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Coupled quartic anharmonic oscillators, Painleve analysis, and integrability
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A detailed and systematic investigation of the Painleve (P) properties of coupled quartic anhar-
monic oscillators is presented. Considering the two coupled oscillators we show that there exist four
different parametric cases possessing P properties, two are identified with strong P property and the
other two with weak P property. For each of these four cases explicit second integrals of motion
can also be constructed directly. We then consider the three-coupled-oscillator system and identify
three cases, one with strong P and the other two with weak P nature. We have explicitly derived the
second and third integrals of motion for a special case of the strong P case, but for the remaining
cases they have not yet been found. Finally, we extend the procedure to the X coupled oscillators
and succeed to show that there exist three cases possessing P properties, which are the natural gen-
eralizations of the three-coupled-oscillator system.

I. INTRODUCTION
I

It is well known that the evolution of typical dynamical
systems' is described by nonlinear ordinary or partial
differential equations and that their analysis is complicat-
ed due to the absence of systematic general methods of
solving them. In general the phase trajectories of such
systems are irregular, complicated, and sensitive to initial
conditions. Particularly, completely integrable nonlinear
dynamical systems are rather limited and therefore there
is an intensive search for them in recent years. In this
connection several years ago Painleve and his contem-
poraries identified a class of second-order, nonlinear ordi-
nary differential equations in which the movable singular-
ities exhibited by the general solution are only poles in the
complex time plane. ' Such systems are called Painleve
type or simply P type, possessing the P property.

Recently the main objective of Painleve has been ex-
ploited by Ablowitz, Ramani, and Segur (ARS), who
pointed out the intimate connection between the singulari-
ty structure and integrability of the system, particularly
for soliton equations. They have also conjectured that
every nonlinear ordinary differential equation obtained by
an exact'reduction of such soliton equations is of P type.
This has been verified for a large class of nonlinear partial
differential equations by Lakshmanan and Kaliappan us-
ing Lie point symmetries. 'The term strong-P is used in
connection with ARS conjecture, wherein the solution in
the neighborhood of an arbitrary singularity t' can be ex-
pressed as ~=(t —t') t', where p is an integer, determined
solely from the leading order so that the movable algebra-
ic or logarithmic branch points as well as essential singu-
larities are excluded.

It is generally believed that the P property of the solu-
tions associated with equation of motion is an effective
tool to test the integrability of nonlinear dynamical sys-
tems. In fact, the importance of this property was appre-
ciated by Kowalevskayas in the theory of motion of a rig-
id body rotating about a fixed point, 80 years ago.
Bountis, Segur, and Vivaldi have used this idea on the
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generalized Henon-Heiles system, quartic anharmonic os-
cillators, and the Toda lattice system, and identified some
of the integrable cases. The concept has been again ap-
plied to the Henon-Heiles system by Chang, Tabor, and
Weiss, ' who investigated new integrable cases. Other re-
cent related works include that of Menyuk, Chen, and
Lee" on three-wave interactions in 2(2K+I) variables
and that of Tabor and Weiss' on the integrability proper-
ties of the well-known Lorenz system, which is dissipa-
tive.

Recently Ramani, Dorizzi, and Cxrammaticos' have
suggested that the existing ARS algorithm can be general-
ized by introducing the so-called weak P property. Weak
P property means that the solution in the neighborhood of
the movable singularity t* can be expressed as an expan-
sion in powers of w=(t t') '~"—

, where n must be
"natural" and that it depends purely on the leading-order
behavior of the singularity and the nature of the poten-
tial. ' '5 They have also conjectured that the integrable
systems, particularly with two degrees of freedom, have
weak P property, though, ordinarily, one could not recov-
er poles either by raising the solution to the nth power or
by a change of independent variables since the singularity
is movable. In fact, they have presented several cases of
polynomial potentials having this property. It is natural
then to expect similar possibilities for systems having
more than two degrees of freedom.

