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Diffusion in a two-dimensional periodic potential
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We report a numerical study of the self-diffusion of a single-point particle in a two-dimensional
periodic potential of triangular symmetry. The self-diffusion coefficient is obtained via computer
simulations for several values of the particle energy. We find that the self-diffusion process is corn-
plicated due to the existence of correlated motions involving two or more cells. A random-walk
model which takes into account the effects of correlated motions involving only the nearest-neighbor
cells is constructed, and compared with the experimental results.

I. INTRODUCTION

In this paper we present a numerical study of the self-
diffusion of a single-point particle in a two-dimensional
periodic potential of the following form:

V(x,y) = cos(x +y/v 3)+cos(x —y/~3)
+cos(2y/v 3) .

The potential V(x,y) defines an infinite lattice of triangu-
lar symmetry. The geometry is shown in Fig. 1. Each
cell is characterized by a minimum at the center of the
cell, maxima at the three corners, and saddle points at the
midpoints of the edges. The point particle moves with a
constant energy E on this potential surface. If the energy
E is less than the saddle-point energy, V„ze~,(= —1.0),
then the particle is trapped in a single cell. But if the en-
ergy E is greater than the saddle-point energy, the particle
can make transitions to the adjacent cells and can wander
over the entire plane. The dynamical behavior of the sys-
tem is determined completely by the energy E of the par-
ticle. The width W of the saddle boundary available to
the particle for exit to another cell is given by

8'=2 m —cos
2

exists in the high-density regime. We are not aware of
any such rigorous results for the continuous potential de-
fined by Eq (1).. Since the self-diffusion coefficient D
does not exist for the motion of a point particle on a
square lattice of potential cos(x)+cos(y), the existence of
D for the potential (1) is not obvious. When the energy E
of the particle is slightly above the saddle-point energy,
however, one suspects that the present system will be er-
godic and there will be a well-defined diffusion coeffi-
cient. Our experimental results support this view. How-
ever, there is a threshold energy E, above which the ve-
locity correlation function undergoes a qualitative change
and the diffusion coefficient does not appear to exist. We
find that the threshold energy is approximately
E, =- —0.4. The present study is confined to values of the
energy E less than E, .

The motivation for the present study comes partly from
the recent work of Machta and Zwanzig (MZ) on the
self-diffusion in a periodic Lorentz gas. These authors
found that in the high-density regime a simple picture of
random walks between triangular trapping regions gives a
surprisingly good estimate of the self-diffusion coefficient
D. For the present problem, however, the simple
random-walk picture breaks down due to correlated re-

When the energy E is close to V„zq~„8' is small com-
pared to the length of an edge of the cell and the particle
may spend a long time in each cell before making a transi-
tion to the adjacent cell. On the other hand, when E is
much larger than V„qq~„ the particle sees an infinite hor-
izon and may move a long distance without spending
much time in any cell. In this paper, we will mainly
study the dynamics of the point particle for values of the
energy E close to V„~z~, .

A single-point particle in the periodic potential (1) is a
deterministic system. It is of considerable theoretical in-
terest to see if such a simple system can show diffusive
behavior. The present dynamical system is a generaliza-
tion of the periodic Lorentz gas where a single-point par-
ticle moves in a triangular array of immobile disc scatter-
ers. For the periodic Lorentz gas, rigorous results of Bun-
imovich and Sinai show that the self-diffusion coefficient

FIG. 1. Geometry of the periodic potential (I). The positions
of maxima, minima„and saddle points are denoted by M, m,
and S, respectively.
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turns of the particle to the initial cell. A heuristic correc-
tion of the random-walk model gives reasonable agree-
ment with the simulation results.

The contents of the paper are as follows. In the next
sect1on we d1scuss the computer simulation and p1esent
the experimental results. Section III contains a theoretical
analysis of the problem. Section IV concludes with a brief
d1scusslon.

