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Our previous studies of the growing interface of two-dimensional clusters produced by the Eden
process and by diffusion-limited aggregation are expanded and extended to d=3 dimension.
Growth is d'escribed in terms of the motion of an active zone defined as the region of the clusters
where the probability of collecting new particles is nonzero. If the description is limited to spheri-
cally averaged properties then this active region can be characterized by the probability P(r, X)dr
that the Xth particle is deposited a distance r from the center of mass of the existing cluster. As in
our previous Monte Carlo simulations of the d =2 case, we find that, for large X,
P(r, X)=(V 2m/~) 'exp[ (r r~—)'/ —2g~] with r&-X"-N'~, where D is the fractal dimension

of the infinite cluster and g~ -X where v & v, indicating the presence of a second diverging length
in these growth processes. %'e also study the center-of-mass motion of growing clusters. We find
that one has to be especially careful with simulations of diffusion-limited aggregation because dis-

carding particles which wander too far away from the cluster generates an effective force on the
center of mass, resulting in a motion which can obscure the intrinsic structure of the clusters.

I. INTRODUCTION

A number of nonequilibrium phenomena have been
described in terms of models in which a single cluster
grows through the addition of individual particles. ' The
two elementary growth processes, of which a number of
variants have been proposed, are diffusion-limited aggre-
gation (DLA) and the Eden process. The DLA process
and its generalizations ' seem to describe particularly
well the aggregation of smoke particles, colloid aggrega-
tion, electric breakdown, and some limits of two-fluid
displacement in porous media, while the Eden model

ight be useful in characterizing the growth of tumors, 3

and its variants' '" may contain some of the important
features of crystal growth. '

The study of these growth models has to this point been
concentrated mainly on the properties of the final state of
the cluster, i.e., on the structure in a region of space where
no further particles accumulate. These frozen structures
are indeed fascinating. Diffusion-limited aggregation and
variants of the basic model, ' ' ' as well as invasion
percolation processes, ' ' lead to frozen structures which
are scale invariant with a fractal dimension D & d where d
is the Euclidean dimension of the space in which the pro-
cess takes place. Growth seems to result in clusters which
possess structure on every length scale even in some
cases' ' where D =d. The numerical values of the frac-
tal dimension D in different growth models have been ac-
curately determined through simulations. At the mo-
ment, however, no satisfactory analytic theory exists for
the calculation of D although a number of mean-field-
type approximations have been developed which
yield reasonable numerical values for D and a simple
position-space renormalization group procedure has also
been proposed.

We believe that a proper theory for the frozen structure

can only be constructed after understanding the surface
properties of growing clusters. The cluster is built in an
"active" zone, which is usually the outer part of the sur-
face collecting all the new particles in a given stage of the
growth. Since the frozen bulk and the dynamics of the
process are related to each other only through this active
zone and since our purpose is the evaluation of the bulk
properties starting from the dynamical equations, clearly
the principal task should be to find a way of describing
the active zone and then to calculate the characteristic
quantities appearing in that description.

There have been several attempts ' ' to describe
the growing interface in the DLA and in the Eden pro-
cess. In Monte Carlo simulations, complicated quantities
like interfacial mass or the upper surface of a deposit
were studied. Although these quantities are easily
evaluated in a numerical study, they seem to be too corn-
plex to be within the reach of analytical approaches.
Simpler quantities are examined in mean-. field-type
theories of DLA where the surface is specified by a single
characteristic length. This length, the screening length,
can be interpreted as the penetration depth of the incom-
ing particles, i.e., as the width of the active zone. In the
absence of a systematic theory for the calculation of the
screening length, it is usually obtained from some clearly
oversimplified physical picture, the result being that this
length scales as a simple power of the particle density
in the cluster. Yet another conjecture concerning this
length comes from studies of clusters in percolation prob-
lems. It is assumed that there is only one divergent
length in the system thus implying that the width. of the
surface region scales as the radius of the cluster. Natural-
ly, the scaling behavior of the characteristic length associ-
ated with the surface predicted by the preceding theories
is quite different and they. are incompatible with each oth-
er.
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and since rz is a measure of the expansion of the cluster
as particles are added, the exponent v is related ' to the
fractal dimension of the frozen structure by D =v '. Our
results for D agree with previous calculations of this
quantity.

