(0)=0, apply also to the case where
m-£ may take the value zero, as long as the distribution
of £ is discrete. Each component m* is, of course, bound-
ed from above by 1. However, m obeys a stronger bound
which is

- m*<1 (2.21)

with the equality being satisfied only for a one-component
m. The bound (2.21) can be derived using Eq. (2.19) and
the Schwartz inequality,
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m’=( |£&m]| )
<[((&m)*)]/?

= | 3 mEmrgerey

nv=1

172
2172
=(m)/,

2 is less than unity for n>1 and

which implies that m
equals unity for n =1.12

From the point of view of storage and retrieval of
memory these states are ideal, since each of them is fully
correlated with one of the “quenched” memories. Howev-
er, although the Mattis states are the only states which
contribute to the thermodynamics of the system, solutions
with n >1 may also be important for the dynamics, if
they are local minima of the free energy.

C. Symmetric solutions

A particularly simple class of solutions of Egs. (2.7)
consists of those in which all » nonzero components of m
are equal in magnitude, i.e.,

m=m,(1,1,...,1,0,0,...,0), (2.22)

where the first n components are unity and the remaining
p—n zeros. For a given n there are (£)2" solutions which
are equivalent to that of (2.22). These symmetric solu-
tions are important because they are the only solutions
that exist throughout the whole temperature range T < 1.
The transition temperatures for the appearance of asym-
metric solutions, in which some of the n components have
different magnitudes, are all lower than 1. To see this
note that dividing each of the first » equations of (2.12)
by m* results in = (m#)?~T —1+m> which is indepen-
dent of u. It is straightforward to see that the equality of
all nonzero (m*)?* holds order by order in perturbation
theory about T'=1 to all orders. Thus the breaking of the
symmetry among (m*)* occurs below a critical tempera-
ture which is less than 1. In fact, we will show in Sec. IV
that the critical temperatures for the appearance of the
asymmetric solutions are all lower than T ~0.57.

The mean-field equations for the symmetric states
(2.22) are

Fu=Bmi— %« In[2 cosh(Brm,z,)])) , (2.23)
m, =(1/n){z,tanh(Bm,z,))) , (2.24)

where
} i .
zp= 3 &
p=1

The distribution of z; is given, according to Eq. (2.10), by

n
k ’

plz,)=2"" (2.25)
where
k=(z,+n)/2

is the number of positive £s contributing to z}. Inciden-
tally, we note that Eq. (2.25) is the distribution of a ran-
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dom walk on a one-dimensional lattice. These solutions
correspond to states in which the local magnetization is
induced by a molecular field

i
hi =myz, ,
ie.,

(S;) =tanh(Bm,z}) . (2.26)

In other words, the symmetric solutions with »n>1
represent states which are equal mixtures of several
memories.

To evaluate the solutions near T, we expand Egs. (2.23)
and (2.24) in powers of m and obtain

S =pBf,—1n2
2%(T— D(Bmy, )2+ 5 (Bm, ) * (28 | 2.27)
4
m,~Bm, — «‘;;» (Bm, ) . (2.28)

Using the equality (z, )) =n(3n —2) one obtains the final
results

- 3nt?
Sn=— 4(3n—2) ’

2__ 3t
" 3n-2"

(2.29)

(2.30)

where t=1—T. Thus, T=1 is the critical temperature
for the appearance of all symmetric solutions. Equations
(2.29) imply that near T=1 the free energy is monotoni-
cally increasing with n; the lowest free energy state is
n =1, namely the Mattis states with
- 2
m3~3t and flz—'?L .
4
To study the symmetric solutions near T'=0, we use
Eqgs. (2.18) and (2.19) to obtain

m,,(T=0)=%(( 20| ) (2.31)
fu(T=0)=—5nm?. (2.32)
Using (2.25) one arrives, for even n, at
1 2k
m2k=?2? k ’
) (2.33)
2k 2k :
foe=—"Zg1 |k | k=12
and for odd n
1 2k
m2k+1=;2¥ k s
2 (2.34)
2k +1 |2k
f2k+1=-——24‘m k> k=01,....

This sequence of f, is bounded from below by the
ground-state energy f;=-—0.5 and from above by

f2=—0.25. Moreover, the sequence (2.33) is monotoni-
cally decreasing with k, while the sequence (2.34) is
monotonically increasing. Both have a common limit
(=—1/m) as k—o. This limit coincides with the
ground-state energy per spin for a Gaussian distribution
of & (see Sec. VI). Details of the derivations of these re-
sults are left to Appendix A.

