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Chemical potential by gradual insertion of a particle in Monte Carlo simulation
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The chemical potential of a fluid can be determined in a Monte Carlo simulation by gradually
turning on or off the interaction of one particle with the other particles. This method, which can be

employed at densities where a direct use of the Widom formula is impractical, has been tested on a
two-dimensional fluid of particles with a Lennard-Jones pair interaction.

I. INTRODUCTION

In this paper we study a method for determining the
chemical potential in a fluid using Monte Carlo simula-
tion through the gmdual insertion of a new particle or
deletion of a particle already present. The basic idea of
slowly turning on or off the interaction between one parti-
cle and the rest has been used previously by Squire and
Hoover, ' and Mruzik et a/. in a slightly' different con-
text. As applied to chemical potentials it is in effect a
variation of the umbrella sampling method used by Shing
and Gubbins, and should be useful at high densities
where poor statistics render a direct use of the Widom
and the de Oliveira and Shing formulas impractical. An
application of the basic formulas of Sec. II to a two-
dimensional Lennard-Jones fluid is given in Sec. III, fol-
lowed in Sec. IV by a discussion of advantages and disad-
vantages of this approach.

where p= I /kz T and the ensemble averages ( ) are de-
fined later in (2.8). Note that (2.4) refers to an ensemble
of X atoms in which the %+1 atom is inserted "at ran-
dom, " whereas in (2.5), the %+1 atom, which is in effect
being deleted, has its position correlated with those of the
other atoms through the potential energy U&+1.

Both formulas (2.4) and (2.5) can be used to calculate p
by Monte Carlo simulation at low densities, but both fail
at higher densities in fluids of strongly repulsive mole-
cules (hard spheres, Lennard-Jones, etc.) because the aver-
age of exp( —P'Il) for (2.4) or exp(P%') for (2.5) is much
larger than the most probable value in the ensemble in
question, and hence the simulation provides poor statistics
for estimating the average. This effect was discussed by
Shing and Gubbins, who also proposed strategies for get-
ting around the difficulty.

Our procedure of gradual insertion or deletion depends
on introducing a set of "weakened" increments
0(A, (1,with

II. FORMULAS FOR CHEMICAL POTENTIAL p=0 (2 6)

Let U~ be the potential energy of a set of X identical
particles located at the points rl, r~. . . , r&, and let

rl ' rS+1) US+1(rl rN+ I)
(2.1)

be the increment in potential energy upon adding an addi-
tional particle at the position r&+&. If Uz is given by a
pair potential @,

In particular in the case of pair interactions one can intro-
duce a "weakened" N~, with @p——0 and +1——4, and let

(2.7)

We let ( )z+~ be an average with respect to an ensemble
in which the N + 1 particle interacts with the remainder
through the weakened potential:

U~ ——g Q@(~r;—rj~), (2.2)

—~~ U~+~~~(0)&+~= J dr& ' ' dr&+~0e /
—p( U~+4&)

~ ~ ~ (2.8)

(2.3)

where 0 is any function of r&, . . . , rz+&. Note that A, =O
and A, =1 correspond to ensembles of % and N+1 parti-
cles, respectively,

Let us choose a finite set of values

Let p be the chemical potential of the fluid minus that
of an ideal gas at the same density and temperature. Then
whether or not (2.2) holds it can be shown that"' ' for A, and define

(2.9)

e ~"= (e ~)
ePy (eW)

(2.4)

(2.5)

(2.10)

Then in analogy with (2.4) and (2.5), we define bpj as
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e '=(e ')~+~ =1/(e ')~+~, , (2.11)

whence it follows that
M —1

P= g ~Pj
j=O

(2.12)

(2.15)

for x =5+J in the ensembles which precede and follow
this partial insertion; here 5 denotes the Dirac delta func-
tion. They are related by

Php-
gj(x) =e 'f~(x)e

which means that

e "' =g~(b, %; )e '/f~(b, +J.),

(2.16)

(2.17)

independent of bÃJ. . The right-hand side of (2.17) can be
evaluated for various values of b, %'~ to obtain estimates
for b pj. The utility of this approach has been pointed out
by Shing and Gubbins in the case in which a particle is in-
serted in a single step [M = 1 in (2.9)], and it has the same
advantages in the case of partial insertions.