The width of the active zone also displays interesting
behavior. For DLA in d =2 and 3 it scales as

(3)

with v & v thus indicating the presence of two distinctly
diverging lengths in this process. The coexistence of two
different scaling lengths in an isotropic system appears to
be quite strange although it should be noted that the
description of the surface of Ising clusters near the critical
point also requires an extra length which scales dif-
ferently from the bulk correlation length, The numerical
values of v suggest that the mean-field conjectures
regarding the screening length are quite far from reality.

For the Eden model in d =2 and 3, our Monte Carlo
data strongly suggests that the singularity of g~ is of the
form

1
g~ ——InN (4)

which might be thought of as the v —+0 limit of formula
(3).

The role of v in determining the properties of the
frozen structure is not transparent but it is quite clear that
it is intimately related to the dynamics of the process in
question. In DLA, g~ is the screening length, a measure
of the shielding effect which is necessary to produce the
loose dendritic structure characteristic of the process.
The question of how to calculate v and then how to relate
it to D is, at this stage, unanswered.

The material in this article is arranged as follows. In
Secs. II and III we discuss our simulations of DLA and
the Eden model, respectively, and present evidence for
formulas (1)—(4). Section IV contains a discussion of the
motion of the center of mass as the cluster grows. As we

In two recent short papers ' and in this paper we at-
tempt a somewhat more sophisticated characterization of
the aggregation process by considering the probability
P(r, N)dr that the Nth particle is deposited in the shell
bounded by the radii r and r+dr measured from the
center of mass of the (N —1)-particle cluster. On the
basis of extensive Monte Carlo simulations of DLA and
the Eden model in d =2 (a less detailed study of this case
is presented in Refs. 33 and 34) and in d =3, we find that,
in the large-N limit, P(r, N) is given by

P(r, N)= exp[ (r —~~) I'&g/ ] .
1 2 2

V'2m/~

Thus the spherically averaged properties of these growing
clusters seem to be fairly simple, they can be completely
characterized by two parameters, the mean deposition ra-
dius r~ of the Nth particle and the width of the active
zone g~.

For large X, rN exhibits power-law behavior

rod

shall show, separating the center-of-mass motion is im-
portant for obtaining the correct surface properties of
clusters of low fractal dimensionality. Finally, in Sec. V
we indicate some problems and possible directions for ex-
tending the present work.

II. MONTE CARLO SIMULATIONS OF DLA

The algorithm for DLA is quite simple and a number
of simulation studies of various aspects of this process
have already been presented 2, 8, i3, 28 —30,36—4& Growth be-
gins with a seed particle at the origin of a d-dimensional
lattice (square or simple cubic in our case). Individual
particles then execute an unbiased random walk in the lat-
tice and either reach a site adjacent to the existing cluster
and stop or reach a distance far enough from the seed that
the probability of a return to the cluster is assumed to be
negligible and is discarded. Two parameters enter into the
algorithm, the radius R; at which new particles begin
their random walk and the distance Ro at which they are
discarded. The starting distance R; is presumably ir-
relevant as long as R; is greater than the maximum extent
of the cluster. The ratio of a=RO/R; is usually a fixed
number and in our simulations we have varied o. between
2 and 5. The construction of large DLA clusters is quite
time consuming and we have therefore used a device of
Meakin to speed up the process. If a particle reaches a
distance lp, 2l0, 4lp, . . . , from the sphere bounding the ex-
isting cluster, the step size of the random walk is arbi-
trarily increased to 2,4,8, . . . . In our simulations we have
taken lp to be 5, 6, and 8. As in previous simulations we
find that the dependence of the average deposition radius
r~ or the radius of gyration Rg(N) on N is quite insensi-
tive to either ci or lo. The motion of the center of mass
(see Sec. IV) and, to a lesser extent, the width of the active
layer, g&, do, however, depend on both of these parame-
ters.

