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Solitons in weakly nonlinear electron-positron plasmas and pulsar microstructures
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The propagation of electromagnetic waves in weakly nonlinear, relativistic electron-positron plas-
mas is investigated. It is shown that the resulting waves can have a solitonic envelope, both for
linearly and circularly polarized waves. A dispersion relation is derived, and the results for the
linearly polarized case are used to check a recent suggestion of possible self-rnodulational formation
of pulsar microstructure.

I. INTRODUCTION

In a recent paper, Chian and Kennel' (hereafter referred
to as CK) propose an interesting mechanism to explain
the ultrashort intensity variations within individual pulses
in pulsar radio emission (Cordes; see also the paper by
CK for further details).

In the model of CK nonlinearities arising from wave-
intensity-induced particle-mass variation may excite a
modulational instability of circularly and linearly polar-
ized pulsar radiation: The result is a modulating solitonic
envelope on a high-frequency carrier wave and the mi-
crostructure analysis shows that the number N of micro-
pulses within an individual pulse and the temporal pulse
width r are within the observed ranges (N —10'—10,
r-1 @sec) provided that the emission takes place in re-
gions of "low" particle density (plasma frequency co&

much less than wave frequency).
The paper by CK is a contribution in favor of "tem-

poral models" of pulse microstructure as opposed to
"beaming models. " The reader is referred to the paper by
CK for a detailed discussion of the arguments above and
below; we shall only report, from the paper by CK, what
is- necessary in order to understand the present paper,
which is organized as follows: In Sec. II we show that the
calculation by CK is not, in our opinion, fully consistent.
In particular, (a) their solitonic solution for circularly po-
larized waves is not in complete agreement with a similar
solution recently proposed by us (Mofiz et al. ); (b) for
linearly polarized waves, in their case of constant stream-
ing velocity, there is no solitonic solution.

In Sec. III we show that there is a solitonic solution, in
the general case of streaming velocity not constant, both
for circularly and linearly polarized waves. A dispersion
relation for this solution is also derived following the
method of Karpman and Krushkal.

In Sec. IV our solution is used for a discussion of pulsar
microstructures along the lines of the paper by CK: Our
conclusion is that the model is in agreement with observed
quantities ( N, r) but that both cases to/to& && 1 and
cu/co& —1 are possible and hence no conclusion on the
emission region can be reached. Some other aspects of the
present theory, its shortcomings, and future developments
are discussed in the conclusions.

II. SOLITONS IN e+e PLASMAS:
CASE OF CONSTANT STREAMING VELOCITY

Consider an electrotnagnetic (em) wave propagating in a
cold, locally neutral, electron-positron plasma with no
ambient magnetic field: The direction of wave propaga-
tion is taken along the z axis and it is assumed that all
quantities do not depend on x and y but only on z and
time t This s.ystem is described by the two-fluid relativis-
tic equations for the plasma, the wave equation for the
vector potential A and the continuity equation:
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where a refers to p=e+ and e=e, q =+e is the
charge, v the particle velocity, U =P /mc the dimen-
sionless momentum (m is the electron rest mass):

, y.=(1+ ~U. ~')'", (4)

and na is the particle density (nz n, =n for ——the local
neutrality condition).

The "streaming velocity" is the z component of the par-
ticle velocity and, in the above model, it can be shown to
be the same for electrons and positrons. Under the as-
sumption of constant streaming velocity P=u, /c =Po, the
system (1)—(3) has been solved, for the case of a circularly
polarized wave

A(z, t)=a(z, t)(x costot+y sintot)

by CK and by the authors (Mofiz et a/. , hereafter re-
ferred to as I), with the only "initial" difference that CK
work in the particle rest frame (po=0) while we stay in
the laboratory frame.

Under the common assumptions of weak nonlinearity
(

~

a
~

( 1) and slowly time varying modulating amplitude
(t) a/Bt -0), the nonlinear Schrodinger equation (NLS)
is shown to govern the amplitude evolution: The soliton
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is a well-known solution of this equation (see, e.g. , Whit-
ham ).

