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It is shown in the limit #—0 that an approximate solution of the time-dependent Schrédinger
equation can be obtained by the use of generalized Fourier integrals. These are constructed by the
continuous superposition of eikonals, each generated by solving a problem in classical mechanics.
The solution thus generated is valid even in the presence of caustics, provided that they are not too
dense. The method applies to localized wave functions and provides a short-time solution. The na-
ture of the solution and its relation to an exact solution is demonstrated in the case of the one-
dimensional problem of the surface-state electron. The Wigner distribution f arises in a natural
way, leading to the interpretation of the semiclassical limit as classical kinetic theory.

I. INTRODUCTION

Despite 60 years of consideration, the existence and na-
ture of the semiclassical approximation®? to the solution
of the Schrédinger equation (%—0) is still under active in-
vestigation. Current interest stems in part from the obser-
vation that the eikonal approximation conventionally em-
ployed fails for systems harmonically perturbed by an
external force, due to the development of caustics which
become more numerous as time goes on. In this paper we
shall demonstrate that some of the difficulties can be re-
moved by employing, rather than a single eikonal, a con-
tinuous superposition thereof, using the method of the
generalized Fourier integral (GFI), introduced by Ha-
zak.>* This technique is particularly well adapted for lo-
calized wave functions and leads to an approximate solu-
tion of the initial-value problem in terms of a Green’s
function which can be constructed using classical mechan-
ics and reduced in complexity via stationary phase in-
tegration. One consequence of the theory is that the spati-
cally coarse-grained probability density can be calculated
by integrating over velocity a distribution function which
obeys the Vlasov equation. This provides the connection
with the quantum theory, and justification of .the classical
techniques used for example to calculate the ionization of
Rydberg states by microwave electric fields.»® While this
work is confined to the Schrddinger equation for one par-
ticle in a given space-time-dependent potential, it offers
the possibility of ready generalization to many-body sys-
tems.

The paper proceeds as follows. Section II is devoted to
the development and extension of the conventional single
eikonal theory in a form convenient for the GFI, namely
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the systematic use of Lagrangian coordinates. It is shown
that the classical limit thus generated is describable as
cold fluid mechanics, with the probability density deter-
minable from a continuity equation for which the velocity
obeys the momentum equation of cold irrotational fluid
dynamics. Caustics occur when there is crossing of the
trajectories associated with the Lagrangian variables.
They can be located by integrating along each trajectory a
system of ordinary differential equations akin to and in-
cluding the particle equations of motion. This procedure
is feasible even in three dimensions using modern comput-
ers. The well-known result that the caustic is an envelope
of the trajectories is demonstrated in simple fashion, as
well as the behavior of the eikonal approximation as one
approaches a caustic surface. This last permits a simple
solution of the Schrédinger equation by means of a
matched asymptotic expansion in a boundary layer strad-
dling a moving caustic. The well-known expression in
terms of Airy functions is the result. It is pointed out
that the single eikonal approximation is useful for scatter-
ing problems which display a limited number of caustics,
but is deficient for driven time-dependent problems, both
because of the absence of a unique way to fit an arbitrary
localized initial condition, and the problem of coping con-
veniently with many caustics.

Section III is devoted to the application of the GFI to
the general problem. A brief derivation of the method is
given, and it is employed to construct a solution of the
initial-value problem associated with the one-particle
Schrédinger equation. The solution is in terms of a
Green’s function which is constructed following classical
trajectories, and which in the absence of dense caustics
can be simplified using the method of stationary phase.

1 ©1985 The American Physical Society
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The solution is valid, roughly speaking, as long as the
volume of caustic boundary layers is sufficiently small. It
is then demonstrated that the probability density
| ¥(r,¢) | %, suitably coarse grained, can be computed from
a distribution function, a Wigner distribution associated
with the initial wave function, which satisfies the Vlasov
equation, by means of integration over the velocity vari-
able. The Wigner distribution enters naturally and this
work serves as a justification of its use. Thus the classical
limit can be described as governed by kinetic theory. Fi-
nally, it is demonstrated that if one employs in the GFI
solution the classical one-particle phase-space variables,
the local velocity and position, then the integrand is ana-
lytic away from caustics, if the potential in the
Schrédinger equation is analytic. »

Section IV is devoted to a one-dimensional problem for
which the Schrodinger equation can be solved exactly,
namely the surface-state electron problem (SSE) (Refs. 5
and 6) in the absence of external fields. In this case the
electron is bound to a surface of liquid helium by its im-
age charge. The potential is —e?/ex, where x is the dis-
tance from the surface, and € the dielectric constant of the
helium. The surface itself acts as an infinite potential
barrier. A Laplace transform in time converts the equa-
tion into an inhomogeneous ordinary differential equation
in x which can be solved in terms of Whittaker functions
by the method of variation of parameters. Inversion of
the Laplace transform by deformation into the lower half
transform plane yields a representation in terms of the
discrete and continuum eigenstates. A different inversion
technique employing the Wentzel-Kramers-Brillouin
(WKB) asymptotic forms in the upper half transform
plane yields a representation useful for short times, and
provides an estimate of the time of validity. This latter
representation is shown to. coincide with the GFI result
when both can be reduced by the method of stationary
phase.