The calculation of the quantities of interest is carried
out in the following way. Clusters are grown to a max-
imum size in steps of 50 particles and the positions r; of
the particles in the cluster are recorded. At the end of
such a step, the center of mass of the cluster

r, ())()=(—g r;l

is determined and the radius of gyration Rg(N) is calcu-
lated as

)(g())')=(—g [r;—r, (N)]'),
i=1

where the angular brackets denote an average over the en-
semble of different clusters. Then rN is found by averag-
ing the deposition distance from the center of mass over
the next ten particles:

Similarly, the. ' screening length g& is determined through
such a coarse-grained average
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For large N the effect of this coarse graining is expected
to be negligible. It is, of course, also possible to determine
r& and g~ by fitting P(r, N) to Gaussian [Eq. (1)]. We
have used this procedure in our previous calculations
and found identical results for N & 100 as we do using
formulas (7) and (8).

Our previous results for DLA in d =2 (Refs. 33 and 34)
were based on 4000 clusters of 2500 particles grown with
a=2. We found v=0. 584+0.02 and V=0.48+0.01 [see
Eqs. (2) and (3)j. We have since constructed a large num-
ber of small clusters (1800—2500 particles) with a=3 and
4 and 4 ——5, 6, and 8. Our results for these clusters con-
firm the values of v and v reported in the earlier articles.
In order to investigate possible finite-size effects we have
also grown 160 clusters of 10000 particles with +=4 and
lo ——8. The results are displayed in Fig. 1. The solid lines
are best fits to r~, Rs, g~, and r, (N) determined from
smaller clusters. A number of features of Fig. 1 are
noteworthy. First of all we see that the convergence of
the mean values to a final functional form is rather slow.
Using very small clusters (N &.500) we have found that
the order of 500 clusters is necessary before the fluctua-
tions in g~ are reduced to the size of a point in the plot.
More significant is the fact that while the points for rz
and Rg(N) bracket the appropriate curves there is consid-
erable deviation from the curve in the plot of g~ at large

200-

100-

$0-

N. On the same graph we have also displayed a plot of
the distance of the center of mass, r, (N), from the seed
particle along with the curve r, (N) =0.242N" +0.758
with g=0.37 which provides the best three-parameter fit
to the data for smaller clusters. One sees that for large X
the center of mass deviates considerably from this curve
and the deviation occurs at about the same value of N at
which the upturn in g&, begins. Indeed, analysis of the
data indicates that for the 160 samples of 10000 particles,
the best fit is r, (N) =0.0385N +1.814. The exponent

g has thus become larger than v. For large N the drift of
the center of mass is therefore more important than the
intrinsic width of the active zone. A least-squares
analysis of various subsets of the data in the range
50 & N & N, shows that all exponents (including v to
0.594) increase for N, &2500 and for N, =10000, v=g.
We believe that this behavior is due to the finite value of
a. As we show in more detail in Sec. IV, the finite dis-
tance at which the diffusing particles are discarded gen-
erates an effective force on the center of mass and this
force seems to become more important as the cluster be-
comes larger. The distance lo at which the step size
changes also has an effect on the behavior of the center of
mass. When lo is decreased to 6 for fixed a =4, the cross-
over to the regime g=v occurs for lower values of X.
Thus, although our results, obtained in the region
N ~2500 where no dependence on e and lo is observed,
support the conclusion v & v, to confirm this result simu-
lations with larger values of a and Io will have to be car-
ried out. Further discussion of this problem can be found
in connection with the d =3 results below and also in the
discussion of the center-of-mass motion (Sec. IV).

%e turn now to the three-dimensional case. %'e have
constructed 3000 clusters of 1010 particles using a=5
and lo ——8 as well as other values of a and lc which we do
not report on in detail. The drift of the center of mass is
also important in three dimensions. The maximum lattice
which can be conveniently accessed on our computer is
63X63X63. Although r& and g~ for N=1500 are 16.13
and 3.53, respectively, we have found that clusters as
small as 1200 particles occasionally extend beyond the
bounds of this lattice. In order to avoid any bias due to
the exclusion of such clusters we restrict our analysis to
the smaller clusters.