The preceding formulas are easily generalized to the
case in which J & 1 particles are simultaneously added to
or deleted from the fluid. For example, when J=2, (2.1)
is replaced by

and (2.4) by

Ux(rt ~ ~ re ) (2.18)

That is to say, the total chemical potential is a sum of in-
cr'ements, each amounting to a relatively small change
(2.10) in the potential energy of interaction of the %+1
particle with the remainder. Note that (2.12) is exact,
whatever the choice of M. Letting A, vary continuously,
one obtains the formula

p= I (d%'g/dA, )~+gdA. (2.13)

by expanding the exponentials in (2.11) to lowest order
and replacing the sum in (2.12) by an integral. Equation
(2.13), of which a special case is in Hill s book, has the
simple intuitive interpretation that the chemical potential
is the work required to reversibly insert an additional par-
ticle. Analogous expressions are found in Refs. 1 and 2.

Instead of, or in addition to using the averages in (2.11),
one can, following Shing and Grubbins, introduce proba-
bility densities

(2.14)

be sure, in a system of finite size one expects formulas
such as (2.4) to give results which deviate somewhat from
the values in the thermodynamic (N +a—o) limit. There is
no reason to expect that these "finite size corrections" will
be more severe in a constant pressure than in a constant
volume ensemble, and the former may actually be prefer-
able, in particular if two or more particles are added or
deleted simultaneously.

III. APPLICATION TO A TWO-DIMENSIONAL FLUID

%'e have studied various ways of implementing the gra-
dual insertion and/or deletion formulas of Sec. II in a
Monte Carlo simulation of a two-dimensional fluid of
particles interacting through a Lennard-Jones 6-12 pair
potential

(3.1)

The potential is cut off at r =2cr and the energy is
corrected for the tail in the standard way by assuming the
pair correlation g (r) is 1 for r & 2o. We have used a re-
duced temperature T*=1 (i.e., e=k~T) and two reduced
densities (particles per unit area, with the latter in units of
o ), p* =0.48 and 0.75.

Our first attempt was based on the use of

(3.2)

in (2.7), with A, increased in a quasicontinuous manner by
equal amounts for each Monte Carlo pass, using (2.13),
approximated by a sum, to evaluate p. This worked very
badly in a dense fluid, presumably because when A, is
small the rapid increase with A, of the effective radius of
the repulsive part of @~, the r at which

I

Ae(o/r)' =k~T, (3.3)

makes the insertion irreversible. Another way of viewing
the problem is that (3.2) leads to a d%'~/dA, which
diverges as the new particle approaches a particle already
present in the fluid, and hence bad sampling statistics for
(2.13).

These difficulties at small A. were reported in Refs. 1

5.0 ~

4«)
kT

2.0 ~

e
—~Pe (e —A') (2.19)

0.0
etc. Note that 4 includes a contribution from the interac-
tion of the J particles among themselves.

%'e have assumed up until now that the ensemble aver-
ages ( ) refer to a constant volume as well as a constant
temperature ensemble. But they are equally valid for a
constant pressure ensemble, and soro.e of the simulations
discussed below in Sec. III refer to such an ensemble. To

FIG. 1. Insertion of a particle using approach II. The solid
curve is the pair potential (schematic), while the broken lines
represent successive stages of the weakened potential Nq (see
text).
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TABLE I. Simulation results at lower density. Asterisk denotes the attractive part of the potential
added in the early stages. (See text. )

N+1
15+ 1

15+ 1

15+ 1

15+ 1

35+ 1

35+ 1

35+ 1

15+ 1

15+ 1

35+ 1

Ensemble

NPT
NPT
NPT
NPT
NPT
NPT
NPT
NVT
NVT
NVT

p Sic

0.525
0.525
0.525
0.525
0.525
0.525
0.525
0.51
0.51
0.52

0.45+0.03
0.45+0.03
0.45+0.03
0.45+0.03
0.47+0.02
0.47+0.02
0.47+0.02
0.465
0.465
0.477

Method'

I, A, ins.
I, B

II, A, ins.
II, C, ins.
I, A, ins.