II. SIMULATION AND RESULTS
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The computer simulation of the motion of a point par-
ticle on the potential surface given by Eq. (1) was carried
out for several values of the energy E of the particle, The
classical equations of motion were integrated using Gear's
fifth-order predictor-corrector algorithm. The energy of
the particle was conserved at least up to five significant
digits. The velocity correlation function was calculated as
follows. Initially the particle was placed at a random po-
sition with random velocities constrained to total energy
E. The subsequent motion of the particle was recorded
up to a total time of 60000. The velocity correlation
function (VCF) was then computed by taking the standard
time average. For lower energies (E(—0.8), the VCF
was computed up to a time of 100, whereas for higher
values of E, calculation of the VCF up to a time of 60
was found sufficient. The self-diffusion coefficient was
calculated by integrating the velocity correlation function.
The whole procedure was repeated three times for each
energy to obtain a measure of the reproducibility.

A well-defined self-diffusion coefficient is obtained,
within the numerical accuracy, for values of the energy
less than a critical value E,= —0.4. Above this critical
energy, the velocity correlation function undergoes a qual-
itative change in its long-time behavior, characterized by a
much slower decay than the ones observed below E, .
Also, we find that the integral defining the self-diffusion
coefficient fails to converge to any well-defined value, in
contrast to the situation below E, . However, we have not
carried out a detailed analysis of the crossover behavior.
The present study is confined to values of the energy E
significantly less than E, . Figures 2(a)—2(c) show the
computed velocity correlation function for three values of
the energy. The graphs reveal surprisingly rich structures,
similar to the ones observed by MZ in their simulation of
the periodic Lorentz gas.

Table I records the values of the self-diffusion coeffi-
cient of the point particle for several values of the energy.
The error bars in Table I represent the spread in the
values obtained in three different runs starting with dif-
ferent initial conditions. We attribute this spread to the
finite time averaging of the VCF.

The dynamics underlying the rich structure of the ve-
locity correlation function is best understood by analyzing
its Fourier transform. Fourier transform was performed
using the IMSL (International Mathematical and Statisti-
cal Libraries, Inc. ) supplied fast Fourier-transform sub-
routine FFTRC. A total number of 2048 VCF points was
used with a time spacing equal to 0.04. Near a sharp peak
in the Fourier spectrum, a direct numerical integration
was employed to obtain better resolution in the frequency
plane.
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FIR. 2. Velocity correlation function C„(t) for (a) E= —0.9,
(b) E=—0.8, and (c) E= —0.7.
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0.31+0.01
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TABI.E I. The values of the self-diffusion coefficient D as a
function of the energy E as determined from the computer
simulation.
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Figures 3(a)—3(c) show the frequency spectrum C, (co)
for three values of the particle energy. At low values of
E, the spectrum consists of two sharp peaks. The peak at
higher frequency occurs always near co= 1. This peak is
due to the "trapping" of the particle near the potential
minimum at the center of the cell. As expected, this peak
becomes weaker as the energy of the particle is increased.
The sharp, first peak, however, is somewhat unexpected.
The position of this peak, at frequency co+(E), depends
weakly on energy. It dominates the dynamics in the

intermediate-energy regime ( —0.8 &E & —0.6) and has an
appreciable effect even at higher energies where the
second peak, due to trapping at a cell minimum, disap-
pears.

The origin of the first peak at frequency coR(E) can be
traced back to quasiperiodic motions of trajectories mov-
ing between any two adjacent cells. A significant number
of trajectories, originating in one cell and entering a
nearest-neighbor cell at an arbitrary time t&, return to the
original cell during a short-time interval centered around
a later time t2 t&+2n—--lcoII. These quasiperiodic trajec-
tories can persist for a rather long time. In the next sec-
tion, we present a theoretical calculation of co& and make
the above discussion more quantitative.