In Fig. 2 we display the function P(r, N) for a number
of values of N We see that .the solid curves [Eq. (1)] pro-
vide an excellent fit to the data as they do in two dimen-
sions. ' In Fig. 3 we have plotted rz, Rg(N), and g~ as
a function of X along with curves determined through the
following analysis of the data. The functions rz, Rs(N),
and g~ were fitted to the form

y(N) =A¹+B,
$00 $000 )0000

N

FIG. 1. Mean deposition radius r&, radius of gyration
Rs(N), width of the active zone g&, and displacement of the
center of mass r, (X) for 160 DLA clusters of 10000 particles.
The solid curves r~ ——0.693K, R (W) =0.489&
g~ =0.266N, and r, {N)=0.758+0 242N .have been
determined through analysis of 4000 clusters of 2500 particles.

where y represents r&, Rg(N), or g'z and e is the ap-
propriate exponent, v or V. For a given choice of e, A and
8 are determined by a least-squares fit of (9) to the 20
equally spaced data points for y (N) in the range
50&N &1000. The values of the exponent quoted in
Table I is the one for which the minimum 7 is obtained
and the uncertainty, 6, in e is obtained from the criterion
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grew with a somewhat smaller power of N than the aver-
age height. Under the assumption that the width of the
upper surface is proportional to the width of the active
zone, Meakin's results support our contention that v&v.
The justification of this assumption, however, is not en-
tirely obvious.

$00-

EDEN d = 2

III. MONTE CARLO SIMULATIONS
OF THE EDEN PROCESS

The Eden model has been introduced and used ' to
simulate biological growth processes. From a physicist's
point of view, the significance of this model is in its im-
plicity. Simulation studies ' ' and general considera-
tions '" suggest D=d for Eden clusters and, further-
more, there is evidence from simulations that the process
is space filling, i.e., the particle density goes to 1 deep in-
side the cluster. The model is not trivial, however, since
the boundary of the clusters is not sharp. As our simula-

'

tions, described in this section, indicate, the width of the
surface region diverges as the logarithm or as a small
power of the number of particles in the cluster. Thus the
model poses some challenge but, at the same time, is sim-
ple enough to hope that it can be treated analytically.
Such an analytic treatment might then serve as a starting
point for devising systematic methods of calculating the
properties of growing clusters.

The algorithm of the Eden model is exceedingly simple
and well suited for computer simulations. The process is
started by placing a seed particle on a lattice site. The
cluster is then grown by adding particles at randomly
selected unoccupied sites adjacent to the existing cluster.
In this way, we have grown 20000 and 16000 clusters on
the square and simple-cubic lattices, respectively, with
4000 particles in each cluster.

The plots of the probability distribution functions
P(r, X) and the Gaussian fits to them are of the same
quality as in the case of DLA (see also Ref. 33). As in
that case, a quantitative characterization of the spherical-
ly averaged properties of the clusters is given by the aver-
age deposition radius r~ [Eq. (7)], the radius of gyration
Rs(N) [Eq. (6)], and the width of the active zone gz [Eq.
(8)]. (The center-of-mass motion is considered separately
in Sec. IV;) Coarse graining was not carried out in this
case. The results are displayed in Figs. 4 and 5.

Since we have generated five times as many clusters as
in our previous study of the d =2 case, the statistics are
good enough for a three-parameter fit in the range
100&N &4000. Least-square fits of rN and Rg(X) to a
form AN"+8 produces the estimates shown in Table II.
Since both r& and Rs(X) lead to the expected result
v= 1/d = —,', one might conclude that, apart from the next
to leading constant term 8, there are no significant
corrections to scaling in the given region of N. This con-
clusion is further supported by the good accuracy of the
estimate of the amplitude A of the leading singularity.
Indeed, the space-filling nature of the Eden process im-
plies that A = I/Vx =0.56 for r~ while A =1/v 2m

=0.40 for Rg(N), both numbers agreeing very well with
the numerical results (Table I). Although it is quite evi-
dent from visual observation that every lattice site is occu-

10-

N

$00 1000
N

5000

FIG. 4. Mean deposition radius r~, radius of gyration
R~(X), and width of the active zone for 20000 clusters of 4000
particles for the two-dimensional Eden model. The solid curves
r~ ——(Xfm)', Rg(X) ={X/2m. )' correspond to space-filling
clusters; the curve g'~ ——

2 lnN —0.69 corresponds to the conjec-1

ture g~ ——(1/d )lnN+B for d-dimensional Eden models.