In conclusion, we obtain the following ordering of the
energies of the symmetric saddle points at T =0:

fi<fa<fs<  fo " <fe<fa<fa-

Note that in the “even” solutions there is a finite probabil-
ity of z,=0. Hence, a finite fraction of the spins remain
disordered at all temperatures. This difference between
the odd and even solutions manifests itself in the low-
templgzrature value of the Edwards-Anderson order param-
eter,

gn =« {(S8;)?) = (tanh*(Bm,z,))) .

In the case of odd » the minimum value of |z| is 1.
Hence,

(2.35)

(2.36)

qn=1—2p(z, =1)exp(—2Bm,)—1

as B— « (or T—0), (2.37)
whereas for even n one has
qn=1—p(z,=0) at T=0. (2.38)

In Sec. III we study the stability properties of the vari-
ous symmetric saddle points in order to determine their
importance to the dynamics. The asymmetric solutions
will be studied in Sec. IV.

III. METASTABILITY IN THE GENERALIZED
HOPFIELD MODEL

A. The stability matrix of the symmetric solutions

The local stability of the saddle points of £, Eq. (2.6), is
determined by the eigenvalues of the matrix 4,

2
am =S g, 3.

with
QM= (& E'tanh®(Bm-£))) . 3.2)

Solutions of Eq. (2.7) are locally stable if all the eigen-
values of A4 are positive.

The general form of A4 in the case of the symmetric
solutions is quite simple. Its diagonal elements are all

APt =1-B(1—q),
where g=Q"* is given by Eq. (2.36). The off-diagonal
elements with u,v <n are all equal to

BQ =B E'E*tanh*(Bm,,z,))) (3.3)

and all other elements vanish. Recall that we have chosen
a solution which has the form (2.22).

The matrix 4 has three groups of eigenvalues: (1) a
nondegenerate eigenvalue
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M=1—B(1—q)+B(n—1)Q (3.4)

corresponding to “longitudinal” fluctuations in the ampli-
tude m,; (2) an eigenvalue of degeneracy p —n,

M=1-B(1-q), (3.5

which corresponds to fluctuations in directions which mix
more memories; and (3) an eigenvalue of degeneracy
n—1, .

My=1-B(1-¢)—BQ , ‘ (3.6)

which is associated with fluctuations of anisotropy in the
space of the n “occupied” memories. Since Q is positive
for all T <1 (see Appendix B), the lowest eigenvalue of 4
is Az. It is this eigenvalue which determines the stability
of the solutions. This is the case for all n except n=1,
for which Q does not exist. In this case the only eigen-
value is A;=1—pB(1—¢g). In the following these eigen-
values are calculated near T, and near T =0.

B. Stability near T, and near T=0

Expanding (2.36) and (3.3) in powers of t=1—T one
obtains

q~3nt/(3n—-2), Q~2q/n ,

from which it follows that

AM~—t+g+(n—1)Q~2t>0, (3.7
~—tdge , 3.8
A= —t+q=7">>0 (3.8)
but
—4¢
Ay~—t —Q~ 0 3.
3 +q—0Q 2 < (3.9)

for all n>1. Hence near T=1, only the solution with
n =1 is locally stable; all other solutions are saddle points.
The situation is quite different at lower temperatures.
Near T=0 the odd-n symmetry solutions order fully,
with at most exponentially small deviations [see Eq.
(2.37)]. Thus, as T—0, g=1 and Q=0 (up to exponen-
tially small corrections) and all eigenvalues equal unity.
The solutions are all locally stable. On the other hand, in
the even-n solutions the system resists full order, even at
T=0 [Eq. (2.38)]. Consequently, both A, and A; are pro-
portional to —f3, whereas A;~ 1. These results imply that
while the even-n symmetric solutions are unstable for all
T, the odd-n ones become locally stable below a certain
temperature, 0 < T, < 1, given by the vanishing of A3, i.e.,

—T,=(@—Q)
={(1—£'&*)tanh*(Bm,z,))) .

