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Inverse-scattering theory for the non-spherically-symmetric
three-dimensional plasma wave equation

B.DeFacio*
Institute of Theoretica/Physics, Chalmers University of Technology, S 412W-Goteborg, Sweden

James H. Rose
Ames Laboratory, U S D.ep. artment of Energy, Iowa State University, Ames, Iowa 50011

(Received 8 July 1983; revised manuscript received 27 August 1984)

The three-dimensional inverse problem for the scalar time-domain plasma wave equation is dis-
cussed using causality and time-reversal invariance. As shown by Balanis in one dimension and by
Morawetz and others in three dimensions, the reconstruction of the potential requires only the
discontinuity of the wave front at the characteristic surface. A complete solution that can be made
rigorous is given for near-field inverse scattering for smooth compact potentials. Two formal
methods for far-field inverse scattering from non-spherically-symmetric potentials are presented.

I. INTRODUCTION

Direct and inverse problems are pairs of problems
where the solution of one problem depends on all or part
of the solution to the other. ' In direct scattering theory,
the equations of motion, the interaction potential, and the
boundary conditions are given. The problem is to calcu-
late the. far-field scattering amplitude. In inverse-
scattering theory, the equations of motion, boundary con-
ditions, and the far-field scattering amplitude are given.
The inverse problem is to calculate the interaction poten-
tial and exact wave. In addition, a priori information may
be given. An inverse-scattering problem is called a pure
inverse problem if complete, noise-free scattering data are
given and is called an applied inverse problem if the data
are band-limited, corrupted by noise or sampled or any
combination thereof. The interpretation of any scattering
experiment requires the solution of an applied inverse
problem. The presence of noise in these problems requires
the formulation of a statistical measurement model, which
is an ill-posed problem but one that is regularized. Its
solutions are nonunique, even when the corresponding
pure inverse problem has a unique solution; i priori
knowledge is needed to determine the "best" solution.
There is always a minimum spatial resolution to this best
solution. The present study will be primarily restricted to
the pure inverse problem although a comment on the sen-
sitivity of the inverse methods to noise will be made.

In models of electromagnetic waves propagating in the
ionosphere, ' when electron collisions and static magnet-
ic fields are negligible, the relative permittivity can be
written as

e(k, x)
1

1
V( )k'

where eo is the permittivity of free space, k =2m/A, is the
magnitude of wave number, e(k, x) is the variable permit-
tivity, and V(x) is an "interaction potential. " Also,
k =co/c where co is the angular frequency and c is the

phase velocity of light in free space. Then the model con-
sists of the wave equation

hu — u« —V(x)u (x, t) =01

C2
(1.2)

together with initial conditions and boundary conditions.
Here u is the amplitude of the scalar wave, b. is the
three-dimensional (3D) Laplacian, and u« ——8 u/t)t in
the center-of-momentum Lorentz frame of the (massless)
wave and the medium. The D'Alembertian in (1.2) is
I.orentz invariant. The potential function V will be as-
sumed to be real and continuous, repulsive [i.e., V(x ) )0,
everywhere], compact, and to possess a smooth boundary.
The coordinates (x,t) are in R && [—T, T]. This model is
applicable in the rest frame of the atmospheric electrons
comprising the potential. The Lorentz transformation to
other inertial frames would transform the potential into
V= V(x', t') and the simplicity of the model would disap-
pear.

Inverse scattering with spherical symmetry has been es-
tablished for some time ' ' and most of. these studies
were carried out in the frequency domain. Bleistein' for-
mulated a version of inverse scattering for general three-
dimension convex scatters in the time domain, based upon
the Kirchoff approximation. Rose and Richardson" have
presented a time-domain Born-Neumann approximation.
Morawetz' has written down exact formal solutions to
several three-dimensional inverse problems. For the
time-independent Schr6dinger equation, Moses' and
Newton' have written two, series of papers which add a
good deal to this problem. The plasma wave equation in
Eq. (1.2) reduces to Schrodinger s equation for an initially
quiescent, monochromatic wave, This feature has been
exploited in a separate study. '

