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The relation between different thermodynamic ensembles is studied, the finiteness of the systems
being explicitly taken into account. Especially, equilibrium fluctuations of thermodynamic parame-
ters (temperature, pressure, chemical potential) are considered. Several discrepancies occur in the
literature. Interpreting the pressure in a concrete way makes it possible to evaluate the solutions
proposed in the literature. These considerations are then applied to the special case of computer ex-

periments.

I. INTRODUCTION

The statistical physics of small thermodynamic systems
is not as well developed as that of macroscopic systems.
There is no unique solution when generalizing thermo-
dynamic formulas to small systems.! Accordingly, the
literature is divergent. For instance, we consider a small
system in thermal contact with a macroscopic reservoir.
Does the temperature of the small system fluctuate in the
course of time? The answer may be yes® or no.! Also, the
opinion that this question is senseless can be found.> The
meaning of pressure in small systems is controversial.*—®
In the present paper, various opinions occurring in the
literature are compared. It is is investigated how several
discrepancies can be removed and if there exists a best
solution. In any case, phase transitions and critical points
are not considered. Thus, the difference between macro-
scopic systems and the thermodynamic limit can be
neglected throughout the paper. Furthermore, equilibri-
um is considered only, i.e., no systems compatible with a
given ensemble are excluded.

For a start, we consider a macroscopic isolated system
with particle number N, energy E, and volume V. One
kind of particle is considered only. The entropy
Sm(N,E,V)=Ns(E/N,V /N) of the corresponding micro-
canonical ensemble satisfies the differential relation

dS,,=adN+BdE+ydV , (1a)

as,, as,
a= B _|Lm g L _|Pm gy
T ON gy T 0E |y v
as,
7,=_11= _m , P:L:- OFE (1c)
T av N,E B av N,S,,

Boltzmann’s constant is set equal to unity. It is shown in
the literature’ that u, T, and P have the usual meaning of
chemical potential, absolute temperature and pressure,
respectively. N, E, and V are extensive parameters which
are also called mechanical.®> «, B, and v are thermo-
dynamic parameters. As indicated previously, macroscop-
ic systems may be characterized in the following way:
The dependence of the entropy per particle on the system
size (and on the ensemble) can be neglected, s,,(N,E,V)
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=s(E/N,V/N). This means that S,, is extensive, s and
the thermodynamic parameters are intensive. If devia-
tions from this simple behavior cannot be neglected, the
particular system is termed a small system.

The extensive parameters play different roles in a
quantum-mechanical macroscopic system. The volume
(including its shape) is regarded as boundary condition for
the N-particle system. The volume may change continu-
ously, the particle number not in a strict sense, but for a
macroscopic system it may be treated as a continuous pa-
rameter, cf. (1). The solution of the Schrédinger equation
yields eigenstates i with energy E;. These states are per
definition nondegenerate. They are very dense for a mac-
roscopic system so that a smooth probability density
Q(N,E,V) in energy space may be defined. Then the sta-
tistical definition of entropy is !

Sm(N,E,V)=InQ(N,E,V) (2)

for the microcanonical ensemble. Thus, the entropy cor-

_responds to the density of states and is no property of a
single state. First of all, the same is true for its derivatives
a, B, and y. For instance, the temperature 7 = B~ lisa
property of the whole (N, E, V) ensemble. One may think
that the temperature of a single system makes no sense.’
On the other hand, one may associate the ensemble tem-
perz_17ture with each system of the microcanonical ensem-
ble. :

II. VARIOUS ENSEMBLES OF SMALL SYSTEMS

Now we turn to small systems; however, they should
not be very small, i.e., it is again possible to treat N and E
as continuous variables. For an isolated system it is usu-
ally postulated! or argued® that relations (1) and (2) are
still valid. This may be interpreted as a definition of «, 3,
and y in small systems, the mechanical parameters (MP)
being held fixed. For this microcanonical ensemble, the
thermodynamic parameters (TP) are also fixed then, and
no parameters fluctuate at all. Local fluctuations (e.g.,
density fluctuations) are not considered in this paper.