We refer the reader to the paper by CK and to I for all
the details of the calculation: In the present paper we
wish to comment on the differences in the two results and,
in particular, on the solution of CK for the linearly polar-
ized case that is relevant to pulsar radiation.

First of all, a general remark should be made: The
NLS is not Lorentz invariant and therefore we think that
it is not correct to transform the rest-frame solutions to
the laboratory frame. In order to make final comparisons
with observational data in our opinion it is necessary to
work directly in the laboratory frame in this case. A
second point is that, as shown in I, for Po ——0 (or in the
rest frame) the equation of motion implies that

~

a
~

is
only a function of time, not of z: In this case a(z, t) can-
not be a solution of NLS.

The first conclusion is that, under the stated assump-
tions, there is a solitonic solution for circularly polarized
waves for any constant value (except zero) of the stream-
ing velocity and it has to be worked out in the laboratory
frame. In I it is also shown that this soliton is superlumi-
nous, its phase velocity being V=c/Po. This is another
reason why Po cannot be zero.

For linearly polarized waves the procedure in CK is
essentially the following: A nonlinear dispersion relation
for an electron plasma, as given by Chian and Clemmow,
is generalized to the case of an electron-positron plasma
and the governing equation for the wave amplitude is de-
rived using the (inverse) Karpman-Krushkal method. The
result is NLS again, hence the conclusion that a solitonic
solution exists also for the linearly polarized case.

The fault in this procedure, in our opinion, is that when
the Karpman-Krushkal method is used and an equation
derived from a dispersion relation, it is also necessary to
check consistency with the remaining equations or as-
sumptions of the model: In fact, we think that for a
linearly polarized wave, in the case of constant streaming
velocity (whether it is zero or not), there is no solitonic
solution since the NLS in this case is not consistent with
the equation of motion. To show this we recall here (from
I) some of the steps in the solution of Eqs. (1)—(3); these
will also be necessary for the general solution in the next
section.

The equation of motion can be separated into a longitu-
dinal (z) and a transverse (x,y) equation and the last one
can be immediately integrated to

eral) in terms of streaming motion (P) and vector poten-
tial.

The longitudinal component of the equation of motion
can be written in the form
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For a linearly polarized wave A=(A, O, O) in the case of
P=PO, Eq. (9) implies

t (for Po&0),

A =A (t) (for Po ——0 or in the rest frame) .
(10)

III. SOLITONS IN e+e PLASMAS:
GENERAL CASE

In this section we give a solution for the system (1)—(3)
describing an em wave propagating in a neutral electron-
positron plasma. The transverse particle motion has al-
ready been solved in Eqs. (6)—(8). It is possible to have
the same analytical description for the case of a linearly
polarized wave (LP) and of a circularly polarized wave
(CP) introducing the real (complex) dimensionless quanti-
ty

Also for P=Po we have n =no ——const from the equation
of continuity and a choice of initial value n(t =0)=no
(see I), y=y(A ) from (7) and v=v(A ) from (8).

The consequences are as follows.
(i) The wave can no longer be written as a modulating

amplitude on a carrier high-frequency wave (co).
(ii) The wave equation can be shown to have periodic

solutions (elliptic functions for Po&0, plane waves for
Po——0) but no localized solutions.

(iii) For Po ——0 (or in the rest frame), A =A(t): This
could still be written in the form a(t)cosset but of course
the time-dependent amplitude would not satisfy a NLS.

We can then draw our second conclusion: There is no
solitonic solution, in the stated assumptions, for linearly
polarized waves when the particle streaming velocity is a
constant. In the next section we show that such a solution
exists when the P= Po assumption is removed.
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Taking into account the transverse solution (7) and (8) to
express the current J, the wave equation in terms of A
takes the form
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The transverse particle motion is therefore solved (in gen- where no is a constant (background) density and
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' 1/2
Sm.e

np (13)

(I is the rest mass) is the plasma frequency for an e+e
plasma.