In this paper a systematic search of the P properties is
made for the equations of motion of two, three, and up to

coupled quartic anharmonic oscillator systems' '
given by the Hamiltonians
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where A, B, C, A;, a, P, a;, P;J, y, 5, e, andcoareparam-
eters. It is well known that the above type of Hamiltonian
systems are used widely as models in lattice dynamics, '

condensed-matter theory, ' field theory, astrophysics, '

etc. The equations of motion for the system (1) are

x = —2Ax —4ax —25xy

y' = 2By —4—Py —25x y,
while for the system (2) they are

x = —2Ax —4' —25xy —2mxz

y' = 2By —4'——25x y —2eyz

z = —2Cz —4/z —2Q)x z —2' z

and for the system (3), we obtain

(4b)

(5c)

~ ~ 3 2x = —2A x —4a x. — P"x x.l l l l EJ l J
l~J =1
(j&i)

i =1,2, . . . , 1V

(6)

II. PAINLEVE ANALYSIS

Considering an nth order ordinary differential equation
(ODE) having the form

where the double overdot denotes two differentiations
with respect to time. %'e carry out a systematic singulari-
ty analysis of the systems (4)—(6) and identify those cases
whose movable singularities are only poles (or transform-
able to poles), so that the solution has a sufficient number
of arbitrary constants. We also identify integrals of
motion wherever possible.

The plan of the paper is as follows. To be self-
contained we briefly outline the salient features of P
analysis in Sec. II. In Sec. III we apply this procedure to
the equation of motion (4) and show that there exist four
different parametric cases possessing P properties, two of
which are associated with strong P properties and the
remaining two with weak P properties. At the end of this
section we explicitly derive the second integrals of motion,
thereby substantiating the complete integrability. In Sec.
IV a similar analysis is carried out for the three-coupled-
oscillator system (5) where three P cases are identified.
At the end of this section an effort is made to derive the
second and third integrals of motion but we succeed only
for a special case of the strong-P case. In Sec. V we ex-
tend this procedure to the equations of motion of %-
coupled-oscillator system (6) and successfully isolate three
sets of parametric values possessing 2X arbitrary con-
stants which are generalizations of three-coupled-
oscillator systems. In Sec. VI we give a brief discussion of
our results and other features of the P property.

(8)

(2) Identification of the powers of (8) at which the arbi-
trary parameters can enter, called resonances. Apart fromt, we have (n —1) other arbitrary constants for (8) to be a
general solution of (7). In order to find the resonances we
substitute x=aor +OH+; r=t t, in (7),—retaining
only the leading-order terms. The reduced equation will
be of the forrq Q(r)r '0=0, q, )(q+r n), where Q(—r)
is polynomial of degree n. Then the resonance values are
determined from the roots of Q(r)=0. For the general
solution of (7), Q(r) must have (n —1) nonnegative dis-
tinct roots of real integers, apart from one value r = —1

representing the arbitrariness of t
(3) The final step consists of verifying that in the

Laurent series (8) at the resonance values sufficient num-
ber of arbitrary constants exist without the introduction
of logarithmic branch points.

We may note that in typical cases, several leading-order
behaviors can coexist and that it is essential to verify that
the solution is free from movable branch points not only
in the full (arbitrary) parameter branches of the leading
order which we call main branches (MB), but also in the
remaining lesser parameter branches [subsidiary branches
(SB)] as well for the P property to hold. In the following
we apply the above method systematically to the coupled
anharmonic oscillator systems (4)—(6).

III. P PROPERTIES OF TWO QUARTICALLY
COUPLED OSCILLATORS

A. Leading-order behaviors and resonances

Considering (4), we assume that the leading orders are

x =aori', y =boy, ~=(t t')~0 . —(9)

To determine p, q, ap, and bp we use (9) in (4) and obtain
a pair of leading-order equations

app(p —1)ri' = 4aaor 25aobor—+»—
bpq(q —1)r» 2= 4Pbor» 25apbod—t'+» . —

(10a)

(10b)

From Eqs. (10) we can identify the following two distinct
sets of solutions:
case 1,

G X ~ ~ 1 ~ dX=F(t,x,x, . . . , x" ), x=
dt" ' ' ' ' ' ' dt

where I: is real, analytic in t, and algebraic in its other ar-
guments, and ignoring, for the present, essential singulari-
ties, the P analysis essentially consists ' of the following
three steps.