If the small system is in contact with a macroscopic
reservoir, other ensembles result. The total system is
again isolated, and the contact between the two subsys-
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tems is thought to be arbitrarily small. Thus, the small
system may be regarded as a member of a microcanonical
ensemble, but each system with different MP. In the pic-
ture of time evolution, the small system is changing its
MP very slowly, at any time being in internal equilibrium.
If only energy contact is allowed, this results in the canon-
ical ensemble with probability density p, in energy space’

pe(N,E,V)=Q(N,E, Viexp( —B,E)/Q, , (3a)
o=/ o°° dE Q(N, E, V)exp( —B,E) (3b)

for the small system. The additive constant occurring in
energy E is fixed in such a way that E >0 in any case.!
B, refers to the sharp temperature of the macroscopic
reservoir. N and V are fixed. Since the energy distribu-
tion is well defined, cf. (3), this is also the case for the
average of E and its fluctuation. The canonical ensemble
can thus be characterized in two ways:

(N,B,,V) or (NXE),V) . ’ 4)

If particle exchange between the system and the reservoir
is also allowed, it follows that

Pe(N,E,V)=QUN,E,V)exp(—a,N —B,E)/Q, , (5a)
Q,= fo‘” dN fo“’ dE Q(N,E,V)exp(—a,N —B,E)  (5b)

for the corresponding grand canonical ensemble. N and E
fluctuate in a well-defined way, only ¥ being held fixed.
Thus the grand canonical ensemble can be characterized
by

(a,,B,,V) or ({N),(E),V). (6)
Volume exchange (movable piston) instead of particle ex-
change results in the pressure ensemble:

Pp(N,E,V)=Q(N,E,V)exp(—B,E—7,V)/Q; , (7a)
Q,= ["dE [”dV QN,EViexp(—B,E—7,V), (Tb)
the pressure ensemble being characterized by

(N,B,,7,) or (N,XE),(V)) . (8)

For completeness, the corresponding relations are also
stated for the microcanonical ensemble:

pm(N’E’ V)=1 s (9a)

0,.=Q(N,E, V), (9b)
the microcanonical ensemble being characterized by

(N,E,V) . ‘ (10)
The integrals Omn=0m (N,E, V), Q. =Q.(N,[3,,V),

0y =0,(a,,B,,V), and Q,=Q,(N,B,,y,) are called parti-
tion functions of the corresponding ensembles. Other en-
sembles are usually not considered since it is difficult to
imagine ensembles where N and/or V fluctuate but E
remains fixed. If all MP are allowed to fluctuate, diver-
gences occur.!

As can be seen from Egs. (4), (6), (8), and (10), any en-
semble considered may be characterized by the MP of the
corresponding small system. If representation in terms of
fixed parameters is preferred, the fluctuating MP have to

be replaced by the conjugate TP of the reservoir. Up to
now, only the distribution of MP has been treated. To
proceed to the TP, we consider the entropy again. The

statistical definition of entropy S; in ensemble
i (i =m,c,g,p) is given by’
S;={(In(Q/p;)); , (11)

where the angular brackets refer to an average over the
probability function p;. The explicit result for the various
ensembles is

S, =InQ=InQ,, , (12a)
S.= [ dEp.In(Q/p,)=InQ, +B,(E), , (12b)
Se= [ dN [ dEp,n(Q2/p,)

=InQ, +B,(E)e+a,(N), , - (12¢)
S,= [dE [ dVp,In(Q/p,)

=InQ, +B,(E),+7,{V), . (12d)

For simplicity, the angular brackets in (12b)—(12d) will be
left out in the following. Using this notation, the entropy
S; may be expressed in terms of N;, E;, and V; in any en-
semble, cf. (4), (6), (8), and (10). Then, the TP are defined
by’

dS;=a;dN;+pB;dE;+v;dV; , \ (13)
a generalization of (1a) for small systems in the ensemble
i. Inserting (12) yields the simple result that a TP has the

same value as the corresponding parameter of the reser-
voir if the conjugate MP is allowed to fluctuate:

a;=q,: i=g,
Bi:ﬁr: i=c,g,]’ ’ (14)
Yi=vr i=p.

Incidentally, the ensemble theory may be introduced in
a thoroughly other way.” There, from an informational
theoretical concept of entropy in any ensemble, probabili-
ty density p; and entropy S; come out automatically with
a,, B,, v, as formal Lagrangian parameters. The identifi-
cation with thermodynamic quantities is the result of a
second step only.