Numerical solution of this equation yields 73=0.461,
T5=0.385, and T;=0.345. It can be seen from Eq. (2.37)
that the finite- T corrections, at low T, are exponentially
small, as long as T <<m,. As n— o, m,«<1/Vn (see,
e.g., Appendix A). Thus, for large n, T, is expected to
scale as 1/V'n, which implies that only the odd-n sym-
metric solutions with n < T2 are stable. This is corro-
borated by numerical solutions of Eq. (3.10) for large n.

(3.10)

C. Dynamic stability

It has been shown above that the Mattis states are the
only stable mean-field solutions near T=1. Below
T=0.461 some of the odd-n symmetric solutions become
local minima as well, whereas the even-# ones remain un-
stable at all 7. In addition, at low temperature some of
the asymmetric solutions become locally stable as will be
discussed in Sec. IV. The significance of the locally stable
solutions to the dynamic evolution of the system depends
on the basin of attraction in phase space of each of these
states and on the energy barriers that separate them from
each other or from the ground states. It is quite hard to
estimate the basins of attraction, though one generally ex-
pects that states higher in free energy have significantly
smaller basins of attraction than those of the ground
states. The barriers are easier to estimate. Since fluctua-
tions of the free energy per spin about these states are fi-
nite, the free energy barriers separating them are all pro-
portional to the size of the system, N. Hence, all local
minima of the mean-field free energy are true metastable
states. The lifetime of such a metastable state is propor-
tional to exp(N Af) where Af is the difference between
the free energy per spin of the metastable state and that of
the lowest saddle point above it. For instance, the lowest
energy path from the n =3 state (3,5,%,0, . ..,0) to the
n =1 state (1,0,...,0) passes through the n =2 saddle
point (%, %,0, ...,0), yielding an energy barrier per spin

Af=f>(T =0)—f3(T=0)=0.175
[see Egs. (2.33) and (2.34)].

IV. ASYMMETRIC SOLUTIONS
OF THE GENERALIZED HOPFIELD MODEL

In Sec. II it was shown that solutions which appear
continuously at 7=1 are symmetric, namely all nonzero
components of m are equal in magnitude. At low tem-
peratures, however, additional saddle points appear'*
which are asymmetric. The appearance of these addition-
al solutions becomes apparent by following the change in
stability of the symmetric saddle points as the tempera-
ture is reduced. When a particular saddle point changes
stability in a certain direction, it does not usually ex-
change stability with another existing symmetric saddle
point, which lies in that direction. Instead, a new, asym-
metric saddle point between the two existing saddle points
appears. - The highest temperature where such a change in
stability occurs is when the n =2 symmetric solution

m=(m,m,0,0,...,0) 4.1)

becomes unstable to the mixing of more memories. The
eigenvalue that controls this stability is, according to Sec.
111, .

A=1-p1-q). 4.2)

This eigenvalue is positive near T=1 [see Eq. (3.8)], is
negative for that solution at T =0, and changes sign at

T,~0.575 . 4.3)

Other symmetric saddle points do not change stabilities in
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any direction at that temperature. Instead, a new set of
saddle points of the form '

m=(m,m,¢€,c,...,c0,0,...,0), (4.4)
appears, where there are k entries of € and p—k —2 en-
tries of zeros. The magnitude of the new components, ¢,
vanishes continuously as 7 approaches T, from below.

At still lower temperatures when other saddle points
change stability, additional sets of asymmetric solutions
appear. For instance, at each temperature T, where A,
of an n =2k symmetric solution becomes negative, a set
of saddle points similar to (4.4) appears:

m=(m,m,...,m,6e¢,...,0,0,...,0), 4.5)

where the first 2k components are m, the next ! com-
ponents are €, and the last p —2k —/ components are
zeros. The temperatures 7,~0.465 and T4~0.408 and
T,; decreases as 1/V'k as k— «. Of course, other sad-
dle points with even more complicated asymmetry also
develop. As T—0, some of these asymmetric saddle
points merge with the symmetric ones. For instance, the
(m,m,e,0,0,...,0) which appears below T, approaches
very rapidly the n=3 symmetric state
(m,m,m,0,0,...,0). On the other hand, many of them
do remain distinct even at T° =0, with energies which are
always higher than the n =3 symmetric value —0.375.
Two examples with n =5 and 6 are

m= %,‘;‘,%,‘}{,%,0,0, -»0), E=-0.344 4.6)
m=(%>%,%,%, 136 ,0,0,...,0), E=—0.334 @7

which satisfy Eq. (2.19), as can be checked explicitly.