III. THEORETICAL ANALYSIS

C„((u)

0
0.0

4

Cy (QJ) 2

0.5 l.0 1.5

E = —0.8

I I
t

I I I I
/

I I I I
l

I I I (

2.0

&n the first part of this section we present a theoretical
estimate of the characteristic frequency co+ of correlated
returns. In the second part we shall discuss the inadequa-
cy of the simple random-walk model of MZ and construct
an ad hoc correction to such a model to include the effect
of correlated returns.

The frequency co~(E) of the quasiperiodic motion of a
point particle between two adjacent cells may be evaluated
as follows. Consider a trajectory at x=m traveling be-
tween the two cells indicated by I and II in Fig. 1. At
time t =0, the particle enters cell II with an outward ve-
locity normal to the x axis and with a magnitude equal to
&2(E+1). We want to calculate the time T~ it takes to
return to the original cell. If the correlated return is
mainly due to the bouncing back of the particles from the
maximum opposite to the exit window between cells I and
II, then this time Tz is related to co& by

2&
2~B ~8

(3)

0
O.O 0.5 l.O l.5 2.0 3

2X(m) 2V'1+2' (4)

With the given initial conditions, the classical equations
of motion can be integrated to obtain
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where II (m) is the standard complete elliptic integral, and

e=E —V dd~ =E + 1
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FIG. 3. Fourier spectrum C,(m) of the velocity correlation
function for (a) E= —0.9, (b) E=—0.8, and (c) E= —0.7. The
smallest ripples may be due to truncation of the Fourier
transform.

The return frequency predicted by Eq. (4) is compared in
Fig. 4 with the experimental values of the position of the
first peak in the frequency spectrum of the VCF. The
good agreement confirms that this first peak is mainly
due to the quasiperiodic motion between two nearest-
neighbor cells.

It is now obvious that the diffusion process in the
present system cannot be described as an uncorrelated ran-
darn walk between triangular trapping regions. This is in
marked contrast to the situation in the periodic Lorentz
gas where the random-walk model works surprisingly
well. As pointed out by MZ, the crucial feature of the
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FICi. 4. Theoretical prediction (solid line) for co&{E),given by
Eq. (4), is compared with the experimental results (crosses).

periodic Lorentz gas which allows an accurate mapping of
the dynamical system into a stochastic model is that the
trajectories are strongly mixed within each trapping re-
gion in the configuration space. In effect the particle
spends sufficient time in each trap to forget its initial con-
ditions. The transitions between traps are, to a good ap-
proximation, uncorrelated. The present model does not
satisfy the criteria of strong mixing of trajectories in indi-
vidual trapping regions.

However, we find experimentally well-defined diffusion
constants for some values of the particle energy E. Thus,
some kind of random-walk description of the diffusion
process should hold. The exact formulation of such a
description is not simple. We, therefore, choose an ap-
proximate procedure to calculate the self-diffusion con-
stant. We assume that the self-diffusion coefficient D is
still given by the standard expression for random walks on
two-dimensional lattices

t'2
D= k

where J,(S) is the outgoing flux crossing the saddle sur-
face S at time t =0. JR(S,t) is the intrinsically negative
flux of particles that return to the original surface at a
later time t. The upper limit of integration in the second
term is restricted to a maximum time TM in order to
eliminate contribution from long-time "thermalized" re-
turns. The precise value of TM, as we shall see, is not im-
portant due to the separation of time scale mentioned ear-
lier. The brackets ( ), in Eq. (9) denote a microcanonical
averaging over the original ceB.

In the absence of correlated returns, the second term on
the right-hand side of Eq. (9) is zero and k is equal to
(J,(S)), which is just the transition-state rate constant.
In the case of the periodic Lorentz gas, this term alone
was sufficient. But in the present case, the second term
plays an important role. It gives a finite negative contri-
bution to the total rate constant k.