III. MASSIEU-PLANCK FUNCTIONS

Apart from the entropy, other thermodynamic func-
tions are often considered. They are defined as Legendre
transforms of entropy:

Mr=S;, (15a)
M= ‘BiE#Si_BiEi ’ (15b)
M= —BiJ;=S;—B;E;—;N; , (15¢)
Mf= "‘ﬁiGi":Si_ﬁiEi—'}/iVi . (15d)

F; (free energy), J;, and G; are the well-known thermo-
dynamic potentials, expressed in ensemble i. However,
the more appropriate Massieu-Planck functions' M/ will
be used in the following. The differential relations are
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dM["=a; dN;+B; dE; +v;dV; , (16a)
dMf{=a;dN; —E;dB;+y;dV; , (16b)
dMf=—N;da;—E;dB;+v;dV; , (16¢)
dM{=0;dN;—E;dB;—V;dy; , (16d)

cf. (13) and (15). For example, the independent variables
of M{ are N;, B;, and V;. Since N, 3, and V are the
natural variables for the canonical ensemble, the corre-
sponding Massieu-Planck function is characterized by the
superscript ¢, and so forth.

It is easy to express M; in terms of partition functions
Q;. Combining (12) and (15), it follows that

M!=InQ; . - a7

This simple relationship is here a consequence of the defi-
nition of entropy S;. In Ref. 1, M;=InQ; is introduced as
a basic postulate. M; is the natural Massieu-Planck func-
tion in ensemble i, the other M/ being obtained by rela-
tions (15). Q;=exp(M;), is~m, are Laplace transforms of
Q.., while M/ are Legendre transforms of M;. The dis-
similarity between these types of transformation induces
that a specific Massieu-Planck function is different in dif-
ferent ensembles.! This “inconsistency”® is the reason for
other approaches sometimes found in the literature, see
also Sec. VI. '

There is a further problem when expressing the
Massieu-Planck functions in terms of Q;. The Q; should
be dimensionless so that InQ; can be formed. However,
only Q. and Q, have this property, whereas Q,, has the
dimension (E—1!) and @, the dimension (¥). Since only
differentials d InQ; =Q,” 'dQ; are of physical interest, this
problem seems to be a formal one.! However, there are
also physical implications: In the microcanonical ensem-
ble, the approximation of continuous E leads to the
preceding discrepancy, see also Sec. V. In the pressure en-
semble, there is even a deeper problem.!® Volume ¥V for-
mally comes in as a boundary condition when solving the
Schrodinger equation, while in reality, walls and pistons
are also made of molecules which should be included in
the Schrédinger equation. This is not so evident when the
walls remain fixed. In the pressure ensemble, they are ex-
plicitly not fixed (volume exchange), so that the move of a
piston between the small system and the reservoir should
be taken into account. This has been done in the Born-
Oppenheimer approximation!® with the result

MB(corrected)=In(Q,7,) . (18)

(Qp7,) is dimensionless, the differential dM}(corrected)
remains unchanged compared with the uncorrected
Massieu-Planck function.

IV. FLUCTUATION OF THERMODYNAMIC
PARAMETERS

As mentioned in Sec. II, the MP as well as the TP are
fixed in the microcanonical ensemble. As to the other en-
sembles, at least one MP, i.e., the energy, fluctuates. En-
ergy E varies from system to system in ensemble i,
E;=(E);. Are similar considerations possible for the

TP? Three different opinions can be found in the litera-
ture:

(a) The TP are properties of the whole ensemble. It is
senseless to speak of any fluctuation since no TP can be
associated with a single system.’

(b) Those TP conjugate to fluctuating MP are fixed, the

others fluctuate.!
(c) All TP fluctuate.?!!