Although most of the asymmetric solutions seem to fol-
low the scenario described above of a continuous appear-
ance below a critical temperature, we have also encoun-
tered a few solutions which appear discontinuously, for in-
stance, the solution

m=({,%,4%500,...,0) 4.8)
below T'=~0.085. However, this phenomenon is apparent-
ly restricted to very low T. Also, none of the discontinu-
ous solutions that we found were stable.

The stability analysis of the various solutions at finite
T is increasingly difficult as the symmetry of the solution
decreases. In general, they are unstable as they first ap-
pear. At lower temperatures some of them do become
metastable, as in the case of the odd-» symmetric solu-
tions. The highest temperature where a metastable asym-
metric solution was found was

T ~0.452

just below the temperature T=0.461 at which the n=3
symmetric state becomes metastable. At 7 =0 the cri-
terion of stability of an arbitrary solution is rather simple.
Following the same reasoning as in the case of the sym-
metric solutions (Sec. III) we note that the solutions are
stable if their molecular fields are always finite, i.e., that -

|m-£§| >0 4.9)
holds for all realizations of £ In such a case all off-
diagonal elements [Eq. (3.3)] of the stability matrix are ex-
ponentially small as 70 and all diagonal elements ap-
proach 1 . Such states are surrounded by energy barriers
proportional to N. Saddle points in which there is a finite
probability that m-£=0 represent states which do not ful-
ly order even at T=0. They have some eigenvalues
which are proportional to —f. For instance, the state
(4.6) is metastable at 7"=0 because its molecular field is
bounded below by 5 and becomes unstable at 7T'~0.18,
whereas the solutions (4.7) and (4.8) are unstable even at
T =0.

A rather central question is whether the system
possesses other, “spurious” states, i.e., states which are not
separated by barriers of order N, but are nonetheless long
lived, at low 7. Such states would surely be stable to
single-spin flips at T'=0. The answer is that, in the limit

. of N— 0 and p finite, the only states which are stable to

all single-spin flips are the true metastable states, namely
solutions of the mean-field equations which satisfy (4.9).
The argument proceeds as follows. One notes that the
condition for the stability of a state {S;} to all single-spin
flips is that each spin S; be aligned with its molecular
field, namely that

S;=sgn |(1/N) 3 3 etehs,
i(£)) p
[ - (4.10)

with

m=(1/N) 3 §;5;
j

(4.11)

=(1/N) 3 &;sgn m-§j—%S]~ ] )
J

As long as m-&; has a nonzero lower bound, the term
(p/N)S; can be neglected and Egs. (4.10)-and (4.11) be-
come precisely the saddle-point equations of the mean-
field theory [Egs. (2.9) and (2.7)] at T=0 and have the
same set of fluctuations. On the other hand, states which
have a finite fraction of sites with m-£; =0 are rendered
unstable by the term —(p /N)S;.

V. THERMODYNAMICS OF THE LITTLE MODEL

The synchronous dynamic process introduced by Little
leads to a stationary Gibbs distribution of states with the
effective Hamiltonian

17=_—é—§i‘,1n [2eosh [83955; |

as was shown by Peretto.> In the limit of 7=0, Eq. (5.1)
reads

(5.1



(5.2)

i J

We study the thermodynamic properties of the model
J

Z=Trexp(—BH)
=Trf Il am*
s u

BN
2

exp [2 In[2 cosh(BE&;*m)] ]5

’ J |H dm* dt#

The contours of integration in the complex planes of m#
and t* are understood to be analytically deformed, so that
they pass the saddle point. Using again the self-averaging
property of the free energy, the saddle-point equations
reduce to :

m={(&tanh(Bt-£))) , (5.4)
t={(£tanh(Bm-£))) , (5.5)
and the free energy density at the saddle point is
f(B)=t-m— % (In[2 cosh(BE-m)] )
——é({ln[Z cosh(BE-t)])) . (5.6)

Although the theory contains two order parameters t
and m, all mean-field solutions obey

t=m . (5.7)

To prove this, we subtract Egs. (5.5) from (5.4) to obtain

m —t={(&[tanh(BE-t)—tanh(BE-m)])) ,
from which it follows that

S (m#—t#)?= ((£-m—E&-t)[tanh(BE t)

I/

—tanh(BE-m)])) .

