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The mode-coupling theory of the glass transition recently presented by Leutheusser is generalized
so that some of the important wave-number dependence neglected in his theory is taken into ac-
count. As a consequence the correlation functions which appear in the theory presented here involve
a continuous range of relaxation times rather than the single relaxation time obtained by Leu-
theusser. However, the important exponents describing the divergence in the shear viscosity and the
vanishing of the self-diffusion coefficient are very similar in the two theories.

I. INTRODUCTION

In a recent series of papers, Leutheusser' and Leu-
theusser and Yip discussed the glass transition in simple
liquids, using a self-consistent mode-coupling theory.
They find, for example, that near the glass transition den-
sity ng, the shear viscosity g diverges as g —(ng —n)
with n the number density. It should be remarked that
this power-law singularity is different than the usually as-
sumed Doolittle form, but that it is consistent with com-
puter simulations of the hard-sphere glass transition.

Leutheusser bases his analysis on a model whose struc-
ture he derives from the mode-coupling theory. Although
he states that it is intermediate wave-number phenomena
that cause the slowing down of dynamical processes near

n~, he neglects all wave-number dependence in his model
equation. As a consequence of this he finds that the time
dependence of, e.g., the stress-tensor correlation function
is given by a simple exponential. Leutheusser argues that
his results can be used to explain recent computer simula-
tion ' of the stress-tensor correlation function that seem
to indicate an algebraic decay with a coefficient much
larger than the usual long time tail for this function.
More recently this slowly decaying correlation function
has been discussed on the basis of made-coupling theory
generalized to molecular length scales so that structural
relaxational effects can be taken into account. In these
theories the wave-number dependence plays an important
role and it leads to a continuum of relaxation times.

The question then naturally arises whether
Leutheusser's results are sensitive to the wave-number
coupling and the continuum of relaxation times inherent
in any true mode-coupling theory. In this paper this ques-
tion is addressed. In particular, we extend the mode-
coupling theory used previously to discuss the slowly de-

caying stress-tensor correlation function. The theory is
made. self-consistent and the resulting nonlinear equation
is assumed to describe the glass transition. Retaining
what we believe is the important wave-number depen-
dence in the theory we calculate the exponents that
describe the divergence in g near ng and the vanishing of
D, the self-diffusion coefficient, near ng. Although the
correlation functions encountered in the theory are con-

siderably different than in Leutheusser's theory, the
relevant exponents are changed by less than 10%. This is
an important point since it implies that the exponents are
insensitive to the approximations made in the two
theories.

The organization of this paper is as follows. In Sec. II
the basic equations that will be used to describe the glass
transition are derived. In Sec. III we calculate exponents
describing the divergence in the shear viscosity near ng,
and the vanishing of the self-diffusion coefficient near ne,
and the vanishing of the neutron scattering linewidth near
ng. In Sec. IV this paper is concluded with some remarks.

II. BASIC EQUATIONS

The basic equations used to describe the glass transition
can be derived from hydrodynamic mode-coupling
theory ' or from diagrammatic hard-sphere kinetic
theory. ' '" Since the hydrodynamic theory is the sim-
plest, I will outline that theory here. The basic idea is to
recognize that in a dense fluid the dynamics on a molecu-
lar length scale slow down appreciably due to the micro-
scopic structure in a dense liquid. ' ' In particular, it is
known that at wave number near ko, where the static
structure factor has its first maximum, the density-density
correlation function (DDCF) decays very slowly even in
the absence of mode-coupling effects. ' ' It is also
known that when mode-coupling effects are taken into ac-
count the DDCF becomes even slower, decaying near
ko. ' Since mode-coupling effects themselves depend on
the DDCF it is this nonlinearity, or feedback mechanism,
that we assume leads to the glass transition where the
dynamical processes become frozen. Later on we show
how the slowing down near ko effects the macroscopic,
zero frequency, and zero wave number, transport coeffi-
cients.