As already mentioned, the extension of statistical physics
to small systems is not unique, and it seems that it cannot
be decided if (a), (b), or (c) is the best extension, to say
nothing of truth. We will postpone this question. Now, it

‘will be displayed in which sense fluctuations of TP may

be imagined. For simplicity, we stick to the canonical en-
semble. N,=N and V.=V are fixed, energy E varies
from system to system in the ensémble. A given system
with (N.,E,V,) is thought to belong to a microcanonical
ensemble with the same MP, cf. Sec. II. Then, the TP of
the system are defined by

a=01nQ(N,,E,V,)/0N, , (19a)
B=01InQ(N,,E,V,)/dFE , (19b)
y=3InQN,,E,V,)/3V, , (19¢)

cf. (1) and (2). The average over the canonical ensemble is
given by’

(@)= [ dEap.=dInQ.(N,,B,,V.)/dN. ,  (202)
(B).= [ dE Bp.=8, , (20b)
()= [ dEyp.=3InQ.(N,,B,,V,)/dV. ,  (20c)

cf. (3). However, these considerations are refused by
literature (a) and only accepted for a and y by literature
(b), B, assumed to be fixed since it is conjugate to the fluc-
tuating E, B, =p,. To illuminate the situation, we consid-
er the differential of M{, Eq. (16b):

dMf=a,dN,—E,dB, +v.dV, .

Bearing in mind that M{=1nQ,, Eqgs. (3) and (17), one can
alternatively express the differential as

dM{={a).dN.—(E).dB,+{y).dV,, (21b)

where (20a) and (20c) have been used. (E),=E_, and
B.=p, are already known. The interesting relations
(a).=a, and (y).=7. come out by chance from the
point of view of (a). According to (b), they are a hint for
the reality of fluctuating « and v, in contrast to 3, which
only occurs as 3, in (21b). Literature (c), however, sticks
to the fact that (B),=p, is equally valid, cf. (20b), so
that there is no reason why to refuse a fluctuating S.
However,

(TYe=(B~ ") #B =T, . 22)

(21a)

Thus in the frame of (c) the mean temperature does not
correspond to T,.

A confusing result can be found in Ref. 7. There, it is
considered to be consistent with statistical physics that all
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TP fluctuate. Indeed, possible fluctuations of B in the
canonical ensemble are treated there, but 3 turns out to be
infinitely sharp. The solution of this paradox is simple:
In the derivation of the result, a property of ) has been
used which is only valid in the thermodynamic limit.

The generalization to other ensembles 7 is obvious. In
(c), a system belonging to ensemble i is associated with the
TP via the actual MP, cf. (19). In (b), this association is
restricted to TP which are conjugate to fixed MP. For the
TP .7 allowed to fluctuate, it follows that

(T )= . (23)

The corresponding fluctuation formulas for the TP are
given in Ref. 1. They are valid for (b) and (c). For (c), ad-
ditional fluctuation formulas have to be added.”!!

As far as the TP are considered in a formal way, the
discussion about fluctuating TP remains abstract, and no
decision can be made between the opinions (a), (b), and (c).
However, the relation P=vy /B, Eq. (1c), provides a link
between the TP and the pressure, a quantity which has a
concrete meaning. If we think of an isolated system in a
box, P can be calculated from the mean force exerted on
the walls. In the sense of (a), (b), and (c), P has to be re-
garded as fixed quantity then. Now we turn to the fluc-
tuation of ¥ and of P in the canonical ensemble. In view
of (b), B is fixed. Thus, .

i (e

In view of (c), B is allowed to fluctuate, and Eq. (24) is not
valid in general. For a classical ideal gas, the left-hand
side is zero."* The result for the right-hand side, howev-
er, is 2/(3N), see Ref. 1. This has been obtained combin-
ing two facts. For an ideal gas, the pressure is strictly
proportional to the energy, and the relative fluctuation of
energy is 2/(3N). Thus, (b) is not self-consistent if the
word pressure is taken literally and not only formally. As
to (a), no inconsistency occurs if the pressure is thought to
be fixed as well as the TP. However, this would be a
strange feature of pressure. We consider again a system
in the canonical ensemble. In the picture of time evolu-
tion, the energy changes very slowly. Correspondingly,
one could measure (via finite time averages) slow changes
in pressure. If P is by definition fixed, it is considered in
a formal way only. Thus, interpreting the pressure in a
concrete way favors (c).