20-

EDEN d= 3

5000i00 $000
N

FIG. 5. Plot of r~, R~(N), and g~ for the three-dimensional
Eden model for 16000 clusters of 4000 particles. The solid
curves r& ——[(3/4n. )N]', R~(N)=( —, )' rN are for a space-

filling process and /tv
——

3 lnN —0.59 corresponds to the conjec-

ture g~ = (1/d )lnN for large N.
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TABLE II. Parameters in the fit of r~ and R~(X) to the
form AN"+8 in the two- and three-dimensional Eden model.
The error bars are of statistical origin, as explained in Sec. II in
connection with DLA clusters, and do not include systematic er-
rors due to finite-size effects and due to the restrictive function-
al form of the fit.

d=2 r„
Rg(N)

0.503+0.005
0.500+0.005

0.55+0.03
0.40+0.02

0.6+0.2
0.7+0. 1

d =3 p'~

R (N)
0.31 +0.03
0.29 +0.02

0.8 +0.2
0.8 +0.2

0.3+0.6
0.2+0.2

pied inside an Eden cluster, we pause here in the numeri-
cal analysis to present a simple argument confirming the
view that the Eden process leads to complete filling.

Let us start with the assumption that, contrary to what
we see, there is a finite density p, of surface sites within a
large cluster of N particles. Since the particles are added
with equal probability to any surface site in an Eden clus-
ter, the preceding assumption implies that the probability
P; of the N+ 1st particle being deposited in the interior of
the cluster is proportional to p, r ~, while the probability
Po of attaching this particle to the active zone of the clus-
ter can be estimated as Po-r & 'g&. The active zone'is,
by definition, the region where the particles are deposited
preferentially so we must have P; &Po. Since

Po14 1

ps &~ ps
(10)

the inequality P; (Po is violated for large N unless v=v.
This contradictio~ would constitute a proof of the space-
filling nature of the Eden process if the strict inequality
V&v could be shown to be valid. Unfortunately, we are
able to provide justification for v & v only in the form of
numerical data (Figs. 4 and 5) which seem to exclude the
possibility that v=v. Indeed, fitting the data for g& to a
form AN" +8 we obtain V=0.04+0.02 and
3 = —B= 10+10, thus V &&v. In our previous study " we
used a two-parameter fit g~ =g'ON and obtained
V=0. 18+0.03; thus the improved statistics and the in-
clusion of the constant term lowered the value of V indi-
cating the possibility that v=0. Consequently, we tried to
analyze the data assuming logarithmic singularity in g~,

'

ar & —d —& gr v+ 1 —1/d (13)

and we found an improved g for o = 1.2+0.3,
A =0.3+0.2, and 8= —0.3+0.6. It is remarkable that if
tr is fixed at 1 then the best fit is obtained for A =0.5
suggesting that the relationship between the singular parts
of g& and r& might be quite simple and of the form

g~ -inr~ ——,
' lnN . (12)

I

The small value of v is in agreement with the results of
studies ' ' of the number of surface sites N, . This num-
ber can be estimated to scale as

1
g~ ——lnN (14)

which is a simple enough result to hope that it can be de-
rived analytically.

IV. CENTER-OF-MASS MOTION
IN CxROWING CLUSTERS

As we have seen in the preceding sections, growing
clusters are characterized by quantities like the radius of
gyration, the average deposition radius, etc., which are de-
fined with respect to the center of mass of the system. A
natural question one might ask is why bother following
the motion of the center of mass instead of defining the
same quantities with respect to the seed (N= 1) particle.
In this section we try to answer this question by showing
that the position of the center of mass fluctuates strongly
for clusters of low fractal dimensionality and that these
fluctuations might dominate the scaling properties of
quantities like the width of the active zone, thus resulting
in incorrect exponent estimates. For DLA we also present
evidence that the motion of the center of mass is sensitive
to the boundary conditions used in actual Monte Carlo
simulations.