Next, we approximate Eq. (9) by

k=(J, (S)),—(J,(S)),J dtPR(t), (10)

where PR(t) is the conditional probability of return be-
tween time t and t +dt given that the particle crossed the
saddle surface at t =0 to enter the adjacent cell. The in-
tegral over PR (t) is just the fraction of particles that have
returned to the original cell within time T~. So, we
rewrite Eq. (10) in the following simple form:

where

Mf ( TM ) =f dt PR(t)

is the fraction returned within TM. We are still faced
with the formidable problem of calculating PR(t), hence
f(TM). An analytic calculation of PR(t) appears to be
nontrivial. However, it is straightforward to estimate
f ( TM ) by a computer simulation via microcanonical
averaging. We have done this and the behavior of f as a
function of the cutoff time TM for two values of the ener-

gy E is shown in Fig. 5. In each case there is a sharp rise

where I is the distance between the traps, given by
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k = (J,(S)),+I dt( J,(S)JR(S,t) ), , (9)

and k is now interpreted as the rate of "permanent" es-
cape from a trapping region. Thus, the nonreactive trajec-
tories which return to the original cell without getting
trapped or "thermalized" in the adjacent cells do not con-
tribute to k. We shall see that there is a clear separation
of time scale between the early correlated returns and the
later thermalized returns. This separation of time scale
will allow us to estimate k unambiguously. In the follow-
ing we shall consider correlated returns involving two
cells only. Higher-order correlations will be neglected.

Following Northrup and Hynes, " we write the expres-
sion for the rate constant k in the following time correla-
tion form:
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FICx. 5. Numerical values of the function f(T~), defined by
Eq. (12), are plotted against the cutoff time TM (defined in the
text) for two values of the energy E. The values of the energy
are labeled on the graph.
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FIG. 6. Theoretical prediction (solid line) for D is compared
with the experimental results (solid circles with error bars). 'We

have also plotted the prediction of the uncorrelated random-
walk model (dashed line).
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The self-diffusion coefficient D can be obtained by com-
bining Eqs. (7), (8), (11)—(14).

Figure 6 records the results of this calculation along
with the experimental values of D. For comparison, we
have also drawn the results of the simple random-walk
model without corrections for the correlated returns. As
can be seen from the graph, the modified random-walk
model provides a good description of the diffusion coeffi-
cient in the intermediate-energy regime. However, the
agreement for values of E close to V„dd&, is poor. In this
regime, correlated returns which involve more than two
cells may be important. The failure of the theoretical pre-
diction for higher values of E(E& —0.6) is due to a
breakdown of the random-walk picture; cells no longer act
as good traps for the particle.

IV. CONCLUSION

(13)

where
m+ 8'/2I= dx(E —2 coax —1)'

g —W/2

A =~3' 3f d—ycos '[a(y, E)j+ y~,0 2

(14a)

(14b)

in f followed by a we11-defined plateau region. The sharp
rise is in agreement with our earlier observation that the
motion of returning trajectories has an oscillatory charac-
ter with a well-defined frequency co~. The value of f at
the plateau is the fraction f(TM) to be used. in Eq. (11).
The existence of a plateau, which makes the choice of f
unambiguous, is due to the separation of time scales in-
volved between correlated returns and latter "thermal-
ized" returns.

We still have to calculate the transition-state rate
(J,(s)),. This can be done by methods discussed in Refs.
2 and 5. Here we simply quote the final expression

(J,(s)),=

Our motivation for the foregoing study was twofold.
Firstly, we wanted to know whether the deterministic
motion of a point particle in potential (1) can become dif-
fusive at long times. Since the self-diffusion coefficient
does not exist for the motion of a point particle in a
square lattice of potential cosx+cosy, the answer for the
present problem was not obvious. Secondly, we wanted to
see if the simple picture of diffusion as uncorrelated ran-
dom walks of the particle between triangular cells works
for this system as well.

Our numerical work gives well-defined values of the
self-diffusion coefficient for values of the energy below a
threshold value E, . Moreover, we find that the velocity
correlation function and the self-diffusion coefficient have
some new features that distinguish the present system
from the periodic Lorentz gas.

The breakdown of the uncorrelated random-walk model
of Machta and Zwanzig is unfortunate but not surprising.
In some realistic situations the details of the potential play
an important role.
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