(1) Determination of the leading-order behaviors of x in
a sufficiently small neighborhood of a movable singularity
t in the form x =ap(t t )», a—s t~t', ap ——const. Then
(i) if all the allowed q s are negative integers, the solution
may correspond to the strong-P property; (ii) if any of the
q's is a rational fraction, the solution may be associated
with the weak-P property. In either case, the solution
takes the form of a Laurent series,
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p = —1, q = —1, ap ——(5—2P)/b, ), bo ——(5—2a)/b, „h,=4aP —5

case 2a,

p = —I, q= —, t 1+[1+(45)/a]' I & —,', ao= —,bp ——arbitrary;2'
case 21,

(12a)

p = —I, q= —, I 1 —[1+(45)/a]' I & —1, ap ———,bp ——arbitrary .
2A

(12b)

Due to the complete symmetry between x and y variables in H2 or in (4), we do not treat the other possibility q = —1,
p & —1 as distinct from (12).

For finding the resonances, we substitute

x =aor~+Q(~~+", y =bp++Qp&+'

into (4). From the dominant terms we obtain a system of linear algebraic equations,

M2(r)Q=O, Q=(Q), Qp)

where M2(r) is a 2&(2 matrix dependent on r. In order to have a nontrivial set of solutions (Q~, Q2) we require that

detM2(r) =0 .

(13)

(14)

(15)

M2(r) =
45apbo

so that using (11),Eq. (15) becomes

For case 1, the form of Mq(r) is

(r —1)(r —2) +Saa p
—2 45aobo

(r —1)(r —2)+ SPbo —2
(16a)

(r2 —3r 4)(r 3r+Xp—) =0, —Xp ——4[1+2(aa +opb )o] .

Thus for case 1, the resonances occur at

r = —1, 4, —,+ —,(9—4Xp)'

(16b)

(17)

The root —1 corresponds to the arbitrariness of t in (9). Furthermore, for Painleve, all the other resonances must be
nonnegative integers. Equation (17) along with (11) then lead to the following two possibilities with associated
parametric restrictions:
case 1 (i),

Xo=2~ a&o+Pbo= —~, r = —1, 1,2,4, 5=2[a+P+(3aP —a —P )' ],
case 1 (ii),

Xp ——0, aao+Pbo ————,', r = —1,0,3,4, 5=a+P+(6aP —3a —3P )+'

(18a)

(18b)

M2(r)=diag[r —3r+Saao, r(r +2q —1)],
so that from (15), the resonance values become

(19)

For case 2, leading orders (12), the expression for Mq(r)
degenerates to

q = ——,, 3a=45, r = —1024 .

Thus for the two-coupled-oscillator system (1) or (4), we
identify three sets of full resonances, namely (18a), (18b),
and (21).

r = —1,0,(1—2q), 4 . (20)

Case 2(a). In (20), for (1—2q) & 0, q &0. But this is in
general contradictory to the leading-order singularity na-
ture, q & 2, Eq. (12a). The only consistent case q = —,

' re-
quires both ao, and bo to be arbitrary, which is not true as
seen from (12a). So the associated P branch can have a
lesser number of arbitrary constants only.

Case 2(b). Using (12b) in (19), we infer two possibili-
ties: q =0, and so 5=0, the uncoupled case, and

B. Identifying the arbitrary constants of integration

Introducing now the series expansions
r =4S

x =aor~+ g akv~+k,
k&0

r. =4'S

y =boy+ g bI,H+, r~0,
. k~0

(22)
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in (4) and collecting and equating the coefficients of the
powers of (ri'+",H+" ) to zero, we obtain a system
of linear algebraic equations for ak and bk which when
solved will show the nature of x (t) and y (t). We will deal
with each one of the cases 1 (i), 1 (ii), and 2b separately.

bpa4 ap&4 = 2 2 2 2«obz —boa2»
2apbp

(29)

showing that a4 (or b4) is arbitrary. Thus for the choice
(27b), without any restriction on A,B, we have a full
four-parameter branch of solution.

E1X1 0 ~1 [a 1 bi ]
24aa p
—1 25apbp

25aobo 4/3bo —1

(23)

where ao, bo are given in (11). Then for a& (or bi) to be
arbitrary, we require det I I ——0, which means

5=2[(a+P)+(a +P aP)' —] .