The right-hand side is obviously nonpositive, hence the
two sides must be zero, implying the equality (5.7). Sub-
stituting Eq. (5.7) in Eqgs. (5.4)—(5.6) reduces them to

f(B)=m?— % «1n[2 cosh(BEm)])) , (5.8)

m={(&tanh(BE-m))) . (5.9)
Comparison of Egs. (5.8) and (5.9) with Egs. (2.6) and
(2.7) reveals that the Little free energy is exactly twice the
free energy of the Hopfield model, at all T. Both have the
same mean-field equations for m. Thus, below 7T =1 the
Little model has the same ground states (i.e., the Mattis
states) and saddle points as the generalized Hopfield
model. Moreover, as the stability analysis below will
show, also the metastability of the saddle points is the
same in both models.
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m—N_l 2§,-S,-
i

exp [—Nﬁt'm—i—z In[2 cosh(BE;*m)]+ >, In[2 cosh(BE;t)] | .

(5.1), with the same J;; as in the Hopfield model, i.e.,
J,~,~=N"‘2ﬁ=1§§‘§§‘ for i+£j, and {§;} is distributed ac-
cording to Eq. (2.10). The partition function of the Ham-
iltonian (5.1) can be written as

(5.3)

I

In order to perform a stability analysis of the saddle
points of (5.3) we have to use the variables appropriate to
the rotated contours of integration. These variables are
x, and y, defined via

1 . 1 .
8t,= V3 (xp+ipy), dmy,= V3 (xp—ipy), (5.10)
where 6¢,, and 6m, are the deviations of ¢, and m, along
their contours, from their saddle-point values. In terms of
these variables the stability 2p X 2p matrix consists of the

following two p X p blocks:

Rf
v_9J
(4 V"= 9x,0x,

=8"(1—B)+ B E*E tanh®(BE'm)))  (5.11)

and

32f
A4, W=
(4,7 9y,9y,

=8"(14+P)—BLEFE tanh®(BE'M))) . (5.12)

The mixed derivatives 3%f/dx 10y, are zero.

Comparison of Egs. (5.11) and (5.12) with the stability
matrix A (3.1) of the generalized Hopfield model reveals
that 4 , is identical to 4 and 4, to 2l —A. Since the
eigenvalues of 4 are bounded from above by 1, 4 , is pos-
itive definite and the stability of the saddle points is deter-
mined by the same stability matrix as in the Hopfield
model. Hence, the analysis of Secs. III and IV applies
here as well. In particular, the Mattis states are the only
locally stable states near T, =1. Additional local minima
appear only below 7'=0.461.

It has been pointed out® that the synchronous dynamics
of Little may lead, at T =0, to indefinite cycles of transi-
tions between some of the ground states of the effective
Hamiltonian, which occur in one or a small number of
time steps. This phenomenon is absent in the single-spin
dynamics of Hopfield. As an example, consider a d-
dimensional hypercubic lattice with nearest-neighbor fer-
romagnetic interaction, J>0. In a single-spin flip
dynamics the system will spend most of its time, at low
temperatures, in one of the two ferromagnetic ground
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states, with a very small probability of hopping from one
of these states to the other, in a finite time. On the other
hand, the Hamiltonian (5.1) [or (5.2)] has four ground
states: the two ferromagnetic states and the two antifer-
romagnetic states. In each of the antiferromagnetic states
every spin is antiparallel to its molecular field —, i)
and therefore, according to the dynamics implied by Eq.
(1.8), wants to flip. Consequently, starting from the anti-
ferromagnetic states, the system will make a transition in
a single time step to the time-reversed (antiferromagnetic)
state and vice versa.

Could such cycles appear in our case? The answer is
no. A necessary condition for these cycles to occur is that
some of the ground states of the Hamiltonian H contain
spins which are antiparallel to their molecular field.
‘However, we have argued here that in the N— oo limit
the ground states (as well as the metastable states) of the
Hamiltonian (5.1) are also local minima of the Hopfield
Hamiltonian

#==13 3 (309

This necessarily implies that each spin S; in these states is
aligned with sz,-ijzm-g, as was discussed in Sec. IV.
Thus, not only the thermodynamic properties of the two
models but also their long-time behavior is the same.