II. SINGLE EIKONAL THEORY

Consider the one-particle Schrédinger equation

., Oy W,
it =—— wy, 1
i, 2m VY+wiy (1
where W (r,t) is a given potential. We wish to find solu-
tions in the limit #—0. The conventional procedure is to
seek an eikonal solution’? of the form

Y=a exp(S /#) . ‘ ()
Let '
mv=VS, (3)
H=— %‘f— . @

Then (1) implies
0=(H —+mv>—W)a

aa 1 hz 2
9a .. 2.v. . ) 5
at—l—vVa+2aVv + Véa (5)

[ #i
+ 2m

We wish solutions which in the limit #—0 have a nonzero

amplitude a. This requires that

H=5mv’+W (6)
or on using (3) and (4)
3S | (VS)
_— 4 — =0.
ot + 2m W 7

Equation (7) is a nonlinear first-order partial differential
equation for S, the Hamilton-Jacobi equation.’

In order to deal with (7) it is convenient to take its gra-
dient. On using the property v-VVS=(VVS)-v the result
can be expressed in the form

i—1—v'Vv

Ey =—VW. (8)

m

Note that the curl of (8) is

%(VXV)=V><[V><(V><V)]. ©)

Thus if VX v vanishes initially, Eq. (8) maintains its zero,

whence if v I}as been found one can construct

S =So(r)o+m f " dr-v, where the result is independent of
0

path in any region in which v is a single-valued function
of r. Note that thus far no approximations have been
made. One has only introduced new dependent variables
a and v which hopefully do not change much in a local
wave length 4 /mv or local period 4 /H.

Equation (5) in the limit #—0 next implies

O:%it—f—v-Va—e—%aV-v . (10)
Note that the mass density is given exactly by
p=m|¥|?=m|a |2 an

and it is readily seen that (10) implies

—aﬂ—FV'(pv):O , (12)
ot
the continuity equation. Equations (8) and (12) multiplied
by p, with the constraint that initially VX v=0, are those
governing the potential flow of a cold ideal fluid acted on
by a body force derivable from a potential. This suggests
that the semiclassical limit #—0 be described as fluid
dynamics. For example, the scattering of an initially
plane wave by a repulsive center can be interpreted in this
limit as flow around an obstacle.

In order to present the problem in a form amenable to
solution by the method of characteristics it is convenient
to denote by a dot the convective derivative

d=%+V'Va . (13)
Then (8) and (10) can be expressed as

mv=—VW, (14)

d=—+5aV-v, (15)

while



§=9 | vvS= Him=tm—W. (16)

ot
If one introduces characteristics (rays, trajectories) via®
r=v (17

and requires at tr=t, that r=ry, a =ay(ry), S=S(ry),
and mvy=VSy(ry), then integration of the system of or-
dinary differential equations (14)—(17) yields the desired
solution. Note that since (15) involves V-v, the computa-
tion of which requires a knowledge of v on adjacent
characteristics, one must deal with a bundle of charac-
teristics.

The problem can be reduced to consideration of one
characteristic at a time by introducing an enlarged system
of ordinary differential equations. Advantage is taken of
the feature that if the Jacobian

a(r)
J=Trro)= | detVor(ro,0) | e

is known, then (15) can be immediately integrated, viz.,
a=ayJ 12, (19)

To derive (18) note that if U(t) is an arbitrary volume en-
closed by a surface 2(¢) such that all the points interior to
and on 2 move with the velocity v, then

U= fd3r= fd3r0J. (20)
But
U=—;Ltfd3‘r= f2d2r°v= fd3rV-v=fd3r0JV-v

(21)
and alternatively

. d .
U=— [ d*roa= [d’roJ. (22)

If we equate the two rightmost expressions in (21) and

(22) it follows, since the domain is arbitrary, that
J=JV-v. (23)

When (23) is used in (15) to eliminate V-v there results
0=d++aJ , 24

which can be directly integrated to obtain (19). In order
to compute J it is convenient to define

A=Vr. (25)
Then J = |detd |. Let
E =VOV . (26)

Then the gradient of (17) with respect to r yields
A=B, 27)

while the gradient of (14) with respect to ry yields on, us-
ing the chain rule,

mB=—VVW=— (Vo) VVW=—4-VVW . (28)
At t=ty, we require that 4 =1 and mB=V,VySy(rp).
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Note that the closed set of equations (14), (16), (17), (27),
and (28) do not involve the gradient with respect to r of
any of the unknowns, and that VVW is given. Thus the
system can be integrated along one characteristic at a
time. If W is an analytic function of r, then r(ry,z) will
be an analytic function of ry.

Note that H as given by (6) is just the Hamiltonian, and
L =+5mv?—W is the Lagrangian, whence if p=mv Eqgs.
(17) and (14) can be written in the Hamiltonian form

._OH . 0H
T PT T
while consequent to (16) S is clearly the action.

It is evident from (18) that the neglect of the term in
V2a in (5) becomes invalid as one approaches a surface
J =0, conventionally termed a caustic. One can, however,
solve (1) locally in a neighborhood straddling the caustic
and display how that solution matches onto the eikonal
approximation. For this we require the normal to the
caustic and the behavior of J as one approaches the caus-
tic. Now if Wi(r,t) is at least thrice differentiable with
respect to r it follows from differentiation of (27) and (28)
that V,V,r exists, and hence on viewing J as a function of
ro,t that VoJ exists, since J is cubic in terms of the form
0x;/dxo;, where x; and xo; are Cartesian components.
But on using the chain rule

Vol =(Vor)-VJ=A4-VJ . (30)

Let A° be the adjoint of 4, that is, that matrix the ele-
ments of which are the cofactors of their counterparts in
A. Then

(29)

47 '=J""4%gndet4
and
VJ=J"14%(VyJ)sgndetd . A (31)