I, B
I, B

I, A, ins.
I, B

I, A, ins.

Number of
stages

5
2
5

101
6
3
2
3
3
4

—0.139+0.12
—0.09 +0.12
—0.212+0.16
—0.014+0.05
—0.075+0. 13
—0.19 +0.25
—0.18 +0.3
—0.23 +0. 1

—0.206+0. 1

—0.199+0.2

0.525
0.5033

0.48
0.47

—0.1468
—0.1714

Method. I and II refer to the two sequences for inserting (ins. ) or deleting (del. ) a particle and A, 8, C
to the different methods of calculating the chemical potential indicated in the text.
Thermodynamic integration using the results of Ref. 7.

and 2, which also give strategies for dealing with the
problem. We ourselves used two somewhat different ap-
proaches. The first, designated I, consists of "growing"
the new particle by successive increments of both cr and e.
For example, the sequence (e~,o ~) given by (0,0),
(10,0.2), (0.4, 1.), (0.6, 1.), and (1,1), expressed as frac-
tions of the (full strength) e and cr in (3.1), was employed
successfully at the higher density (see the last simulation
result in Table I). A certain amount of experimentation
was necessary to determine appropriate e~ and o.~ values.

An alternative approach, hereafter designated by II,
consists of replacing the divergent repulsive part of the
pair potential by a finite approximation, Fig. 1, which
rises in steps. For small A, , N~ has the form indicated by
the successive dotted lines and is zero for r &o. Once
@~(0) reaches k~T, further increments lead to the "tree
stump" shape indicated by the dashed lines. This contin-
ues until @~ is identical to 4& for those r & a at which the

latter is less than, say 8k~T, at which point further in-
creases have negligible effect. The negative part of @ for
r ~o. is turned on at the same time as N~(0) increases
from 6 to 7k~ T, although the precise moment is not cru-
cial; the third line in Table I was obtained with the nega-
tive part turned on while N~(0) increased from 1 to 2k& T.
In the case of quasicontinuous insertion of the particle
(100 or more steps), N~ is gradually lowered for o & r &2
in the manner suggested by the line of plusses in Fig. 1, at
the same time as @~(0) is increasing from 6 to 7k+T. A
variant of this approach in which the positive part of 4~
has a flat top—the dotted and dashed lines in Fig. 1 are
horizontal rather than slanted did not work quite as
well, as the system tended to stay in a metastable configu-
ration.

We employed three methods for evaluating p corre-
sponding to Eqs. (2.11), (2.17), and (2.13), respectively,
and hereafter denoted as simple ensemble average (A), ra-

TABLE II. Simulation results at higher density.

35+ 1

15+ I
15+ I
15+ 1

15+ 1

35+ 1

35+ 1

Ensemble

NPT
NVT
NVT
NVT
NVT
NVT
NVT

Pg

2.388
2.8
2.8
2.8
2.8
2.5
2.5

0.75+0.005
0.775
0.775
0.775
0.775
0.76
0.76

Method'

I,- A, ins.
II, A, ins.
II, A, del.
II, C, ins.
II, C, del.

I, 8
I, A, ins.