The goal of this study is to provide a clear physical for-
rnulation of the time-domain inverse-scattering theory in
the plasma wave equation. Intuitive clarity rather than
great generality or rigor is intended. The causal structure
of solutions to Eq. (1.2) play a key role in the time domain
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making it simpler than the frequency domain in many
respects. Hyperbolic partial differential equations such as
Eq. (1.2) propagate their singularities without smoothing
or attenuation. Balanis used this structure in his
development of a one-dimensional inverse theory for the
wave equation. He first derived the fundamental identity
in one dimension (1D) and correctly used the impulse
response function. Morawetz' and independently DeFa-
cio' have used this fact to derive a useful three-
dimensional identity. As this identity is clearly based on
the sharpness of a singular surface in the time domain, it
will be spread over a wide band in the frequency domain.
Consequently, the frequency-domain discussions of in-
verse scattering are somewhat nonintuitive in this respect.
The method discussed here has an additional simplifica-
tion. Instead of the five-variable data function required
by Newton' and others, a three-variable data function
suffices for the present study because of the restrictions
on the potential. Thus, the data function depends upon
the same number of variables as the potential. As a
consequence, the "miracle condition" of Newton appears
constructively during the reconstruction, rather than as a
cumbersome consistency check which must be applied
after the process is completed. See also Cheney' for ad-
ditional discussion of the "miracle. "

In Sec. II causality will be discussed and the key identi-
ty will be reviewed. In Sec. III an exact (aptly
rigorous' ' ) near-field inverse method is given. In Sec.
IV the far-field inverse problem will be formulated using
the physical concept of causality —as carried in the funda-
mental identity —together with the time-reversal invari-
ance. The far-field approach will be expressed in terms of
both nonlinear differential and integral equations. The
problems of existence and uniqueness of solutions to these
equations will not be addressed here as the goal of this pa-
per is to provide a physically motivated approach. For
this reason the discussion of far-field iriverse scattering is
limited to a new approach rather than a complete solu-
tion. The paper is concluded with a discussion section.

II. TIME-DOMAIN SCATTERING
FOR THE PLASMA WAVE EQUATION

and

u (x,t)~ up (x, t) .
Bt Bt

(2.lb)

The initial conditions in Eqs. (2.la) and (2. lb) are distri-
butional and require smearing over a suitable test-function
space such as W, the functions of fast decrease at infinity,
or W, the functions with compact support. These addi-
tional complications are justified for the present applica-
tion because these pulses are perfectly sharp. From now
on the pulses (waves or fields) are to be interpreted in this
sense. During the propagation of this pulse through the
support of the potential the interaction V(x) scatters and
disperses the incident pulse which is now a complicated
wave u(x, t).

After leaving the support of the potential, the wave
propagates as a free wave to the receiver as t —++ ~. The
scattered field u„(x,t) is defined through

u„(x,t)=u(x, t) —up (x,t), (2.2)

Here e, =x/
~

x
~

is a unit vector in the scattering direc-
tion and all other quantities are already defined. Observe
that the impulse response plays the same role in the time
domain as the scattering amplitude in the frequency
domain. Additionally for classical waves, the phase of the
wave can in principle be measured. The entire system be-
ing modeled is invariant under time-reversal transforma-
tions.

The Green's functions Gp (x, t, x', t') for advanced ( —)
and retarded (+) propagation for the free-space time-
domain wave equation is given (in noncovariant form)
b 19

which is well defined at all x and t. Of course, it may be
identically zero in some regions. The quantity measured
in far-field direct scattering studies is the impulse
response R(e;,e„r) which is defined as the limit

&(e;,e„r)= lim I ~

x
~
[u(x, t) —up+(x, t)]I,

t,
~
xj~oo

(2 3)

u(x, t)~up+(x, t)=5(ct —e; x) (2. la)

The causal structure of hyperbolic equations in odd-
space dimensions is well known. ' Initial data on a
plane at t =0 as shown in Fig. 1 fill the cone of influence
K which is bounded by Do and D&. The solution identi-
cally vanishes, u(x, t):—0, outside of IC. This vanishing is
a consequence of causality. Usually causality is used to
provide analyticity in k ='cp /c in the reduced
Helmholtz equation. The main point to the present paper
is to show that the inverse-scattering problem for Eq. (1.2)
is actually simpler in the time domain. In particular, the
leading singularity at the edge of the advancing light cone
determines the potential.