VI. GENERAL DISTRIBUTION OF MEMORIES

A. General distribution of {&}}

We consider here a general distribution P(&;) which is
invariant under reflections &'— — &% (for each u separate-
ly) and permutations of the components £. For conve-
nience we will normalize the variance by ((£%)*))=1.
The mean-field equations (2.6) and (2.7) hold, of course,
for an arbitrary distribution and imply a phase transition
to a broken symmetry state at T=1. The Mattis solu-
tions as well as the class of symmetric solutions, of the
form (2.22), always exist at all T < 1. Moreover, expand-
ing,Eqgs. (2.7) order by order in perturbation about 7'=1
shows that for almost all distributions of the form

PE)=]]p(&, 6.1)

"
asymmetric solutions do not exist near 7’=1. The only
exception is the Gaussian distribution which will be dis-
cussed in Sec. VIB. Nevertheless, the stability of the vari-
ous solutions as well as the appearance at low T of the
asymmetric solutions depend on the form of the probabili-
ty p(&f).

We first determine the conditions under which the
Mattis states become unstable near T=1 and O for a gen-
eral distribution of the form (6.1). The mean-field equa-
tion for the Mattis state, m*=0, forall u > 1 is

ml=m={(&tanh(BmEL))) . (6.2)

Generalizing the stability analysis of Sec. III one obtains
for the symmetric solutions with a general distribution the
following three eigenvalues:

M=1—B1—7)+(n—1)BQ , 6.3)
A=1—B(1—gq), (6.4)
M=1-p(1-9)—-BQ, (6.5)

where g¢={((tanh’(Bz,))), Q={(§'¢*tanh’(Bz,))), and
g=((£")*tanh?*(Bz,))). The variable z, is ZZ___lé"‘. In
the Mattis case (n=1) only the eigenvalues
A=1—pB(1—g) and A,=1—(1—¢q) exist. A negative A,
implies that when p > 1 the Mattis state is unstable to
mixing of more memories. Expanding Eq. (6.2) in powers

of t=1—T, yields qg=3t/(E*)*), 1—B(1—q)=t[—1

+3/¢(£&*)*)], which implies the instability of the Mattis
states near T, if

€& > 3.

The stability at low temperatures depends on the behavior
of p(§) near the origin. As long as p(0)=0,
1—pB(1—q)~1 and the Mattis states are stable. This is,
however, not necessarily so when P(0)s40, in which case
we have

1—g= f_:dg‘p(g)sechz(ﬁmg)
A 2¢,__2Tp(0)
== f_wdgp(Tg/m)sech f~=, (67)

(6.6)

where
m=m(T=0)= [dEp(&)|£] .

Thus, the Mattis states are unstable to mixing of more
memories at low T, if

2p(0) > K| €M .

As an example, consider the following distribution:

(6.8)

(6.9)

()@ e Ve, 1=a s
p(&) \/ie + > [6(E—1)+6(£+1)] .

Evaluating the inequalities (6.7) and (6.9) one finds that
for a <0.4, the Mattis states are stable at all T <1; for
a>(14+1/v2)"1~0.6, the Mattis states are unstable at
all T; and for 0.4<a <(14+1/v2)"1, they are unstable
near T, and stable at low temperatures.

Using a continuous distribution of {£'} may have a
similar effect as increasing temperature. It may smooth
the free energy surface and eliminate the rich structure of
metastable states and saddle points that exist in the *+1
case at low temperature, as was described above. We have
demonstrated this effect by studying the mean-field equa-
tions with a rectangular distribution,

P& =%, —z—l—gé’i‘g—é . (6.10)
Investigating the symmetric solutions with n <3, we have
found that the only stable solutions at all T are the n =1
states. Furthermore, the n =2 and 3 solutions do not
change stability in any direction and their free energies do
not cross, at all T below 1. These last properties imply
that there are no topological constraints which would
force the generation at lower temperatures of additional,
asymmetric saddle points. Thus, it is quite possible that
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in this case, or with other continuous distributions, the
only dynamically stable states are the Mattis states at all
T <1and p.’?

B. Rotationally invariant distributions

In certain circumstances the appropriate distribution of
the random vectors &; is invariant under arbitrary O(p)
rotations of &;. In the case of random axis ferromagnets
the &; is the local direction of the easy axis. In the ab-
sence of bulk anisotropy these directions are uniformly
distributed on the three-dimensional unit sphere.

In the context of models of memory, rotational invari-
ance emerges in the case of a Gaussian distribution,

PE)=1Ipr),
"

(6.11)
1

Pe=

exp(——§2/2) .