The importance of separating the center-of-mass
motion can be seen in the case of the d =1 Eden model
which is the d =1 version of the DLA as well. A seed
particle is placed at the origin and then particles are ran-

thus, for d =2, our calculations yield N, -N lnN com-
pared to previous reports of N, -N (Refs. 3 and 31)
and N, -N (Ref. 43). The only discrepancy is with
the estimates of the width of the surface layer through the
density profile of the clusters. ' Clusters of size N &400
were studied in Ref. 31 and g&-N', i.e., v=v was ob-
tained for d=2 and 3. We can attribute this discrepan-
cy only to the fact that in the particular way g& is calcu-
lated in Ref. 31, it is easy to pick up contributions which
are of the order rz-N'

Apart from decreased accuracy, the results for d =3 are
quite similar (Fig. 5) to those of the d =2 case. As can be
seen from Table II, correction to scaling terms other than
the constant B are important in the range 100&N &4000
since v= —,

' is not obtained with good accuracy and the
values of the amplitude A are also off the "space-filling"
predictions A =(3/4ir)'~ =0.62 for r& and
A =( —, )' (3/4ir)'~ =0.48 for R~. It is remarkable,
however, that if v is fixed at —,

' then the optimal value of
A is close to these predictions for both r~ and Rg(N)
(A=0.64 and A 0.51, respectively).

The data for g~ can be equally well fit by g~ AN +8——
0 07—0.05 A 8 2'7+8.0) or by $z ——A(lnN) +8

(a =1.4+0.5, A =0.11+o~, 8=0.1+1.0). The equality
3 = —B in the power-law fit, however indicates that, as in
d=2, gz-InN. This indication is further supported by
the fact that if one sets cr= 1 in the logarithmic fit, then
the best value of A is 0.31 which is close to the value
A = —,

' expected if the relationship g~-lnr~ is valid for
any dimension. Hence, on the basis of the d=2 and 3
data, one might suspect that the large-N behavior of g~ is
given by
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domly added on the left or right at the unoccupied lattice
sites neighboring the existing cluster. The behavior of the
resulting cluster is quite simple and can be calculated ex-
actly. The Nth particle is placed at a distance N/2 from
the center of mass in units of the lattice constant; thus
r)v N/——2 and we have the obvious result v=1/d=1.
Since there are no fluctuations in the deposition radius,
g)v ——0 and consequently V= —oo, or, if the sharp boun-
dary is interpreted as a surface of width of a lattice con-
stant, then g'&-1 and V=O.

We show now that if r~ and g~ are defined with
respect to the seed particle, then the value of v is altered
to v= —,

' reflecting the random walk of the center of mass
of the cluster. To do this we calculate probability that the
Nth particle is deposited at a distance I (1&1&N —1)
from the origin. The calculation consists of enumerating
the number of ways N 2par—ticles can be deposited
around the origin so that one of the end particles is at a
distance l —1. This number then has to be multiplied by
2 ' ' because every configuration is equiprobable. The
result is the binomial distribution

P(I,N) = ( —,
' )+N —2!

(I—1)!(N—1 —I )!
(15)

which in the large-I and -N limit becomes the Gaussian
distribution

P(l N)
1 (i r~) /2—g~-

v'2m/)v

with r)v
——N/2 and g)v VN/2 im——plying v= 1 as before

but V= T', different from the previous result. It is clear
that the divergence of g)v is entirely an artifact due to the
uncertainty of the center of mass of the cluster. Indeed
the change in the center of mass in the ¹hstep of the
process is

x, (N) —x, (N —1)=Ax, (N)= —[x)v x, (N 1)],— —1

(19)

N

r, (N)= g br, (i) (20)

and since we assume

(4r, (i)b, ,(j)),„=([&r,(')] ),„5J,
we obtain

N
( 2(N)) y ([g ( )]2) y i2/D —2 N2/D —I

(21)

Hence the magnitude of r, (N) scales as

(N) ( 2(N) ) i/2 N(2 D)/2D—

(22)

(23)

It follows from this formula that the uncertainty in the
position of the center of mass becomes unbounded in the
limit N~ ~ if D &2. This result is in agreement with
the general expectation that the long wavelength fluctua-
tions are more important in low-dimensional systems. It
also follows from Eq. (22) that if v&(2 —D)/2D then
correct estimates of V can be obtained only after the
separation of the center-of-mass motion.