(24)

V. ALTERNATIVE APPROACH

The concrete interpretation of pressure led to the con-
clusion that the TP are fixed in the microcanonical en-
semble, but fluctuate in the other ensembles according to
the fluctuation of the MP. Thus the behavior of TP in any
ensemble i, iz£m, can be traced back to the microcanoni-
cal ensemble m. The roundabout way via entropies S; or
Massieu-Planck functions M/ is no longer necessary.
Only the basic relations for the microcanonical ensemble,
Egs. (1) and (2), have to be considered further together
with the probability functions p;, Sec. II. However, the
definition of S,,, Eq. (2), is not yet thoroughly satisfacto-
ry: S,, =InQ cannot be the whole truth since Q is not di-

mensionless, cf. Sec. III. This can be taken into account
by defining S3:

SA=In(QAE), (25)

with an arbitrary but constant AE, yields the same deriva-

tives as S, =InQ. It is natural to interpret AE as the un-

certainty of energy in the microcanonical ensemble

Then, Q) AE is the number of states between E — —AE and
1AE,

QAE=Y(N,E++AE)—Y(N,E—+AE), (26)

Y(N,E,V) being the number of independent solutions of
the Schrodinger equation up to energy E. Statistical
physics makes sense if AE has the following properties:

(i) There are enough states within the interval AE so
that the smoothed density Q is well defined.

(ii) Nevertheless, AE is small enough so that it may be
regarded as differential within the desired accuracy, i.e.,
sums can be replaced by integrals.

In the present interpretation, entropy S2 is the logarithm
of the number of states compatible with the extensive pa-
rameters (N,E++AE,V). The canonical partition func-
tion Q. is then obtained as

Q.(N,B,,V)= 3 AE QN,E,V)exp(—B,E) 27
E

with the same result as (3b) due to (ii).
Another modification of microcanonical entropy is!

- E
Sn(NE,V)=InY(N,E,V)=In [ "dE'QN,E",V), (282)
i aS, ~ 1 aS,

Y m = | 28b)

T==%= N |gy P 7 oE v
p_|3S. 5 7

=P _|Zm | p_Z__|3E (28¢)
T oV |nE B v w3,

For macroscopic _systems, 5, E§m /N converges to '
s =8, /N, cf. Sec. I. Y, in the classical approximation
also called the phase volume, is dimensionless, but now all

. states up to energy E are included. This does not reflect

the idea of the microcanonical ensemble. On the other
hand, S,, and not S, is adiabatically invariant in the clas-
sical case.l”!! Accordingly, P is the correct mechanical
pressure in isolated classical systems. Additionally, the
classical equipartition theorem is fulfilled exactly for T,
not for 7. In the quantum -mechanical case, no analogous
statements can be made Thus, it seems to be preferable
to stick to S, or S then. In the classical case, however,
the concrete interpretation of pressure favors S . By the
way, the considerations concerning Eq. (24) remain essen-
tially the same when comparing fluctuations of % and P
instead of y and P.
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The explicit results for temperature 7 and pressure P
are

~ o~ 4 ~ E
T=B~'=v/0Q, P=0~! [ "dE'3Q/3V).  (29)

The new formulas refer to the microcanonical ensemble so
far. The extension to other ensembles is simple since the
TP fluctuate according to the MP. The probability densi-
ties p;(N,E,V), izm, for the MP are the same as in Sec.
II. Accordingly, the partition functiogs Q; i=m, are not
changed. They are connected with Q,, =Y in a similar
way as with Q,,=Q. For instance, integrating by parts
yields

Q.= fowdEQexp(—BrE)zﬁr fowdETexp(_ﬁrE),

(30)
By means of (29), the resulting { T'), and (P ), are
(B De=(B).'=B;", e, (T).=T,, (31a)
(P).=(PB):B;'=T,(3/3V)InQ. . (31b) "

Equation (31a) may be contrasted with (22); as for (31b),
cf. Ref. 7. Thus, taking (PB).=(y ). and multiplying
by the temperature of the reservoir yields the true, i.e.,
mechanical pressure (P). in the classical case. Starting
with (P),=(yT),, cancellation of errors yields the true
pressure if T is thought to be constant T, in the canonical
ensemble. This result will be needed in Sec. VI

VI. APPLICATION TO COMPUTER EXPERIMENTS

The preceding considerations may answer the ques-
tion*~® “Which formulas for temperature and pressure
are the correct ones in computer experiments?”” The clas-
sical motion of a small number of particles is investigated
in computer simulation. Molecular dynamics (MD) usu-
ally refers to a restricted microcanonical ensemble (fixed
center of mass), Monte Carlo (MC) to the canonical en-
semble (only the spatial part being determined explicitly).
A detailed discussion of the special features of the &iC
and MD ensembles is found in Refs. 4—6, but the main
aspects of the existing problems can be seen from compar-
ing the classical microcanonical and canonical ensembles.