To proceed, I first define a normalized DDCF, @k„for
wave numbers k and Laplace transform variable z by
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1
@k =

z+k /Pms(k)[z+k Di(k, z)]
(2)

where Q is the volume of the fluid, s(k) is the static
structure factor, r; is the position of the ith particle, and
the angular brackets denote a grand canonical ensemble
average. Using the number and momentum conservation
laws' ' —here we neglect temperature fluctuations which
are known to be small on molecular length scales —we
easily obtain that 4k, is given by

1

z +0'(k) /[y(k)+ X(k,z) ]
1

z +O(k)'/I" (k,z)
(4a)

with tE the Enkog mean free time, o. the hard-sphere di-
ameter, and j~ the spherical Bessel function of order l.
Before giving X(k,z), I use that we are interested in the
long-time or small-z behavior of the DDCF and I replace
Eq. (2) by

Here m is the mass of the particles, P=(kii T) ' with ks
Boltzmann's constant and T the temperature, and Di(k, z)
is the generalized, k and z dependent, longitudinal viscosi-
ty.

Next an approximate expression for Di(k, z) is obtained.
We write

with

0 k = k
Pms (k)

and

(4b)

k Di(k, z)=y(k, z)+X(k,z) . (3a)
I (k,z)—=y(k)+X(k, z) . (4c)

y(k, z) =y(k) = [1—jo(k~r)+2j2(ko. )]
2

3tE
(3b)

Here y(k, z) is the bare contribution to k Di(k, z), where
mode-coupling effects are neglected and X(k,z) is the
mode-coupling contribution to k Di(k, z) which itself de-

pends on +k, . For y(k, z) we use the short-time approxi-
mation for the longitudinal viscosity for particles interact-
ing through a hard-sphere potential. It will be seen in the
following that the behavior of the fluid near the glass
transition is not sensitive to the particular model used for
y(k, z). For hard spheres I obtain '

This is especially appropriate near ng since I (k,z) will be
shown to diverge in the limit n ~ng. Finally, it should be
remarked that if I neglect X in Eq. (4) and use Eq. (3),
then I obtain a representation for @k, almost identical to
that obtained before by de Schepper and Cohen' on the
basis of kinetic theory. In their language, 0 (k)/y(k) is
the extended heat-mode eigenvalue which follows here
from very simple considerations.

The mode-coupling contribution to the longitudinal
viscosity, X(k,z), can be calculated in the standard
way. Using that is is density fluctuations that decay
the slowest near ng we easily obtain-

c+ioo dzi oo +1 1X(kz)= dq dp V(q, k, p, )

(zan+ [0 (q+ )]/I (q+,zi )] J [z —zan+ [0 (q )]/[I (q, z —zi)] J

(5a)

where c defines the contour of the z& integral and

q+ ——(q +kqp+k /4)' (5b)

V(q, k,p) is a vertex function that is determined from
wave-number-dependent mode-coupling amplitudes and it
is given by

q k s(q+)s(q )
V(q, k,p) =

2n(2m) Pm
—+ nc(q+)
1 qp

1 gp nc(q )
2 k

2

+n c(q, k,p) (5c)

III. CALCULATION OF EXPONENTS

Since this section is lengthy we first give an outline of
its content. First Eqs. .(4) and (5) are simplified so that an

In Eq. (5c), c(q) is the direct correlation function and
c(q,q+)—:c(q, k,p) is the three-particle direct correla-
tion function. This same result can also be derived from
kinetic theory. '

I

analytic treatment of the glass transition is possible. Then
an equation for ng is obtained by assuming that at the
glass transition there is localized behavior. When such a
solution first occurs then we identify this point with the
glass transition and obtain an equation for ng. After this,
the corrections to the leading singularity at ng will be cal-
culated. Later on these corrections will determine the
scaling form for I (z) when n & ng.