For the Eden model, Eq. (23) predicts r, (N)-N'/,
r, (N) -N (logarithmic singularity), and r, (N) —const
+aN '/ for 1=1,2, 3, respectively. The result for 1=1

where used the fact that
~
r& r, (—N 1)—

~
is the deposi-

tion radius of the Nth particle. Since r, (N) can be writ-
ten as

where x~ is the coordinate of the ¹hparticle while
x, (N) is the coordinate of the center of mass after N par-
ticles have been deposited. Since x)v x, (N 1)=—+ —,, —
we have b,x, (N) =+—,', i.e., the center of mass executes a
random motion with step size —,'. So, after N steps the
uncertainty of its position is v'N/2 which is just g)v as
obtained previously.

It is clear now that the separation of the center-of-mass
motion in d =1 is essential in revealing the true nature of
the surface of the cluster. In order to have an idea about
the situation in higher dimensions we shall estimate the
uncertainty of the center of mass assuming that its motion
is a random walk but the step size is changing as the clus-
ter is built. Let r, (N) = g+ i r;/N be the position of the
center of mass after N particles have been deposited
where r; is the position of the ith particle. The change of
r, when the Nth particle is added can be written as

100 1000
N

5000

r, (N) —r, (N —1)=dr, (N)= —[r)v —r, (N —1)].1

N

The average magnitude of this vector is estimated to be

FIG. 6. Displacement of the center of mass r, (X) for two-
and three-dimensional Eden models. The solid curves
are r, (X)=0.075(in%) +0.86 for d =2, and r, (N)
=0.29(in%) ' +0.55 for d =3.
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Au=0 (24)

agrees with the exact calculation and the d =2 Monte
Carlo data (Fig. 6) are also best fit by the expected func-
tional form r, (N) =Aln N+B with o =1.5+0.1,
A =0.89+0.05, and B=0.07+0.02. It is harder to
analyze the d=3 data (Fig. 6) since the predicted ex-
ponent ——,

' comes from the next to leading term and also
because this exponent is small. Actually, the best fit is
again obtained by assuming a logarithmic singularity [Eq.
(10)] with o'=0.6+0.2, 2 =0.3+0.2, and B=O.5+0.3.
Fits of similar quality can be obtained, however, by using
the form r, (N)-const+aN with —0. 1 &o & —0.03.
We believe that in d=3, the range of N (100&N &4000)
is too small and the fluctuations in the data points are too
large for a full three-parameter fit in order to extract the
next to leading term.

In the case of DLA, Eq. (23) predicts
r, (N)-N ' (d=2) and r, (N)-const+aN ' (d=3).
Thus the motion of the center of mass does not seem to be
an important matter since, as our Monte Carlo simulation
indicates, g~ -N in d =2 and g'~ -N in d =3.
There is, however, another effect resulting from the par-
ticular way the Monte Carlo simulations are executed
which make the examination of r, (N) relevant. One of
the problems with the computer simulations of DLA is
that the particle launched at a distance R; from the seed
particle sometimes wanders so far away that it is imprac-
tical to wait until it returns. Instead, the particle is des-
troyed if its distance from the seed particle becomes
greater than Ro and a new particle is launched at a dis-
tance R;. In actual calculations, R; is usually taken to be
somewhat larger than the radius of the cluster; thus R;
varies as the cluster grows, but Rp/R;=a is kept con-
stant. As we shall show below, the scaling behavior of
r, (N) is critically dependent on this ratio a =Rp/R;.

In order to understand the physical basis for this depen-
dence, we remember that in DLA one actually solves the
problem of crystal growth into a supercooled liquid under
the condition that the surface tension of the crystal is
zero. Mathematically this means that one solves the La-
place equation for the appropriately scaled temperature
field u:

o

x.(N)

walls at finite distance, we shall consider the d =1 case
which can be solved exactly even in the case when the
walls are moved as is done in Monte Carlo simulations.