Now the elements of 4¢ are also products of terms of the
form dx;/dxq;, whence it follows from (31) that VJ
diverges as one approaches the caustic J =0. But return-
ing to (30), since VyJ is bounded as one approaches the
caustic and VJ diverges, it follows that VJ must tend to-
wards parallelism with the unit vector n satisfying

A-n=0 (32)

which exists since J =det4 =det4 =0. Moreover, if we
multiply (30) by J there results

V(+J%)=A4%(VJ)sgndetd (33)

which is well behaved as J—0. Let R(z) be a point on
the caustic. Then if we introduce a local Cartesian coor-
dinate system &,7,&, with the & axis parallel to n(R) and
its origin at R, Eq. (33) implies

2
Y2 4%V | =G (&n,0) (34)
ag r=R
whence near r=R
J2=EG (E,m,1)+0 (&%) . (35)

The square root of (35) employed in (18) yields
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am~a)G V4 =aoG~ V4| n:(r—R) | ~*,  (36)

giving the local behavior near a caustic, provided that
G540 as we shall assume. When G vanishes one must
-‘work to higher order in §.

The velocity relative to the, in general, moving caustic
is tangent to the caustic. To demonstrate this note that on
any surface J =const,

=8 v : (37)
ot
Moreover, since R is a position vector which moves with
this surface

0=97 +R-VJ . (38)
at
Thus (37) can be written
J=(v—R)-VJ . (39)

But J is bounded, even on the caustic where VJ is not.
Thus on the caustic

n(v—R)=0. ' (40)

That is, the caustic is an envelope of the characteristic
curves.

One can solve (1) approximately in a boundary layer
straddling the caustic and match asymptotically to the
eikonal solution. To this end we require an approximate
expression for S in the neighborhood of the caustic. This
may be determined via a local integration of

o

_ lesma 1
0= [ At 2

x| 9¢ ) 7 o
—Hfilat VR,V |+ V.

Vv=(Vr,)-Vov=J ~(V;r)*V,vsgndetVor , (41)
which near the caustic, on using (35), behaves like
Vv=¢("12nb , (42)

where b=G ~1?n(V,r)?-Vyv. The form of the dyadic in
(42) is determined by the requirement that VX (Vv)=0,
since V{=n. Integration of (43) locally yields

v(r,)=v(R,0)+2 b+« - - . 43)
Since VXv=0 it follows that b=cn, with
c=G2n-(Vyr)®(Vyv)'n evaluated at r=R. Since
mv=VS a further integration yields

S(r,t)=S(R,1)+mv(R,t)-(r—R)++&2ecm + - - - .

(44)
Note that (43) implies on using (40)
[v(r,) —RP=[v(R,1)—RP+4c% . (45)

In order to solve (1) in the boundary layer straddling
the caustic we factor out the dominant variation tangent
to the caustic by writing

¢:¢eia/ﬁ , (46)
where '
o(r,t)=S(R,t)+mv(R,t)(r—R) . (47)

Then (1) implies, on using (8) to eliminate dv/3dz,

mv(R, 1>+ W(r,t) —m[v(R,t)—R]- [ Vi v(R,)]-(r—R) — (r—R)-Vx W(R,?) |¢

But if we use (7) evaluated at r=R, Eq. (48) can be rewritten as

0= ((r—R)' Vg {+m[v(R,t)—R]*}

2
vy,

+i#i {a—"‘ +R-Vo+[v(R,1)—R]-V¢ |+ Fye

at

where we have made a Taylor-series expansion of W (r,t),
and used the property that Vv=VVS is symmetric. Now
in the boundary layer we expect that n-V¢ is much larger
than nX V@, and that 3¢ /3t +R-Vé, the time derivative
of ¢ as seen by an observer moving with the caustic, is
small. Thus (49) may be approximated near =0 by

# 3%
— 2 .
0=2mc“{d+ 2m g

provided that ¢ is not so small as to require retention of
higher terms in the Taylor series, which we shall assume.
Let
1 4m 2c?
13 - 7

(50)

(51)

—‘;'(I—R)(I'—R):VRVR W(R,t)+ - - )¢

(49)

-
Then with [ positive that solution of (50) which vanishes
for £— — oo is®

¢=D Ai(-¢/D) , (52)

where Ai(z) is the Airy function, whence ¢ has the
asymptotic forms in §

372
D= 1726=V4sin % %. +% as {—o0 , (53)
_ 3/2
¢ D —1/4 2 s
2 172 (=) exp | — 3 |7 88—~ .
T
(54)



Now, as {=n‘(r—R)—0+, that characteristic incident

on the caustic has n-[v(r,t)—R] <0. Equation (42) with

b=cn then implies ¢ <0. Thus following (44) the associ-
ated eikonal behaves near §{ =0 like

3/2

] ) (55)

I

o_2
3|1

7

¢in ::aing_ I/4exp [l

where a;, is independent of . But (53) implies that near

£=0
Y= F(&n,t)E~*exp i% ‘
) 3/2 ) 3/2
X(exp —i; [%] ]—iexp —i? %] ] } .
(56)
Let 9, be a second eikonal which near {=0 behaves likes
3/2
. — o 2

You=—iaind ' *exp {z Ry % ] N1

In order to have a matched asymptotic expansion with

(56) we must write ¥ as the sum of (55) and (57). Note
that the local wavelength associated with an eikonal is
A=h/mv, while [ measures the width of the boundary
layer straddling the caustic. Clearly, in order that the
boundary-layer analysis be valid it is necessary that [/ be
much less than the smaller principal radius of curvature
of the caustic at the point R in the neighborhood of
which one makes the local analysis. Moreover, if there is
more than one caustic, they must be separated by dis-
tances much greater than I, or else the boundary-layer
analysis must be modified to allow for barrier penetration.
Evidently as the number of caustics goes up the bookkeep-
ing associated with the asymptotic matching becomes
complicated. If ¢ is small or zero the boundary-layer
analysis must be modified, which calculation we will not
present here.