The experiments described by both the direct and
inverse-scattering theories for Eq. (1.2) begin with an ini-
tial wave u p (x, t ) at large negative time which is sharp in
time and is incident along the unit vector e;:

FIG. 1. Cone of influence for a circular disk of initial data of
radius R called Do at t=0. The phase velocity has constant
magnitude c. At t the disk has spread to D~ which has the ra-
dius R+ct. Causality requires that u(x, t)—:0 for all (x, t) not
in the cone gf influence. The construction of spherical surfaces
from each point is the Huygen's construction for data Do.
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Gp (x, t, x', t')=+, , —5(
i
x —x'

i +c(t —t'))
4m fx —x'/

(2.4)
condition up (x, t) according to the time-reversed process

The time-reversal invariance of the model gives two
representations for the same physical wave, u(x, t). One
corresponds to the wave evolving to the space-time point
(x, t) from t~ —oo, the other evolves from t~+ oo to
the same space-time point (x, t). A wave with initial con-
dition up+(x, t) which scatters from Vis given by

u(x, t) =up+(x, t)

+ fd x' fdt'V(x')Gp+(x, t, x', t')u(x', t') . (2.5)

The same wave at the same point evolves from the final

u(x, t)=up (x, t)

+ fd x' fdt'V(x')Gp (x, t, x', t')u(x', t') . (2.6)

Information on the final field is carried in the incoming
free-space wave up (x, t) which is obtained from the far-
field data by propagating backwards in time using Gp
and the representation theorem. The time-reversed wave
equation [Eq. (2.6)] is fundamental to the formal far-field
inverse method given in Sec. IV. Since the wave equation
is somewhat unfamiliar in this form, a brief derivative is
given in the Appendix. Explicitly

BGO
up (»t)= d&' cdt' u(x', t'), (x, t, x', t') — (x', t')G, (x,t, x', t')

fl P1 (2.7)

m.c s' ' dt

e, x
C

(2.8)

for each fixed e;.
For the well-behaved potentials assumed, the causality

and repulsive potential imply that

where BS is the surface of a sphere S of arbitrarily large
radius centered about and containing the potential, 8/Bn'
is the normal derivative to BS, and the integration over
dA' is over the surface of the sphere. Evaluation of Eq.
(2.7) in the far-field (

~

x'
~

—+ oo ) yields up (x, t) in terms
of the impulse-response function

up (x, t) =5(ct —e; x)

function explicitly and substituting Eq. (2.10) into (2.11)
yields

V(x) = —2(e;.V) lim [u (x, t ) —5(ct —e;.x) ] . (2.12)
(e; x)

f —+
C

This simple equation is called the key identity or funda-
mental identity from now on. This is the most striking re-
sult in Refs 6, 12, and 16 and is a direct consequence of
the propagation of singularities of the hyperbolic equa-
tion. The primary consequence is that the potential can
easily be determined if u(x, t) is known in the neighbor-
hood of the characteristic surface.

u(x, t):—0 (2.9)

for all t &e;.x/c. For times approaching e x/c from
above, the wave is inside the cone of influence E shown in

Fig. 1 and is nonzero. In this case, the most singular
terms ' are

u(x, t)= lim [5(ct—e; x)+A(x)6(ct —e;.x)],
(e;.x)

III. EXACT NEAR-FIELD INVERSION

A near-field inverse method is introduced in this sec-
tion. The utility of this method for solving the applied at-
mospheric problem of inverting for the electron density is
unknown. Consider the classical Gedankenexperiment
schematically shown in Fig. 2. A unit Dirac delta pulse

(2.10)
up (x, t)=5(ct —e;.x) (3.1)

where 5( ) is the Dirac delta distribution and 6( ) is the
Heaviside step function

1, r&0
&( )= '() ()

Substituting Eq. (2.5) into the wave equation, the coeffi-
cients of the first and second derivatives 5' and 5" vanish.
The coefficient of 5 is