The (real or complex) wave equation (12) has to be
solved with the remaining equations: Continuity,

2 2c4z 2 n

Mp
2
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(19b)

P(z, t) =g(z)+@(t), P„P, constants .

Eq. (19a) gives the condition

P P

In the linear-phase approximation (see, e.g., Yu et al. ):
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and longitudinal motion that can be written as
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We look for a solution in the form of a space- and time-
dependent amplitude modulation on a (high-frequency co)

carrier plane wave:

2 (z, t) =a(z, t)e (16)

r

. 25 c 2i a+ 2a~+ 5—
Np COP

Writing down

n p'j/'

Q7a=0 5=
COp

(17)

a(z, t) =cr(z, t)e'~"", cr, P real

where the real part of the solution will be taken for the
case of linear polarization.

Under the assumption (1/to)a«-0 the wave equation
gives

Then from Eqs. (19b) and (7) also y, P, and n are func-
tions of g: The continuity equation can then be integrated
to give

n(g) p
np V —P(g)

' (22)

y(g)[VP(g) —1]=I, I constant . (23)

Since we are looking for localized solutions we can evalu-
ate the constants I", p making use of the conditions

Ia I
(/~+Do)=0, P(g~+ao)=Po, n(g~+oo)=no,

where pp, np are to be taken as background (initial) con-
stant values; then we have

1y(g~ 00 ) 2 ~y2 ypp2) I/2 (24)

Taking the limits g'~+ ao in Eqs. (22) and (23) we have

where p is a constant and V—= Vp/c. A constant of
motion can also immediately be found in this case from
the equation of motion (15): This is integrated once to
give

from (17) we have the two equations:
'

2

o + (P,cr )=0,
Bt co Bz

(19a)

i2= V Po I =yo—(VPo —1) . (25)

Eliminating p(g') between (7) and (23) we can write y as a
function of the amplitude:

I + V(I'+ V' —1)'"f1+(V'—1)/(I '+ V' —1)
I
a I']' '

y=
V —1

where the sign has been chosen for the case of a superluminous ( V ~ 1) solution.
Making use of (25) and expanding the square root for the weakly nonlinear case
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We can now evaluate the term ( n/noy) from Eqs. (27)—(29) and substitute in Eq. (17) for the complex amplitude a to
get

2

ia+ a + 5—1 V —1 JaI
yo2«-po)2 2y.
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If the linear term is removed with the substitution A well-known solution of (31) is the soliton (Whitham ):

+=ac' ', R= 5—
25 y0

(30)
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ap(z —Vpt) e ' ' (33)

the equation for a is the nonlinear Schrodinger equation
with

ia, +Pa +Qa
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(32) The solution for the wave is then

2 2
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(34)

A.
' A(z, t) =vpsech

1/2
Q x cos6(z, t) for LP

vo z —Vot
[x cos6(z, t)+y sin6(z, t)] for CP, (35)

where v0=k c40 is the dimensionless amplitude and the
amplitude-dependent phase 6(z, t) is given by

2

6(z, t)= z — —,(1+V )co+
mV ~ 2 ~p

C 2CO g0
2 2

v0 t.
4~ 2yo(V —/3p)

(36)

These solutions have wave envelopes in the form of wave
trains of solitons, both for circularly and linearly polar-
ized waves, and this is the first requirement to account for
the structure of pulsar radiation.

A dispersion relation for the present weakly nonlinear
case can be obtained with the Karpman-Krushkal
method:
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Two cases are possible (for V-1): (a) Large initial (back-
ground) particle energy pp && 1(Pp 1):

1 Bco
co=co(k, vp)& P =

~ Q2 Bk
(37) (b) Low initial particle energy yp' 1 (pp && 1):

where P and Q are given by Eq. (32). The result is

2 2 2 2 2 V 1 2
2
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both for circularly and linearly polarized waves: A result
of the present analysis is that there is no difference in the
dispersion relation for the two cases.