There is also the problem of fitting a single eikonal to a
given initial condition #(r,0). For a steady-state scatter-
ing problem the task is easy since one has only to stipulate
the incident monochromatic plane wave. For a bound-
state problem the association of the eikonal with ¥(r,0) is
not unique. Indeed, when one notes that for any square-
integrable initial condition with W =0 the natural tool
would be a Fourier integral in r, an integral over eikonals
would seem to be the natural extension for a slowly vary-
ing W. This latter notion is developed in detail in Sec.
IIL.

III. THE GENERALIZED FOURIER INTEGRAL
AND THE LIMIT A —0

We now develop a method for solving the Schrodinger
equation appropriate to localized wave functions of short
local wavelength in the limit A—0. This involves so-
called generalized Fourier integrals introduced by Ha-
zak®* for similar problems in the geometric optics of plas-
mas. The technique involves the approximate construc-
tion of the Green’s function for the initial-value problem
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associated with (1) and leads to a representation involving
integrals over eikonals. That is, we wish to write

Yr,= [ d’oK (r,r0,0(ro,0) . (58)

For this purpose we define a transformation from in-
dependent variables ry,vo to r,v via the system of ordi-
nary differential equations

r=v, r(0)=r,, (59)

mv=—VV, v(0)=v,, (60)
with the associated action generated via
S =2mv?—V, S(0)=mvyr1, . (61)

Clearly one can use any of the sets k,v; kg,vq; kg, v; or

k,v, as variables to locate a point in the six-dimensional

phase space. Since vy is now an independent variable it

follows from the theory of ordinary differential equations

that the transformation from rg, v, to r,v is one-to-one.
Parallel to (18) we define

d(vq,1)

J(vg,r,t)= = | detVor(vy,ro,2) | - (62)

a( Vo, 1'0)

Since (59) and (60) are Hamiltonian the Jacobian

d(vg,1p)
v (63)
But one can write!®
a(vg,1g) _ d(vg,r) 9(vg,1gp)
d(v,r)  3(v,r) d(vg,r)
1
d(vg,r) | A(vg,r)
= 4
a(v,r) | d(vp,rp) (64
whence on using (62) and (63)
d(vq,T)
J= v (65)

Note that initially J=1, and that by the same arguments
used in Sec. II it is bounded. Moreover, J is independent
of %.

The GFI are defined in terms of objects akin to e
viz.,

ik-r
b

g(vo,1,2)=[J (vo,1,8)] ™ 2exp[iS (v, 1,t) /#] (66)
which in the limit #—0 enjoy the property
f d3vo g*(vo,1,1)g (v, ', t)
= [ d*oo[J(vo,1,00 (vo,r',1)] =17
Xexp{i[S(vo,r1,t)—S (vo,1',2)]/#]}
~(Q2mh/m)*8(r—r1) . (67)

To prove (67) note that the condition that the phase
[ S (vg,1,2) —S(v,1',2)] /# be stationary is

R(vg,r1,t)=R(v,1',?) , (68)

where
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m R(v,r,t)=05(v,1,t)/dv, . (69)

[Note that this use of the symbol R is distinct from that
after Eq. (33).] But since mv=VS(vq,r,?)

mR=m ‘_6_11 +1'VR

ot
d as
=m ot v v aVO
d |as J
_ - = S - .
aVO ot v v aVOV vs
I 10 ST 9 1.
= vy 2mv vV m avov mv
=0, (70)
where we have employed (61). Thus
R(vg,r,t)=R(v,T, 0)—LLS(V I 0)——a—v °T
01,8/ = 010 —‘av0 m 0LoV/— Vo 010
=TIy (71)

whence (68) requires that ro=ry which implies r=r’ since
the transformation vy,ry to vg,r is one-to-one. Thus if
r=#r’, in the limit #—0, the integral in (67) must vanish
because of the rapidly oscillating phase and smooth # in-
dependent behavior of J. When r'~r one can make a
Taylor-series expansion about r'=r, whence on keeping
lowest-significant-order terms (67) becomes, on using (65)
and transforming to v as the variable of integration,

f d3UO[J(v0,r,t)]—lexp[i(r—r’)'VS(vo,r 1)/#]

= fd3 [J(Vo,r,t)]‘lexp[t(r r')mv/#)
= fa’3v exp[t r—r')mv/#]
=(2m#i/m)’8(r—1'), Q.E.D. (72)

It can be argued in parallel fashion that
f d3r g*(vo,1,1)g (v, 1,t) = (2m#H/m)>8(vo—vp) .

(73)

These properties can be used to solve (1) in the limit

#i—0. Multiply (1) by g*(vo,r,2) and integrate with
respect to r:

0= [d’rg* zﬁl V%p Vi
= [ar lﬁ—gtﬁ V-(g*Vi—yVg*)
_ ag _i 2,% *
+ Y | =il S+ Vg Vg (74)

The divergence in the integrand, on using Gauss’ theorem,
integrates to zero for the localized wave functions con-

sidered here. Moreover, g is just the eikonal discussed in
Sec. I with v the same for all ry, whence

* 2 2
——iﬁ—ag—+ A grgn_ Vg* = i-[exp( —iS/H)VI V2,
ot 2m 2m
(75)

Clearly, away from caustics one can neglect the right-
hand side in the limit #—0.