Next densities below the glass transition are considered.
By using a simple scaling anzatz and the results of the
calculation at ng we determine the singular behavior of
I (k,z) for ning near k=ko. ' Finally, we show how the
singularities near ko determine the singularities in the
macroscopic transport coefficients near ng.

Equations (4) and (5) give a highly nonlinear equation
for X(k,z) which is not easily solved. To proceed we
make a number of approximations that enable us to ex-
tract the singular behavior of X(k,z) at and near ng. We
first replace I"(k) and I (q+ ) in Eqs. (4) and (5) by I"(ko).
This approximation is motivated by the fact that it is the
wave-number dependence in 0 that is important in pro-
ducing the de Gennes minimum' ' observed in neutron
scattering in dense fluids for wave numbers around ko.
We then obtain
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c.+leo dZ1 oo +1 V(q, kp, p)I (kp z)—:I (z)=)/(kp)+ f . dq dp 2 2z~+ Q q I z] z —z] + 0 q I z —z]
(6)

with q+ q——+. kpqp+k p/4.
This is the most important simplification since the unknown, I, no longer depends'on wave number. The next ap-

proximation uses that the largest contribution to the integrals in Eq. (6) for small z comes from the region where
q=qp ——V3/2kp and p is close to zero. Using that V(qp, kp, p) has a maximum at p=O, we approximate Eq. (6) by

V(qp, kp)
r(z)=7 (k, )+f '+'" " f"dq I,+ [n2(&q2+ k,'/4)]/[r(z, ) ] I I

—z, + [n2(V'q 2+k,'/4)]/[r(z —z, ) ] ]

2 — ~3 C+l oo dz~ + oo

=y(kp)+ V kp kp f, , , f 1

Iz, +[0 (kp)]/[r(z1)]+ [x 0 (kp)]/[2I (z, )] I

1

~z —z, + [n2(k, )]/[r(z —z, )]+[+2n"(k, )]/[2r(z —z, )] I

(7a)

with
+1

V(q kp)= f dp V(q kp p)

and we have used that 0 (q) has a strong minimum around kp. The x integral in Eq. (7a) is elementary,

V kp, kp
2 c+ioo dz~ r(z, )r(z —z, )

I'( z) =y(kp ) +
W6 [Q (k )] 2'ill [(z —z )r(z —z ) —z r(z, )]

(7b)

1 (z —z1)I (z —z1)—z1I (z1)
—1/2

[0 (kp)+z1I (z1)]'/ n'(k, )+z,r(., )

(8)

The structure of Eq. (8) is now simple enough for us to analytically derive the singular behavior of I (Z~0) at ng, obtain
an implicit equation for ng, and derive an exponent for the divergence in I (z =0) as n ~ng.

r( )=—'+r, (z)
Z

(9)

with zl, (z)~0 for z~0. This form also follows
mathematically from Eq. (8). If we insert Eq. (9) into Eq.
(4a) then we see that at ng part of &bk, will not decay in

time and the dynamic structure factor will have a delta
function peak. Inserting Eq. (9) into Eq. (8) we can sys-
tematically solve Eq. (8) by treating zl"„(z) as small. To
zeroth order in I „we obtain

V kp, kp
a 2~ 2 a
z 3/6 [I12 (k )]1/2 [ +I12(k )]3/2

A. At the glass transition

To motivate the approximate solution to Eq. (8) at ng,
we note that at the glass transition localized behavior
can be expected. This implies that I (z) should have the
form

which yields an equation for a since Eq. (9) is a physical
solution only when a is real and positive. We can use Eq.
(10) to obtain an equation for ng. The implicit equation
for ng is straightforwardly found to be given by

v3
V ko kong

2m . 1/27 ~2(k .„)1/22

~6 [n (k n )]''
and at ng, a ( =—az ) is given by

as 2Q (kp——ns) .