Comparing this with the earlier one given in (18a), we
conclude that a=P, 5=2a, or 5=6a. However, from
(10) and (11) we infer that for the value 5=2a, a=P, ei-
ther ap or bp becomes arbitrary, which is not indicated by
the resonance values in (18a). We therefore infer that, at
this stage, the only allowed set of parametric values for
case 1(i) is

1. Strong-P cases

Case 1(i). Here the resonance values are r = —1, 1,2,4
and the parameters a, P, and 5 are restricted as in (18a).
From the coefficients of (r,r ) in (4), we obtain

(4izao —1)az = —ciao+5(5 —8P)aobo
4

25aoa 2+0 Xb 2
———B—(5 48/35+—288/3 )

2 bp

12

(30a)

(30b)

Using (12b) and (21) we infer that b2 is arbitrary only if

A =4B, 5 —18P5+72P =0, (31)

and that a2 can be determined uniquely. We further veri-
fy that in a3, b3 there is no arbitrariness, while a& result-
ing from the coefficients (r', r ~

) is arbitrary and b& is
fixed without any further restrictions on the parameters.
Thus x(t), y(t) in (4) have a full four-parameter branch
of solution for the parametric values, case 2b(i),

2. 8'eak- P cases

Case 2b. From Eqs. (12b) and (21) we have p = —1,
q = ——,', 3a=45, r = —1,0,2,4, ao ———1/2a, and bo, ar-
bitrary. Proceeding as before we can find ai and bi
uniquely. i Then from the coefficients of (r ', r '

) in (4),
we obtain

a=p, 5=6a . (24)

Proceeding further with (24), and from the coefficients
of (r ', r ') we obtain

3a =45, P=, A =4B,12'

(32a)
3 3 3 32+ 2~2 4aP 2 2+ 2~2 + P

so that the coefficient az (or b2) is arbitrary if

(25) a=16P, 5=12P, A =4B

and case 2b(ii),

2aao+5bo= —1 5ao+2Pbo= —1 .

For ao (or bo) to be arbitrary, we require that

(27a)

In a similar way from the coefficients of (r, r ) and
(r', r') we uniquely determine the coefficients a3 and b3
in terms of the previous ones, while either one of the coef-
ficients a4, b4 is arbitrary without any additional con-
straints on the parameters, and thus leading to a full
four-parameter branch of solution for the choice (24) and
(26).

Case 1(ii). The resonance values here are r = —1,0,3,4
with the parametric condition given in (18b). From the
leading-order analysis we have

or

3a =45, /3= —,A =4B6'

(32b)

a=8P, 5=6P, A =4B .

The above details of the P properties, for the main
branches (MB) of cases 1(i), 1(ii), 2b(i), and 2b(ii) are sum-
marized in Table I. It remains only to check that for each
of the above four parametric choices, the remaining
branches [subsidiary branches (SB)] do not exhibit any
movable branch points. We do verify explicitly that this
is indeed the case for all the above four possibilities. The
details are also included in Table I. Thus we conclude
that all the four possibilities given in Table I indeed pos-
sess the Painleve property.

a=P, 5=2a, (27b) C. Integrals of motion

which also satisfies the form of 5 in (18b) identically.
Proceeding further we determine the coefficients ai, bi,
a2, and b2. Comparing then the coefficients of (r,r ) in
(4), we obtain a single equation

apa3+&pb3 =0 .
and so a3 (or b3) is arbitrary. Finally the coefficients of
(r', r') again lead to the single equation

For each one of the four Painleve cases given in Table I,
we now explicitly construct a second integral of motion
(the first being the Hamiltonian) thereby substantiating
the previous discussions. For this purpose we apply the
modified %'hittaker' analysis to construct the integrals of
motion for arbitrary energy (for generalization see also
Hall ). Restricting ourselves to velocities up to fourth
power„ the second integral of motion may be written as
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TABLE I. Painleve cases of the two-coupled quartic anharmonic oscillator system. (Note: In the subsidiary branches r & —1 do
not contribute to the Laurent series. )

Cases
(see text)

Parametric
restrictions

a=p, 5=6a,
A=8

Main or
subsidiary Leading order

branch p q

—1

2

Resonances

—1, 1, 2, 4
—5, —1, 0, 4

No. of
arbitrary
constants Second integral

p„p„+2Axy+4uxy(x +y )

a=p, 5=2a —1, 0, 3, 4

—3, —1, 0, 4

{~p yp )2+—{B A ){p~+~x4+~~2y~+ A~2)