Let us for the time being assume that there are no caus-
tics. Then to lowest significant order in the small param-
eter h

=% [ drg'y (76)
whence
fd3r’g*(v0,r’,t)¢(r’,t)
= [ d*rog*(vo,10,00(r,0) . (77)

Multiply (77) by g(vq,r,t) and integrate with respect to
vo. There results, on using (67),

Y, =(m/2w#)° [ dvog(vo,r,1)
X [ d3rog*(vo,10,009(1,0)
(78)
whence
K(r,50,00=(m /21#) [ dvog(vo,1,08*(vo,10,0) . (79)

Note that by virtue of the initial condition in (61),
J(Vo,ro,to): 1, and

g*(vg,10,0) =explivy 1y /#) . (80)
Thus if
ao(vo)=(m /2m#)} f d3ro ¥(r,0)exp( —imvyro/#)  (81)
then
a(vo,r,t)=[J (vo,1,0)]~%ay(vy) (82)
and (77) can be written

P(r,t)= fd3v0a(vo,r,t)exp[i_S(vé,r,t)/ﬁ] , (83)

an integral over eikonals. If we use v in place of v, as the
variable of integration (83) yields

Y= [ d’Jag= [ d*J%agexpliS/#) . (84).
Alternatively one can write /
P(r,t)= fd3v0ao(v0)g(v0,r,t) . (85)

Consider (85) and let there now be caustics. Note that
for those points v, r away from caustics the generalized
Fourier amplitude g has been constructed to satisfy the
Schrodinger equation (1) with a fractional error propor-
tional to 7. This property fails in a boundary layer strad-
dling a caustic J(vq,r,2)=0, which is now a surface in v,
space, with r and ¢ fixed. This defect can be remedied by
using (56) or its counterpart matched asymptotically



to g(vg,rt) in such a boundary layer. But the effec-
tive width A of the boundary layer is determined by
the condition that §&/I=-—n(r—R)/l=—n(r—R)
X (4mc?c?/h?)32~1. Let r be a point on the caustic.
Then if A is the change in r required to change £ from
zero to I, it follows that A-3¢/dv~I whence A=0(h*/3).
Clearly, as long as the volume in v, space associated with
boundary layers around caustics is small compared with
the volume external to boundary layers which contributes
dominantly to the integral in (85), then (85) will be a good
approximation. The details of the development of caus-
tics in two and three dimensions when dW /9¢=40 is still
an open question, but clearly there are difficulties when
the caustics become so dense that the effective volume of
their associated boundary layers is dominant, and the gen-
eralized Fourier integral method may be expected to fail.
Note, however, that formally, for a fixed distribution of
caustics, the thickness of the boundary layers and hence
their volume go to zero so i—0. Note too that if one uses
(84) where the Jacobian occurs as J!/2, the contribution of
caustic boundary layers would seem reduced.

Under certain circumstances the integral over v in (85)
can be carried out approximately. To this end we write
(85) in the form

r,)=(m/h? [ d* [ d*o(rs,00[J(ver,0)]~'7
Xexp{ (i /A)[S (vo,1,1)
—mvyrgl} . (86)
Consider the vy dependence of the integrand in (86). Note

that Jo(vo,r,2) is independent of #, while the phase
(i /B)[S(vg,1,t)—mvyry] is large in the limit #—0 and
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0S(vg,t,1)
Oz__vo—__mrz):m[ro(VO,rat)_ré)] ) (87)
aVO

where we have used (69) and (71). Equation (87) has but
one solution since the transformation from ry,vg,?, to

r,v,t is one-to-one. Let wu(ry,r,z) be such that
ro(u,r,t)=ry. Then if
, 32S(vp,1,1)
Q(ry,1,t) =———F7— (88)

- aVo aVO vo=u

one can on Taylor-series expansion write (86) as

Y, =(m/hy[ d’ [ dvo P(rh, 0T X u,5,0)+ - - - 171/
Xexp{ (i /A)[S(u,r,1)
+ 5 (Vo—u)(vo—u):Q
Yo —mun]) (89)

The symmetric dyadic Q can be written in its principal
axis representation as

0=0 €1+ 066+ Q€383 , (90)

where the Q; are the eigenvalues of @, and in parallel
fashion one can let

Vo—u=0;€;+0V€,+Vze; . (91)

Suppose that J(vg,r,t) and Q(v,1,?) do not change much
when vo—u changes by an amount of the order of
(min { | Q; | }/A)~'/% Then it is adequate to retain only
the terms shown explicitly in (89), and since for real B

f:o dx exp(+ipx2)=Qw/ | B|) *exp(simsgnp) ,

gives rise to very rapid oscillations when exponentiated. (92)
The phase is stationary'? when (89) reduces to
J
Yr,t)=(m /hy"2 [ d’ry Y(ro,0)[J (u,r,0]7 2| 0,0,0; | ~'72
X exp{ vim(sgnQ, +sgnQ, +sgnQ;)+i[s (u,r,t)—mu-ry]/#} . (93)

In principle one must verify that the terms neglected in
the Taylor series in (89) indeed make a negligible contri-
bution. This is likely to fail when the caustics are dense
or stochasticity sets in, since then derivatives are large.
When W (r,t)=0 Eq. (93) reduces to the exact result

Y(r,t)= (m /ht)>?exp( — 5 i)
x [ d*rolre,0)explim(r—rol2/20it] . (94)

When J is small in the neighborhood of the stationary
point a local expansion can be employed and the integral
redone, though the significance of the result is in question.