(1 la)

(1 lb)

C+l oo dZ]—', zr„'(z) = r„(z, )r„(z—z, ),
c —l oo 2~g

which has a solution of the form,
/

(12a)

The leading behavior of the less singular term, I'„(z),
can be determined by expanding Eq. (8) to second order in

I,. The first-order terms on the right-hand and left-hand
sides cancel as they must. The resulting equation for
I,(z) is

~

~

~
~

C+I oo

X
2m1 z1.(z —z1)

(10) I,(z) =
Z'

(12b)
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Inserting Eq. (12b) into Eq. (12a) yields an equation for a
given by

—,I (1—a) = I (1—2a), (12c)

with I (x) the gamma function of order x. Equation (12c)
is a transcendental equation which can be solved,

In this section we use Eq. (14a) in Eq. (8) and determine
the exponents which describe how 5 and s vanish as
ning. The basic idea is to use Eq. (14) in Eq. (8) for
values of z such that

5« )z
~

&&s' (15a)

so that we can write
a=0.36 . (12d)

Using Eqs. (9)—(12) in Eq. (4a) yields the DDCF at ng
when k is near ko,

1 1+O
zI 1+[@ s (ko)]/[2k(p (k)] I

z'

d,'(0)+sa 'd,

ag
d,'(0)+s 'd, .—

Z Z' S
(15b)

B. Below the g1ass transition (, n (ng )

=—d, (5/z)+s 'd„(z/s) .
Z

(14a)

To solve Eq. (8) for n & ns, a scaling assumption will be
used. Since at ng, I (z) consists of a most singular (s) and
a less singular ( U) contribution, our scaling assumption is

1I (z) =—d, (5/z)+, d„(s/z)
Z Z'

With this assumed scaling form, Eq. (8) will be shown to
lead to values for 5 and s.

Inserting Eq. (15b) in Eq. (8) and expanding terms to
O(5,d, ) yields an equation from which we can determine
5 and s. Since the equation is rather lengthy we will not
reproduce here but only discuss its structure. If we denote
the terms which are independent of 5 and d, by X(1) then
we find that they are of order

X(])-0 (16a)

Here 5 and s ~0 as n —+ng and

d, (0)=ag, d, (0)=A . (14b)

with

6= ng —n (16b)

Furthermore, we expect 5 &&s as n —+n~ since at high fre-
quencies the most singular part of I should rapidly ap-
proach its value at ng since on short-time scales the un-
dercooled liquid is glasslike. This will also follow
mathematically. It should also be remarked that the sim-
ple pole form for the most singular part of I assumed by
Leutheusser' can easily be shown not to be consistent
with 'Eq. (8). Finally, it should be remarked that 5 ' and
s ' are not relaxation times but rather time scales for the

'

continuum of relaxation times inherent in any rqode-
coupling theory.

This follows, since these terms precisely cancel at ng and
if we expand V, etc., around ng then we obtain Eq. (16).
If we denote the terms of O(5d, ,d„) by X(2), then we ob-
tain

X(2)-O, s ed, (z/s)
5e
Z2

The e arises as for term X[]) since these terms also cancel
at ng. We shall show below that term X~2) is negligible.
The terms of O(5d„d, ) are denoted by X(3) and to lead-
ing order in e they are of the form

C +i oo dz]X(3)-0 s J d, (z, /s)d„((z —z, )/s), s 5d, (z/s)
C —ioo 2 (18)

Scaling z (and z() with s we see that X(3) and X(1)
correctly scale and that X[2) is negligible if

1/2a
( )

1/2a
( )

1.39 (19a)

&(1+a)/2a (n )(1+a)/2a
( )1.89

g g (19b)

In the next section it will be shown that 5 determines
the singularity in the zero frequency viscosity and dif-
fusion coefficient as n ~ng.