The £ will have a Gaussian distribution if, e.g., each one
of them is itself a sum of many independent random vari-
ables. Rotationally invariant distributions lead to thermo-
dynamic behavior which is qualitatively very different
from that of Eq. (2.10). The free energy (2.6) depends in
this case only on the amplitude

which is determined by Eq. (2.7), whereas the direction of
m is left arbitrary. Thus, in the limit N — « the mani-
fold of ground states has a continuous degeneracy, similar
to O(p) uniform models.

As an example we work out explicitly the case of a
Gaussian distribution, Eq. (6.11). Rotating the u axes, so
that the direction of m coincides with one of the axes,
Egs. (2.6) and (2.7) read

f=(p/2)m?— % I %e ~€/25[2 cosh(BmVF £)] ,
(6.12)

1 ® d _g2
m== [ 72—%9 £72¢ tanh(BmVp £) . (6.13)

Integrating Eq. (6.13) by parts leads to the relation
1=p [ Lo et (pmVp =B —q)  (6.149)

which is an implicit equation for m. It is interesting that
in this case the local susceptibility [which is B(1—gq)] is
constant below T, just as in the infinite-range SK model.

At T=0, m=V2/np and f(T =0)=—1/7. As for
fluctuations, the eigenvalue A;=1—B(1—3g) corresponds
to amplitude fluctuations and is positive at all T <1. On
the other hand, there are p —1 degenerate modes, with
eigenvalue 1—/(1—gq) which, according to Eq. (6.14), is
identically zero in the ordered phase. These modes corre-
spond to transverse fluctuations (changing the direction of

m) and hence are marginal.

The continuous symmetry in these models has been
studied in some detail in the context of random axis
models.!! It should be noted that, unlike O( p) uniform
models, the continuous degeneracy of the ground state in
our case is valid only in the thermodynamic limit. In any
finite system there will be N possible directions of m, one
of which will be singled out by the fluctuations in &; as
the ground state of the system. This state will have, in
general, projections on all the original memories.

VII. DISCUSSION

One of the main results of this work is that despite the
difference in the dynamic mechanisms of the Little and
Hopfield models, the long-time behavior, so essential for
the retrieval of memories, is identical in the two models.
While the dynamic properties of these models have not
been analyzed in this paper, extensive numerical simula-
tions of the two processes have been carried out. They
confirm their overall similarity.

Previous numerical studies of these models have noticed
the existence of “spurious states,” namely stable configu-
rations of the network which deviate significantly from
the original embedded patterns. Here we have shown that
in the limit of large networks all these spurious states are
not random but correspond to well-defined mixtures of
several patterns.

We have shown that these metastable states appear only
at low temperatures, whereas in the temperature range
0.46 < T <1 only the states which are correlated with sin-
gle memories are stable. This suggests that thermal noise
plays an important role in enhancing the efficiency of
these systems. This efficiency also depends rather strong-
ly on the distribution, of the learned information. Using a
continuous distribution, rather than a discrete one, may
increase or destroy the dynamic stability of the embedded
patterns, depending on the details of that distribution. So
far only uncorrelated patterns have been discussed. Intro-
ducing correlations between them may, of course, change
significantly the properties of the system.

Next we address the question of the storage capacity of
these model networks. Throughout this work we have as-
sumed the limit of an infinite size (N) network, with a
finite number (p) of stored patterns. In this limit the
structure of the low-lying states, as well as the barriers be-
tween them, are not affected by the increase of p. Howev-
er, this limit represents a rather modest storage capacity.
It is important to know whether this capacity can still in-
crease as p becomes of the order of N* for some positive
x. We have studied the case x =1,!7 p=aN, and found
that in this limit the system becomes a spin glass. Yet,
for small enough values of a the system preserves its qual-
ity as an associative memory.

Finally, we mention a few of the issues that deserve fur-
ther investigation:

(1) The crossover from the finite p behavior to the
spin-glass behavior when p becomes of order N;!7

(2) the detailed dynamic properties of the Little and
Hopfield models, e.g., the rate of relaxation and the sizes
of the basins of attraction of the various stable states;
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(3) the possible exploitation, in the information theoret-
ic sense, of the long-lived mixed states;

(4) the effect of introducing correlations among the em-
bedded patterns;

(5) the effect of modifying the form of the connections
Jij- In particular, adding an asymmetric part to J; may
lead to interesting new dynamic behavior.
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APPENDIX A

To compute the explicit value of m,, at T=0, Eq. (2.31), we proceed as follows:

- 1 = dO e »
((lzl))—<<z I+ f_w 9 ] (A1)
—n n n . —n . .
2277- f%ﬁ ;—[}‘% > e‘m""‘)=————2ﬂ f—‘%g—:i%e"e"(l+ez'o)”=%f%Qsinecos”"le (A2)
k=0
0 |2k
=-22—k k ,

where k=n/2 for even n and k=(n —1)/2 for odd n.
(See Ref. 16, Eq. 3.832.34.)