V(x)= —2(e; V)A(x) (2.11)

where V is the gradient operator. Using the Heaviside

is launched along unit vector e; at large negative time.
Rather than measuring the far-field scattering amplitude
everywhere on a sphere, consider a series of observations
of the wave on a plane perpendicular to e;. Let z+ be a
coordinate on the axis of incidence past the support of the
potential. As the incident wave propagates through the
potential a jump appears at the wave front (e.x=ct ) as
indicated by Eq. (2.10) and as illustrated in Fig. 2. The
height of the jump is given by integrating the fundamen-
tal identity along the direction of incidence, say z,

A( , xzy)+= ——,
' f V(r)dz .

Here (x,y) are Cartesian coordinates normal to the direc-
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FIG. 2. Geometry for the line integral in Eq. (3.5) of the text.
The inset is a schematic of the wave amplitude near the charac-
teristic surface. The coefficient Ao is the height of the step
function.

f(s, e, ) = f6(s —e, r)f(r)d r . (3.4)

tion of incidence. The compact support of the potential
[i.e., V(x,y, z) =0, z & z+] allows the upper limit of the in-
tegral to be extended to infinity

A(x,y, z+)= ——, f V(r)dz . (3.3)

Thus, Eq. (3.2) expresses A(x,y, z ) as a set of line in-
tegrals of V along z at a given value of x and y. Given a
complete set of noise-free line integrals, the three-
dimensional Radon transform yields a unique recon-
struction of the potential. If f(r) is a good function
with compact support, its projections (onto planes whose
directed normal vectors from the origin are s =se, ) are

FIG. 3. Geometry of the three-dimensional Radon
transform. The support of Vis denoted as 8; e, = e(8, $) is the
unit vector in the scattered direction.

tuting the identity for the potential in the wave equation,
Eq. (1.2), leads to

1
2u« —2e V u x t=

C

e;.x

e;-x
uo x~ t u =0. (4.1)

If this nonlinear equation can be solved subject to both the
initial and final conditions, then the wave field, and then
the potential can be reconstructed. The initial condition
for large negative times (t~ —ao ) is

Such a plane with normal 8 is shown in Fig. 3. In terms
of this, the inverse transformation to Eq. (3.4) is u-uo (x, t)=5(ct —e; x),

and the final condition (t ++ ao ) is—

(4.2)

f(r)= — d e, f(s=e, -r, e, )8' ds2
(3.5) u-uo (x, t)

V(s, e, )= f 5(s e, .r)V(r)d' r—
2 fA (p)),z )5(s —e p(()d p)( (3.6)

The pair of equations, Eqs. (3.4) and (3.5), are a Radon
transform pair in 1.2(R ). If one exists among 1.2 func-
tions the inverse automatically exists (similar to Fourier
transforms).

It remains to determine the projection of the potential
onto planes from its line integrals. For a given direction
of incidence, Eq. (3.4) gives

=6(ct e; x)+ R(e;—,e„t
~

x
~
/c) . (4.3)

The existence of solutions to Eqs. (4.1)—(4.3) is not
known. However, if the potential is sufficiently weak it is
plausible that a solution may be obtained by starting with
the final condition and integrating Eq. '(4. l) backwards in
time.

A coupled integral equation representation of the inver-
sion procedure will also be obtained. The first equation is
the time-reversed integral equation for the total wave
given in Eq. (2.6) as

Here s and p~~ are vectors in the plane perpendicular to
the direction of incidence. To complete the inversion it is
necessary to determine V(s, e, ) for all possible directions
of s. This can be accomplished, for example, by taking
directions of incidence to vary over all 0 & P (m at
O=vr/2 in spherical coordinates. Once V(s, e, ) is known
Eq. (3.5) determines V(r).