The solution of the Laplace equation in d = 1 is
u =px+q. The constants p and q are determined from
the boundary conditions u(+Rp)=0, u(x, +rp)=up (see
Fig. 7). From these conditions one obtains

p+ ——up/(x +7'p Rp) for the region x, +rp&x &Rp
while p =up/(x, +rp —Rp) for —Rp &x &x, rp. —
Since the probability of growth is proportional to

~

Vu
~

=
~
p+ ~

we have for the probability P+ of the clus-
ter growing in the + or —direction

xc1

2(Rp —rp)
(25)

If a particle is added on the right- or left-hand side of
the cluster then the change of x, is given by

rp(N)+ 1
x, (N+ 1)—x, (N) =+

%+1
and so the average shift of x, can be expressed as

(26)

5x, (N') =(P+ —P )
rp(N)+ 1

%+1

(27)
x, (N) [rp(N) + 1]

(N+ 1)[Rp—rp(N)]

Thus if we use the fact that Rp ——aR; =c7rp(N) then in the
large X limit we obtain

5x, (N)

x (N) (g 1)N
'

ro(N) = N/2

FIG. 7. Small one-dimensional DLA or Eden cluster with
center of mass at x,(X) and seed at x =O. The discard distance
Ro ——2(x, +ro) in this case.

with the boundary conditions (AG denotes aggregate sur-
face)

yielding

x, (N)-N'" -". (29)

Q Ao = tl p, Q ( P = ao ) =0,
where uo is proportional to the degree of supercooling at
r = Oo. Having solved this problem, the relative probabili-
ty of growth at different surface sites is obtained from the
ratio of

~

Vu
~

at those sites. Now, the simulation pro-
cedure that the paiticle is thrown away if r &Rp corre-
sponds to the boundary condition u(r =Rp) =0 instead of
u(r = oo )=0. Thus crystal growth takes place in a spher-
ical container instead of the infinite medium. As a result,
the center-of-mass coordinate ceases to be a marginal vari-
able. Once fluctuations move the center of mass off the
origin, the crystal will grow preferentially in the direction
of the displacement since the walls are closer and conse-
quently the temperature gradient is larger in that direc-
tion. To have a quantitative estimate of the effect of

Actually, since R; is usually taken to be =rp(N), a=a
and the ratio Rp/R; determines the scaling of x, (N). We
believe this feature to be pertinent to higher dimensions as
well. In Fig. 8 we display r, (N) for the d =2 and 3 case
and can definitely see the effect of varying a, the general
trend being that the scaling exponent of r, (N) decreases
as a is increased and in general r, (N) is smaller for larger
a reflecting the fact that the "effective force" acting on
the center of mass is smaller if the walls are farther away.

V. CONCLUSION

We have studied, in this article, the surface properties
of growing clusters in two distinct growth models, the
Eden model and diffusion-limited aggregation. For DLA
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5-

DLA

100 1000
I

2000

FIG. 8. Displacement of the center of mass r, (X) as a func-
tion of X for DLA in d=2 and 3. The points are for fixed

lp =8 in both cases. For d =2 the squares are the results for
a=2, the crosses for o;=3, and the circles for a=4. In d=3.
the squares correspond to a =2, the crosses to n =3, and the cir-
cles to a =5. The solid curve 'in d =2 is the line

r, (X)=0.758+0.242K while in d =3 it is r, (X)
= —0.158+0.915K '

we have documented the existence of a second diverging
length scale g~ -N" with 7 & v= I/D for d =2 and 3, dis-
tinct from the length r~ which characterizes the size of
the cluster. In the Eden process the width of the surface
layer also diverges g~-(InN) and our simulations indi-
cate that the correct functional form may be
g& -(1/d )lnN. Both of these results should be investigat-
ed further by studying larger clusters and, in the case of
DLA, by varying the growth parameters a and lo.

We have also found that in both models P(r, N) is ex-
tremely well represented by a Gaussian function (1). This
immediately suggests the possibility of inverting the
present approach. Instead of generating clusters and cal-
culating P(r, N) one can postulate Eq. (1) and simulate
growth through this probability density. One then has the
freedom to choose v, as well as the other parameters
which determine g~. In this way it may be possible to
identify the way the properties of the frozen structure are
affected by the scaling properties of the surface layer.

Finally, we mention that some of the other models
which have been extensively studied in recent years may
have striking surface properties. In particular the tip-
priority model" seems to give rise to a surface layer
which varies as the tip-priority factor is changed. It
would be interesting to investigate whether the exponent V

in this case varies continuously as a function of the priori-
ty factor or whether there are competing fixed points and
the apparent continuous variation" is merely a manifesta-
tion of a type of crossover phenomenon familiar from
equilibrium critical phenomena.
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