Next we show that f,;, Eq. (2.33), decreases monotoni-
cally with k and f,; , 1, Eq. (2.34), increases monotonical-
ly with k. To this end we use the identity

2k +2 202k +1) 2k
k1 | k11 |k (A3)
One can write
2k +1 |2k (2k +3)(2k+1)
f2k+3—f2k+1=w k l—w >0,
(A4)
2%k |2k (2k +1)?
f2k+2—f2k:W k Ak k1) <0 (A5)

which proves our claim.

It is clear that the two sequences, Eqgs. (2.33) and (2.34),
have a common limit as k— w. To calculate this limit
we use the Stirling formula

n!~1/277.(n+1)n+1/2e—(n+1) (A6)
giving, for the asymptotic form of m,, with even n,
n
mn=2—n n/2 2(2/’177')1/2 . (A7)

The limiting value for f, is obtained by substituting
(A7) in Eq. (2.32). We find

lim f,=—1/7.

n— o0

(A8)

APPENDIX B

In the following we show that the off-diagonal elements
of the stability matrix 4, Egs. (3.1) and (3.2), are non-

[

negative, at all T, for all the saddle points given by Egs.
(2.22). Specifically, we will show that

B={£'&tanh*(xz,)))

is non-negative for all x.
For definiteness we choose x > 0. Since £* takes on the
values *1, z, is distributed according to

(B1)

p(zy)=2""

n
Kl k=(z,+n)/2
as in (2.25). B can be written as-

n—2
[tanh?(2k —n +4)x

B=2—(n—l)niz
k=0

—tanh?(2k —n +2)] . (B2)

Note that tanh?y is an increasing function of y for y >0
and decreasing for y <0. In general, some of the terms on
the right-hand side of (B2) are negative, but they are
outweighed by the positive terms.

To see this, the sum in (B2) is divided in the following
way. (i) Remove the term with k=n —2. It is manifestly
positive. (ii) For odd n the term with k=(n —3)/2 van-
ishes. (iii) The rest of the sum, comprising an even num-
ber of terms, for all n, is split into two sums, each with
[(n—2)/2] terms, namely

[(n—2)/2]—1
D=

n—2

X {tanh’[(2k —n +4)x ]

k=0
—tanh?[(2k —n +2)x ]}

and
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n—3

D,= {tanh’[(2k —n +4)x]

k=[(n—-1)/2]

n—2
k

Substituting n —3 —k for k in the second sum, it becomes

—tanh?[(2k —n +2)x]} .

[(n—2)/2]—1 |n —2 (tanh[ (2K 2]
tan —n—+2)x
= k+1
—tanh?[(2k —n +4)x ]}
|
—tr—1) [(n—=2)/2]—1 n—21 n—2
B=2 = k+1|7 | &

+ {tanh?(nx) —tanh?[(n —2)x ]})

Each term in the sum (B3) is positive, since both small
curly brackets are positive, in the range of variation of k.
The last term in the large curly brackets is also positive.
Hence B >0 for all x.

Next we show that all the eigenvalues of A4 are bounded
from above by 1. Since we have shown above that Q is al-
ways positive, the largest eigenvalue is

A=1-B+Blg+(n—-1)Q] .
[See Egs. (3.4)—(3.6).] But

(B4)
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after use has been made of the identities

n—3—[(n—1)/2]=[(n—-2)/2]—-1

and

n—2
n '—3—k

n—2
k+1

and of the fact that the square of the hyperbolic function
is an even function. B can now be rewritten as

({tanh?[(2k —n +2)x ] —tanh’[(2k —n +4)x ]}

(B3)

(z2tanh®(mpz,) N /n=q+(n —1)Q
and hence

g+n—1Q < Lz N/n=1,
leading to

Blg+(n—1)Q]1<B

and consequently A;(i=1,2)<A;< 1.
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