The probability per unit volume of finding the particle
described by (r,t) is P(r,t)= | {(r,t)|% Note that P
varies on a scale length L of the order of that characteriz-
ing ¥(r,0) or smaller. Moreover, considered as a function
the integrand of

P(r,t)= fd3vof d3vha(vo,r,t)a*(vo,1,t)
xexpf (i /A)S(vg,r,1)
—S(vo,,1)]}  (95)

has no stationary points of  the. phase
(i /A)[S(vg,r,t)—S(vp,1,t)] since the condition that there
be such

0=VS(vq,r,t)—VS(vq,r,t)=v(v,1,t) —V(Vg,T,t) (96)

has no solutions for vys£vy, since the transformation from
Vo,To,to to V,r,t is one-to-one. Clearly, as #—0 with
VoV, the integrand is a rapidly oscillating function of r
and for calculating an integral of P over a domain of size
greater than L3 we may set vo=vy. This notion can be
made more precise by introducing the new variables
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v="2(Vo+Vh), U=vo—Vj , 97)

with the inverse
]

Vo=v+3U, Vo=v—3u. (98)

Then (95) can be written

P(r,n=(m/n) [ dr [ dry [ d [ du piro,000* (x5,0)[J(v+ 3u, 1,0 (v—Fu, 1,0] 7'/
X exp{ (i /A)[S (v+5u, 1,t) —mry (v+ su)

—S(v—~tu,r,0)+mry-(v—5wl} . (99)

For the purpose of coarse-grain averaging in r via integration with respect to r we Taylor-series expand in u, keeping
only the leading terms in J and the first two terms in S. The result is

P(r,y=(m/n° [ d’ro [ [ d® [ d*uu(ro,000* (x5, 0[] (v,r,]~!
X exp{ (i /A [mu-[R(v,1,8) — +(ro+1H) —m (rg—r ) v]}
=(m/n) [ &g [ @ [ d*vilre, 008" (15,0)[J (v,1,0] !

X [expli /#)m (rh—10) VIS[R(w,1,8) — 3 (1o+15)] .

Define
flv,r,t)
=(m/h)* [ d*rg [ dry ¥(re, 008" (15,0)
X exp[(i /A)mv-(ry—rp)]
X8(R(v,1,8)— 5 (rg+15))  (101)

and v(v,r,t) via (59) and (60), with R the initial position
and v the initial velocity. Note that along the associated
trajectory R=0, v=0. Equation (100) now reads

P(r,n= [d%fv,r0, (102)

where since f is a function of R and v, it follows that
when expressed in terms of v,r,?

(100)
[
0=1 :%H-ww-v,f
Y vvr—Lywrvys. (103)
ot m

Equation (103) is the well-known Vlasov equation,'® but
for a single electron. Equation (101) defines the Wigner
distribution associated with ¥(r(,0), as can be seen by in-
troducing in (101) the new variables £=r—r’ and
7=+ (r+r'), in which event

f=(m/n) [ d*6Y(R+TE 01 (R—FE0)e ~mVE/A
(104)

Note that if we let £ go into minus &, then f goes into its

complex conjugate and hence must be real. Observe too

that at t, one has R=r, v=v whence it follows from
(103) that

f dsvf:(m/h)sfd3§¢(f—%§a0)¢*(l‘—-§j§,0)fd3ve""""'5/ﬁ
=(m/h)® [ d3EYr++E OP*(r—+&, 0)27)’8(mE, %)

=|9(r,0)]?

(105)

which is non-negative. Observe that in this development the Wigner distribution has emerged in a natural way.
For t >ty note that on using (63) and (104), and integrating over all v, but an arbitrary finite domain in r, one has

[ [dvf= [d°R [d*f

=(m/h? [ &R [ &% [ &V [ d*E YR+ TE 00" (R— 1, 0)e ~mw8/7

Suppose that for almost all values of R in the range of R,
the range in u can be taken to be effectively infinite.
Then it follows directly that

J @ [avr=[aR|wR0) 2. (107)

(106)

I

Thus although f itself need not be positive, its coarse-
grained overage over r is non-negative.

Equation (85) has the disadvantage that more than one
orbit can pass through a given point r at time ¢, which
makes VJ(vo,r,7) and VVS(V,r,?) singular on caustics.
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Equation (84) has the advantage that the orbits in phase
space never cross, and so if W (r,t) is analytic, and ¥(r,0)
falls off exponentially as it does for a bound state, then J,
S, and a, are analytic functions of r and v. To demon-
strate this we note that when 1(r,0) falls off exponentially
in 1, then a as given by (81) possesses derivatives of arbi-
trarily high order with respect to vg, and hence is an ana-
lytic function of vo,. Moreover, with W (r,t) possessing
arbitrarily high derivatives with respect to r, Egs. (59) and
(60) can be differentiated arbitrarily with respect to ro and
vo, whence r and v and all derivatives thereof with
respect to ry and v, exist and are constructed by integra-
tion of ordinary differential equations along trajectories.
Thus r, v, J?, and S are analytic functions of ry,vy.!*
This, as we shall now show, implies that they are analytic
functions of r and v.