IV. PULSAR MICROSTRUCTURE

The requirement for self-modulational formation of mi-
crostructures is occurrence of modulational instability:
This can be seen to occur for PQ & 0 (see the paper by
CK) and in our case this condition is satisfied for the
chosen superluminous solution ( V & 1).

Now we can estimate the number X of micropulses
within a si.ngle pulse and the pulse temporal width ~:
these are given by

1/2 1/2
2P 1 k 2P 1

V (39)
Q vp 2m' Q vp

Taking P and Q from Eq. (32) and the wave number k
from Eq. (38) we have

&—(~p vo)
CO ]

cOp v0
(43)

V. CONCLUSIONS

We have shown that self-modulational formation of
pulse microstructures, as suggested by Chian and Kennel, '

If the emission takes place in regions where (see CK)
y0-10, co-cop —10 sec ', the first case would give

X-10 V0,~-10 v0
' sec (44)

which are too high even for vo- l.
In the second case, however, the values are in the ac-

ceptable range both for Iolcop »1 (vp-10 ' —10 ) and
~/~p-1(vo-10-3 —10-2) which are still reasonable
values in the pulsar magnetosphere. The conclusion of
CK is therefore correct (emission in low-density regions)
for moderately large amplitudes but the opposite con-
clusion can also be valid for weak amplitudes. In any case
the initial (background) particle energy should be small
for the model to agree with observed pulse characteristics.
Another conclusion or prediction of the present theory, in
agreement with CK, is that micropulses of higher intensi-
ty have narrower pulse widths [see Eq. (43)] as suggested
by Ferguson.
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is possible in electron-positron plasmas in pulsar magneto-
spheres: A consistent calculation of circularly and linear-
ly polarized electromagnetic waves propagating in a neu-
tral e+e plasma, taking into account the nonlinear ef-
fects of particle-mass variation, results into a wave struc-
ture in the form of a solitonic envelope on a high-
frequency carrier wave. The resulting pulse structure,
number of micropulses within one single pulse, and tern-
poral pulse width, is in agreement with observational data
on pulsar radiation.

A difference with the calculation by CK and Mofiz
et al. is that here the particle density and streaming
velocity are no longer constants: A propagating density
hole is formed and the particle streaming velocity is in-
creased in regions of higher field intensity [Eqs. (28) and
(29)].

The main fault of the present calculation, in its applica-
tion to pulsar radiation, is the absence of an ambient mag-
netic field. In pulsar magnetospheres the dipole field is
estimated in the vicinity of 10' G and a more realistic
check of self-modulational formation of pulse microstruc-
tures should of course take the magnetic field into ac-
count.

ACKNOWLEDGMENTS

One of us (U.A.M. ) thanks the International Center of
Theoretical Physics (ICTP, Trieste) for a grant under the
ICTP Programma for training and research in Italian la-
boratories.

~A. C. L. Chian and C. F. Kennel, Astrophys. Space Sci. 97, 9
(1983).

~J. M. Cordes, Space Sci. Rev. 24, 567 (1979).
U. A. Mofiz, U. de Angelis, and A. Forlani, Plasma. Phys. Con-

trol. Fusion 26, 1099 (,1984).
"V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55,

530 (1968) [Sov. Phys. —JETP 28, 277 (1969)].
5G. B. Whitham, Linear and Ton Linear Waves (Wiley, New

York, 1974), p. 601.
A. C. L. Chian and P. C. Clemmow, J. Plasma Phys. 14, 505

(1975).
7M. Y. Yu, P. K. Shukla, and N. L. Tsintsadze, Phys. Fluids 25,

1049 (1982).
D. C. Ferguson, in Pulsars, edited by W. Sieber and R. Wiele-

binski (Reidel, Dordrecht, 1981).