IV. FAR-FIEI.D INVERSION

The fundamental identity simplifies the problem since
it uses the wave only at the characteristic surface. Substi-

Vo(x) = —2e;.V„ lim [uo (x, t)]
(e;.x)

C

(4.5)

and applying Eq. (2.11) to Eq. (4.4) yields the second
equation,

u(x, t)=uo (x,t)

+ fd'x' fdt'60 (x, t, x', t')V(x')u(x', t') . (4.4)

Note that uo (x, t) is defined in Eqs. (2.7) and (2.8).
Defining Vo(x) as
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V(x)= Vo(x) —2 fd'x' fdt' ' (e; V„) Go x, ,x', t' V(x')u(x', t') ' . (4.6)

The inverse method proceeds as follows. Suppose that the impulse-response R(e;,e„r) is known for one direction of in-
cidence e;, all scattered directions e, and all times r &0. For that direction of incidence u is obtained from Eq (2. .8) and
Vo is calculated from Eq. (4.5). Note that since R (e;,e„r) is required only for a fixed direction of incidence the data are
three-variable functions.

Equations (4.4)—(4.6) may be solved either self-consistently or by iteration. The series obtained from jointly iterating
u and Vin Eq. (4.6) becomes

e;.x
V(x)= Vo(x) —2 fd x' fdt''(e V ) Go x x' t' V (x')u (x' t')

C
(4.7)

For sufficiently weak potentials, this series is expected to
converge. In the weak scattering limit, Eq. (4.6) reduces

to

V(x)= fd'e, le, —e, I'
2&C

d R (e;,e„(e;—e, ).x/c )

dt'2
(4.8)

Also note that Eq. (4.8) can also be obtained by inverting

the first term in the Born-Neumann expansion of Eq.
(2 5)

This inversion procedure is designed to reconstruct

u(x, t) and V(x) for a fixed direction of incidence. If the
field u(x, t) is needed for other directions of incidence, it
can be obtained most simply by solving the direct scatter-

ing problem using V(x).

U. CONCLUSIONS

The time-domain pure inverse problem for the plasma
wave equation has been investigated. The heuristics are
much clearer in the time domain since the pulse evolves in

time. Additionally such unphysical idealization as mono-

chromatic plane waves are not needed. The causality and

hyperbolic singularity propagation properties give an iden-

tity, ' ' here Eq. (2.12). Based upon this result rather
than triangularity, inversions methods using near-field or
far-field scattering data were proposed.

The time-domain gives considerable insight into the sta-

bility of the inverse problem. Rather generally, the
derivations presented depend (either implicitly or explicit-

ly) on the second derivative of the measured data. See, for
example, Eqs. (3.4), (4.11), and (5.5). Thus, the inversion

methods for the plasma wave equation (and Schrodinger's

equation) presented here are expected to be sensitive to
small errors in the measured data.

The full Green's function is defined by

8« —V(x) G(x, x—', t —t')=5 (x—x')5(t t') . —
tt

Low's equation in operator notation is

6-+=6'+-+O'-'VG+-.
The representation theorem yields

(A1)

Although this paper discusses only the plasma wave

equation, the methods developed bear a striking resem-
blance to well-established acoustic methods. The non-
linear differential equation is observed to be similar to
wave migration. The near-field inversion of Sec. III is
similar to Devaney's acoustic diffraction tomography.

The far-field inverse-scattering methods discussed in

this paper have the general property of depending upon a
three-variable subspace of the impulse-response function.
This situation is to be contrasted with the inverse methods

of Newton' which require a five-variable data function.
Additional work is required to determine the existence

of solutions and their realization via numerical algo-
rithms. In any case, a physically clear discussion of the

problem has provided several results with a smaller data
set than customary. The compact support of V guaran-

tees that a free wave occurs outside the region containing
this support. The distorted wave perturbation calcula-

tions of Morawetz and Kriegsmann in one space dimen-

sion give considerable hope for the formalism presented

here. Finally, the time-domain work presented here pro-
vides a natural interpretation of Newton's work'"' in the

frequency domain. Causality together with the restric-

tions on the potential here combine to imply (more than)

the analyticity used there. '

APPENDIX

BG (x, t,x', t),, ~u(x, t )

u(x, t)= f dA' f cdt' u(x', t') ' ' ' —G (x, t»'~t')
QS' —ao Bn Bn

(A3)

Here the integration is over the surface of the sphere S de-

fined just below Eq. (2.7). Substitution of (A2) into (A3)
yields the time-reversed wave equation (2.6) and uo (x, t)
as given in Eq. (2.7).
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