C. Macroscopic transport coefficients

Here we show how the singularity in I leads to a singu-
larity in, for example, the zero-frequency shear viscosity.
The basic idea is that through mode coupling, the effects
that occur on one length scale, here ko ', couple back and
effect phenomena on all length scales. That is, g has con-
tributions from all length scales. For example, the
relevant mode-coupling contribution to the shear viscosity
can be written

ao + 1 c +1 ao dz1 1dq d)((, V„(q,p) lim
z o c —i~ 21ri [z(+02(q)/I (z()][z —z(+Q (q)/I (z —z1)]

(20)
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Here Vz(q, p) is the positive definite shear viscosity vertex
function that is given elsewhere, '" rlz is the bare viscosi-
ty, and we have used that the most important mode cou-
pling is coupling to density fluctuations since they are
singular as ning U. sing Eqs. (14) and (19) in Eq. (20)
and scaling z~ with 5 yields

1
as n~n

5

Similarly one can show

D-5 as ning .

(21)

(22)

IV. DISCUSSION

We conclude this paper with a few remarks.
(1) In this paper we have taken into account some of the

wave-number dependence Leutheusser neglected in his
theory of the glass transition. Although the correlation
functions in the two theories are qualitatively different-
in the theory presented here there is a continuous range of
relaxation times —the important exponents describing the
singularities in the transport coefficients are very similar,
i.e., the difference in the exponents is less than 10%. This
implies that the actual exponents may not be too sensitive
to the approximation made in calculating them.

It should be stressed, however, that the description of
the glass transition is not universal as in critical phenome-
na and will in general be sensitive to the type of approxi-
mations made. Physically this is obvious since the basic
phenomena that cause the glass transition take place on a
molecular length scale and not on the very long length
scale typical for critical phenomena where universal
behavior is expected.

Finally, we mention that the vertex functions that ap-
pear in the theory presented here are different than those
referenced by Leutheusser. ' This point has been discussed
elsewhere. '

(2) The theory of the glass transition presented here is
probably only correct for simple liquids —which usually
do not form glasses in the laboratory —where transla--
tional diffusion plays the dominant role. In glass forming
molecular liquids one anticipates that fluctuations in the
orientational order slow down long before fluctuations in
the translational order. It would be of interest to capture
the essence of this orientational order in some kind of
self-consistent made-coupling theory.

(3) There are computer simulations of, for example, a

hard-sphere fiuid near its glass transition. In these simu-
lations the ratio D/DE has been measured, where DE is
the Enskog self-diffusion coefficient. The extraction of a
reliable critical exponent is difficult since the theory
presented here and by Leutheusser is only valid when
D/DE &&1, where only a limited amount of computer
data is available. However, if one fits the decrease in
D/DE to a power law decrease than for small values of
D/DE an exponent between 1.5 and 2 is found to be con-
sistent with the computer data.

We also mention here that there have been computer
simulations ' of the linewidth of the dynamic structure
factor in undercooled liquids at wave numbers close to ko.
It is found that the linewidth appears to be a decreasing
function that is linear in ( n* n)—, where n' is some phys-
ically irrelevant density that does not correspond to the
glass transition density. This indicates that these simula-
tions are not yet in the region close enough to ng for the
theory presented here to be valid. This is consistent with
the fact that Eq. (4a) with X set equal to zero leads —over
a limited density range —to a linear decreasing function of
density for the neutron scattering linewidth near ko that
extrapolates to zero also at a physically irrelevant densi-
ty 29

(4) It should be remarked that [cf. Eq. (4)]
0 (k)/1(k, z) is not a soft mode in the sense discussed

. some time ago by several authors. ' ' The slowing down
of dynamical processes near ko is a general consequence
that all dynamical processes are slowing down as n —+ng.
We take the point of view here that since 0 (k)/I (k)
around ko is already almost a soft mode, the general slow-
ing down as ning is most effectively coupled to wave
numbers near ko. This is confirmed' by a perturbative
solution of Eq. (5a).

(5) The theory of the glass transition for simple liquids
presented here is a purely dynamical transition with
equilibrium correlation functions playing only a minor
role. In this sense the transition is very similar to the An-
derson transition ' where the relevant order parameter is
essentially the diffusion coefficient.
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