To this end let F(ry,vy) be any function analytic in ry
and vy. Then on using the chain rule ‘

or| _[a ) [or]| , (2] [eF

o |v, |9ro or or, v |~
(108)

OF | _ |38 | |9F 9 . |.|9F

vy |r, A ar |, vy av |,
(109)

Let the 6 X6 matrix formed by derivatives in Cartesian
coordinates

9o 9.,
9o |v, |00 |y,
A= 110
lle] (o, o
aVO 1, aVQ 1o
Note that
a(r,v)
detA=—"—"—= 111
aa a(rg,vgp) (111)

and that (108) and (109) can be written in the matrix form

oF aF
aro vo ar v
=A- 112
oF A o (112)
aVO T av R
But
A~ 1=A%/detA=A" (113)

whence on inversion (112) yields

OF OF
ar al‘0 vo

=A? 114
or | |77 | o e
av r avO I

The right-hand side is a well-behaved function of ry,v,
and hence of r,v. Thus (3F/dr), and (3F/0v), exist.
Clearly iteration of this argument shows that all deriva-
tives of F with respect to r and v exist.

1IV. THE SURFACE-STATE ELECTRON PROBLEM

It is instructive to apply the GFI method to the SSE
problem for which, in the absence of an external perturba-
tion, the initial-value problem can be solved exactly. The
associated Schrodinger equation is

2 2
ind Y

Y 2m ax? (115)
where
o2
W(x)=—— (116)
€x

and € is the dielectric constant of the layer of liquid heli-
um to which the electron is bound by its image force. The
conditions on the solutions are

¥(0,1)=0,
[ dx|pxn|?=1,

and the range in x is zero to infinity.
It is convenient to introduce the Laplace transform

(117)
(118)

F(H,x)= fo""dnp(x,t)expth/ﬁ), (119)
where ImH > 0. Then (116)—(118) imply
# d°F e?
_—— H+— |F=i#iy(x,0) ,
2 dn? + |H+ o ifp(x,0)
F(H,0)=0, F(H,»)=0. (120)
Define
H=|H|e"Y, (121
A=(—8mH /#)'\?= | 8mH /#* | exp[+i(0—7)] ,
(122)
y=>Ax, (123)
k=2me?/#He\ . (124)
Then (120) is carried into
d*F 1« iY(x,0)%
ez = 2 . (125)
P 4H

Let M, ,,(y) and W, ,,,(y) be the Whittaker func-
tions.!>1® In the upper half H plane these have the
asymptotic behavior

klk41)

F(I—K)MKYI/Z(y)zy_“e”/Z ¥

14

2
4 K(K+1);K+2)+‘” ,
2y

(126)
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Wi (y)=y~e?”? 1_K(K_—1)
y
K(K——l (k— 2)
— 2+ 12D
+ " l |

|

F(H x)= A0 —K)%

b 4H

In terms of F the desired solution is

where the Bromwich inversion contour C is a straight line
in the complex H plane parallel to the real axis and
traversed from left to right. Now the singularities of F
are simple poles at 1 —k=0,—1,—2, ..., associated with
I'(1—k), and a branch point at H =0 associated with the
logarithmic singularity of W, i,. In terms of H the
poles occur for

2L —HUAR(H x) (129)

me4

H=——-———, wheren =1,2,3,...,
2n2#%e?

the energies of the hydrogenic discrete levels. If we

choose a branch cut along the positive real H axis and

evaluate (129) by deformation of the contour into the

lower half H plane, there results an expression which is a

(130)

¢r(x,t)=—}1; fc dH fo‘” dx'[v(H,x) (H,x")]~"?(x’,0)exp

IWx,l/z(}NX) foxdx'MK,1/2(7~x')¢(x"0)+Mx,1/2(M)

Moreover, M, ;,, is an entire function of y, while W, ;
has a logarithmic singularity at y =0. It is then readily
established by the method of variation of parameters that
the solution of (125) satisfying the boundary conditions is

f:’ dx' W1 p(x")(x’,0) (128)

[

sum over the discrete levels associated with the poles and
an integral along the real axis associated with the continu-
um.

In order to demonstrate the relationship of the GFI
solution and (129) it is convenient to use in place of the
asymptotic representations (126) and (127) their WKB
counterparts, viz., if

p=01—4x/p)!* (131)
one employs

T(1—Kk)M, 1 /2(p) ~p ™ %exp [% fdy,u] , (132)

Wi ~exp fdyu] (133)

It is readily verified that (132) and (133) agree with (126)
and (127) through terms of order 1/y. If we use the
asymptotic forms (132) and (133), Eq. (129) leads to

1 sup(x,x’)
é[fl ’ dx”v(Hx )— Ht]l

nf(x,x’
3/2
2me?* | # 1 1
X |1+ e | 8mH l x2+ ) + ) (134)
where the terms indicated by dots are higher order in 1/H. Thus if
_12 sup(x,x") " " ]
K(x,x',t)= f dH[v(H,x) v(Hx )] exp | o [ finﬂx’x') dx"v(H,x")—Ht (135)
it follows on using the convolution theorem that
Pix,n= [ 7 dx'Plx’,0K (x,x",1)
o t l e? | At —t') 172 1 1
+f0 dx fodt P(x ,O)K(x,x‘,t )% Tl — 6('—)2 + e (136)
The leading term in (136) is a good approximation when
2 i 172
e .
—_— | 1.
8fiex? |2m | (137)

Let us keep only the leading term in (136).
the contour C can be deformed into the real H axis and

Y(x,t)=

f dx' f dH ¥(x',0)[v(H,x)v(H,x")]~?exp

Since there are no singularities in the upper half H plane of the integrand

sup(
%{fl L") dx”mv(Hx ") — Ht] (138)

nf(x.
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It follows from definition (122) that on the real H axis approached from above that