First we consider three-dimensional systems in the
microcanonical ensemble. For given N, E, and V, all pos-
sible configurations have equal probability.! Configuration
means a specific point in phase space (including momen-
tum). The equipartition theorem yields!

TN:%(Ekin>m >
PV=2(Ein)m— W) .

(32a)
(32b)

E,;, is the total kinetic energy and W is the virial of a
specific configuration,

W=% 2 r,-j(a@,-j/ar,-j) N (33)
1<i<j<N

Q= 3 0,;(r;) being the pairwise additive potential. Us-

ing (32), the fixed T and P can be determined as a micro-

canonical average (over all configurations) of mechanical
quantities. The idea that temperature T fluctuates pro-
portionally to Ey;, is attractive but incorrect. Analogous
arguments hold for pressure P. From (32) it follows that

Ekin/N>i s

( (34a)
(Egn/V)i—{W/V);

(34b)

(T)=%
(P);=%
for any ensemble i. Now we compare these results with
Refs. 4 and 6. In Ref. 4, the formalism corresponds to
Sec. III, the TP are explained as derivatives of the loga-
rithm of the appropriate partition function. For instance,
the relation between temperature T (instead of T) and ki-
netic energy is studied for the classical ideal gas. In gen-
eral, this relation is much more complicated than (34a)
and depends on the ensemble and on the interatomic po-
tential. Fluctuations of thermodynamic parameters are
not considered in Ref. 4.

In Ref. 6, M;=InQ;, Eq. (17), is only accepted for the
canonical ensemble. Temperature fluctuations are not
considered, only T, instead of (T ). is used. The true
pressure (P ), then results from (31b) or (34b), i =c. This
justifies the proceeding chosen in Ref. 6. To calculate the
pressure in the MD ensemble, using (32b) is called the
“common procedure” there. In contrast to our formalism,
this is an additional assumption. In any case, pressure P
comes out in the MD ensemble and not P as in Ref. 4.
Analogously, the small difference in pressure of hard-core
systems between MC and MD (Ref. 5) refers to P. The
statement® “small discrepancies in the early hard disk
data cannot be due to the difference in ensembles” does
not consider this fact. Furthermore, the comparison be-
tween Refs. 4 and 6 is difficult since in Ref. 6 T, and not
T is also used in the appropriate MD ensemble: In both
references, Eyp=(E)., the number of particles and
volume are also the same for an appropriate comparison.
The total energy being the same, differences in {Ey;,) and
(W) occur, hence the ensemble corrections® for these
quantities and thus the pressure. Incidentally, further
possibilities to calculate P in MD simulations are dis-
cussed in Refs. 13 and 14.

In another paper, temperature fluctuations during a
MC experiment are really taken into account.!> If the sys-
tem is not too small, fluctuations of pressure and potential
energy are small and thus essentially linear functions of
temperature fluctuation. In fact, subaveraged values of
pressure and potential energy turned out to be connected
by a linear relation for the model liquid considered. The
superimposed statistical scatter comes from the fact that
potential energy and virial of a single configuration are
well defined, but not the pressure. Using (34) in the form

Psingle =(NT,— Wsingle 744 (35)

yields an unbiased estimate of P based on a single config-

‘uration, but not the pressure of this configuration itself.

Accordingly, apparent “pressure fluctuations” in comput-
er experiments have to be distinguished from proper fluc-
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tuations, Secs. IV and V.

In this paper, thermodynamic parameters and their
fluctuations have been studied. For instance, T and T are
possible extensions of temperature to finite systems. In-
terpreting pressure mechanically and not only thermo-
dynamically is the key deciding which of the formalisms
considered has to be preferred.
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