Number of
stages

3
6
6

130
180
3
3

2.77+0.7
2.37+0.3
2.41+0.17
2.6 +0. 1

2.48 +0.25
2.0 +0.4
2.27+0.7

b
b
b

2.388
2.57
2.87

0.75
0.76
0.775

2.27
2.5
2.88

'As in Table I.
Thermodynamic integration (as in Table I).
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tio of distributions of b,f (B), and continuous insertion
(C). Both constant area ("volume" ) and constant pressure
ensembles, denoted NVT and NI'T, were employed with
two different numbers of particles: 15+ 1 and 35+ 1.
For insertions using a small number of steps, on the order
of 12000 passes after reaching equilibrium were used for
averaging for each stage. In the case of quasicontinuous
insertions or deletions, employing 100 or more stages, we
used 600 passes per stage and did not wait for the system
to reach equilibrium after a small increment (or decre-
ment) in the potential before beginning averaging.

The results for the two densities are given in Tables I
and II. Here p* denotes the average density in our NPT
ensemble, and N + —,

' divided by the area for the NVT en-

semble. The pressure in appropriate dimensionless units
is I'; for the NVT ensemble it is the mean of the values
for N and N+1 particles. The number of stages is the
integer M in (2.9), so that a direct use of (2.4) or (2.5) cor-
responds to a 1 stage insertion or deletion. In the ratio
method (B) we actually carried out a simulation for M + 1

stages includirig the "pure" N and N + 1 particle systems.
The error estimates for method (A) were obtained from
standard block averages (5 to 10 blacks) and those for (B)
by comparison of the ratios obtained for different values
of 5+J. For (C) the error estimates were obtained by re-
peating the procedure four or five times and comparing
the results. In methods (A) and (C) one uses a different
sequence of steps to obtain p depending on whether the
particle is inserted or deleted, so we have noted which was
the case for the examples in Tables I and II.

Generally speaking, the results obtained by different
methods of gradual insertion are consistent with one
another within the (rough) error estimates and also con-
sistent with values obtained from thermodynamic integra-
tion of the isotherm of Barker et al. as indicated at the
bottom of each table.

ing physical insight about the intermediate ("biased" )

probability distributions which are sampled. However,
there remains a practical question about whether gradual
insertion/deletion is actually more economical in comput-
er time than alternative techniques, and it is at this point
that we should note some disadvantages of the method.

First, as noted by Shing and Gubbins, there are practi-
cal advantages to methods in which one only has to simu-
late a homogeneous fluid of identical particles, in which
"test particles" if present have no influence on the motion
of other particles, as one can be coll'ecting other interest-
ing statistical data on the fluid (pressure, energy, etc.) us-
ing the same configurations employed for determining the
chemical potential. This advantage disappears as soon as
one goes to umbrella sampling, of which gradual insertion
and/or deletion is a particular form.

In addition, the fact that one particle differs from the
rest and that one is evaluating averages associated with
this unique particle means that a longer run (total number
of passes) is needed to obtain good statistics than if one
were calculating some average in which all the particles
entered in a symmetrical way. One way of improving the
efficiency is to gradually insert several particles rather
than just one. However, such a procedure must be used
with caution, since there may be important effects from
particles with weakened potentials colliding with each
other and then drifting apart. Whereas such effects are of
course included in principle in the ensemble averages and
thus part of the "right answer, " one can well imagine
them giving rise to serious fluctuations in practice.

One can, to be sure, treat all of the particles as identical
provided all of the interactions are simultaneously turned
on or off at the same rate. Such a procedure is effectively
another way of obtaining the chemical potential by "ther-
modynamic integration, " analogous to starting with a low
density gas and integrating

IV. CONCLUSION

The results in Sec. III indicate that the gradual inser-
tion and/or deletion procedure can actually be made to
work in a high-density situation in which the direct use of
formulas (2.4) and (2.5) is impractical. To be sure, the ac-
tual series of intermediate steps must be chosen with some
care and "experimentation, " as seems to be true of the al-
ternative umbrella sampling method of Shing and Gub-
bins. We believe that the method of inserting a particle
with a weakened potential has some advantage in provid-

along an isotherm. What this suggests is that the gradual
insertion or deletion of a single particle may well be cost
effective in computer time only in situations in which
thermodynamic integration is impractical.
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