172
2 2
2 lgre || B
€x €x
v(H,x)= 172 (139)
12 e? e?
I|— |H+4+— , H< ——.
€x €x
This implies that if
sup(x,x’)
I= | ,dx"v(H,x") (140)
inf(x,x")
then
sup(x,x’) ) .,
1= finf(x,x') dx" | v(H,x")|
_p2
= [ ax o (H x| (140")
inf(x,x")
sup(x,x’)
+i [ dx | o(H,x") | (140”)
—e“/eH .
. sup(x,x") " . 7 e
=i fmﬂx,x,) dx" |v(H,x")| , (140""")

Eqgs. (140", (140"), and (140"") following, respectively, from
2

““e—, <H,
sup(x,x’)
2 2
e e
_ H ,
einf(x,x") <H< esup(x,x")
2
e
He« ——F—07p7r-.
< einf(x,x")

The condition that the phase in (138) be stationary is

sup(x,x’) . 1

! —
inf(x,x") v(H,x")

fsup(x,x’) . 1 e?
— 5 —
inf(x,x) |v(H,x")|’ esup(x,x’)
—e2/eH " 1 X fsup(x,x’) " 1 e2 H 62
= | x ! — - <H <
inf(x,x") |v(H,x") | —e2/eH |v(H,x")|’ e€inf(x,x") esup(x,x’)
sup(x,x’) 1 ez
=—i [ dx"'—— e, Ha———D—— . (141)
inf(x,x’) |v(H,x")|’ einf(x,x")

Equation (141) is an implicit equation for that value of H =H (x,x’,t) which corresponds to the stationary point. Since ¢
is real the stationary point can occur only for H > —e?/esup(x,x’). The value of the second derivative of the phase with
respect to H is

1 9 suplx,x") 1 . —L sup(x,x’) 1
T}{B;{v finf(x,x') x U(H,x") _—ﬁ inf(x,x") dx mv(H’x")3 ' . (142)

Thus in the limit A—0, on using the method of stationary phase, (138) implies

1 o , © , A A 1 —
vonn=— [ dx' [ dH (x,0)v (Hx)u(H,x"] 7"

2 3 sup(x,x’) 1

”

X exp l .

(143)

i sup(x,x’) " ~ A 1 A
| o axmo(H x") —Ht+(H - [ —_—
% inf(x,x’) of inf(x,x") v(H,x")
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In order to construct the GFI counterpart solution note
that since H =5 mv?—e?/ex is a constant of the motion

one can write

1/2
2 e?
v=|— |H+— =v(H,x); (144)
€X
" dxr—1 (145)
t= Xg * v(H,x") ’
2 172
vo= | = |H+ - (146)
m EXO

These equations then determine H, x,, and vy implicitly
as functions of v, x, and ¢. The action obeys

2

S=tmv?+ - =mv?’—H (147)
€x
whence
t
S =muvgxo—+ fo dt' mv®>—Ht'
X
=mvoxo+ [ dx"mv(H,x")—Ht . (148)
0
Thus the GFI solution of the SSE problem is
]
oH 1

w(x,t)i% f0°° dx’ f_: dvo ¥(x',0)

i * ” ” 1 "2
Xexp fx,dx mv(H,x")—Ht +5m(vg—v’)

#

where after all derivatives have been taken one sets
H=H, where H(x,x',t) is given by (143), and
v'=v(H,x'). But if we take the derivative of (145) with
respect to H at fixed x there results, on using (140) with
x' replaced by x,

axo a3

Vo=, f x"—l
oH dH Y xo v(H,x'") xq=x"

sup(x,x’) " 1
=v finf(x,x') * |v(H,x”)| ) (154)
It then follows on evaluating the integrals in (142) and
(153) that the two expressions are equal. Thus the GFI
solution corresponds to the short-time asymptotic solu-
tion. Note that (143) holds even near the caustics where

dvgy . mvu(H,x) e

¢(x,t)=—’;ll [ ax' [ dvod(x",0)[J(ve,x,0] '/

[ f dx" mv(H,x")

X exp é

—Ht+mvy(xg—x") ]

(149)
Moreover, in this one-dimensional case
_ Blwg,x)  B(vg,x) J(H,x)
d(v,x) = O(H,x) 3(v,x)
ey |7 e
A(vg,x) (v,x)
%—H / oH (150)
v x aUO
whence
J:mv/ OH (151)
aUO

Now on using the results of (85) et seq. it follows that
the first derivative of the phase with respect to vq is
m(xq—x")/h, and that the second derivative is

dx 0
oH

axo

av()

m

#

Ox
aU()

m

#

(152)

X

Thus if the stationary-phase point xo=x' is away from a
caustic, on using the principle of stationary phase, (149)
leads to

172

axo

oH

oH

v , (153)

X

v(H,x)=0, suggesting that the stationary-phase approxi-
mation gives a uniformly valid result.

V. CONCLUSIONS

The method of generalized Fourier integrals has been
shown to provide a semiclassical approximation to the
solution of the time-dependent one-particle Schrodinger
equation for the case of localized wave functions. For
problems such as the ionization of Rydberg states by
external radio-frequency fields where one is primarily in-
terested in knowing whether the electron is no longer lo-
calized near the nucleus and a spatially coarse-grained
value of P = | (r,t)|? is adequate, it is then sufficient to
solve a classical Vlasov equation for the Wigner distribu-



tion function f and compute P = f d3v f. The technique
provides a short-time solution which may, however, be
valid long enough to establish for example that ionization
has taken place. The method fails if the systems of rays
developed to generate the solution display in the course of
time sufficiently dense sets of caustics.

The method should generalize to many-body problems
where almost all the particles are in the classical limit and
permit their treatment by the methods of classical particle
mechanics and classical statistical mechanics. Possible
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applications are the derivation of one-particle kinetic
equations and the treatment of atomic processes in dense
plasmas.
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