21(i) a=16P, 5=12P,
A =48

MB
SB-1
SB-2

1

2

—1
3
2

—1, 0, 2, 4
—2, —1, 4, 5
—2, —1, 0, 4

—xp» +yp„p» +2(B + 4px ')xy'+ 4pxy'

2b(ii) n =8P, 5=6P,
A =4B

MB
SB-1
SB-2

1

2
3
2
3
2

—1, 0, 2, 4
—5, —1, 4, 8
—2, —1, 0, 4

p»+4(B+Py2+6Px )y p»
—16Pxy p„p»+4Py p„
+4B(B+2py2+4px2)y +4p2(2x2+y ) y

I=fPx+hPxI»y+4PxJ»y +k&xI»y

+Esp,'+f6'.'+km. u, +le,'+4 (33)

$4= —(4&oy+&1)x +(3'»jog+'g&)x

—-
(2A oy +k2x )x +1 oy +P & (35d)

where g' s are functions of (x,y) alone. To obtain g s we
demand that the Poisson bracket III1P& vanishes.
Equating now the coefficients of each power of the veloci-
ties p„p~, m, n = I,2, . . . , 5 separateiy to zero, we obtain a
system of overdetermined partial differential equations:

ks=eox —'Pox +~ox —'Yoy+'V2 (35e)

where e s, g s, A, s, and y s are integration constants.
The next set of partial differential equations is

ay, ag, ag, ag, ag,

ag, ag, ag, ag, ag,

By successively solving (34) we find that

ki = e'oy +~ty +e2y +e'sy+ e4

g'2 —— (4eoy +3eL)» +2e2y—+as)x

+'9' +'9& +'99'+'93

(34)

(35a)

(35b)

24 +ky+
Bx

(36)

$7x+2$~'+ =0 .

ag, ag,
4g', x +$2y+ =0, 3g'2x +2('sy + + =0,Bx By Bx

Cs .. .. ~Os
2gsx+3$4y+ + =0, $4X+4gsy+ =0,

By Bx By

g3 = (6eoy +3Ejy +62)X''
—(3v)oy +2rl |y +'gg)x +A,oy +A, Q +A,p, (35c)

Using Eqs. (4) and (35) in Eqs. (36), we find that the con-
sistency holds only for the following parametric values so
that second integrals of motion of the form (33) exist:

a=p, 5=6a, A =8, I~ ——p„p„+2Axy+4axy(x +y ), (37)

2

a=/3, 5=2a, Ip ——(xp» —yp„) + (8 —A) +ax +ax—y +gx2 Px
A'' 2

a =16p, 5=12p, A =48, Is ———xp„+yp„p»+2(8 +4px 2)xy2+4pxy

a=8P, 5=6P, A =48,

I4 I»»+4(8+py +6px——)y I»» 16pxy S„I»»+4py I»—„+48(8+2py +4px )y +4p (2x +y ) y

(38)

(39)

(40)
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It is interesting to show that the first three cases above
are not only integrable but also separable.

(i) In the case of (37), Eqs. (4) can be decoupled in terms
of the linearly transformed variables u = (x +y), v

=(x —y), to obtain u+2Au+4au =0, v+2Av+4av
=0. These simply comprise the one-dimensional anhar-
monic oscillator equation of motion whose solution may
be readily given in terms of the Jacobian elliptic functions
u =$]cn(co)I+5&), v =$2cn(ci)2t+52), where co; =4(A
+a$; ), $; and 5;, i =1, 2 are integration constants. The
associated energy integrals are

Hg =
~ (pg +2Au +2cxu )

and

H„= —,'(p„+2Av +2av )

so that H2 ———,'(H„+H„), while the second integral of
motion is

I)
———,

' (H„H, ) =p—„py+ 2Axy+ 4axy(x '+y 2),

as given by (37). The form of I& has also been noted in
Ref. 9.

(ii) In the case of (38), if we transform the coordinates x
and y to polar coordinates x =p cos8, y =p sin8, then for
the parametric values a=P, 5=2P, and A =B, the Ham-
iltonian H2 is independent of 0. Then it is straightfor-
ward to check that the angular momentum
I2 ——xp~ —yp„=const. Therefore, the Hamiltonian may
be written as

function is given by k =2aafP&/1 ~, 0&k~&Pe &1. For
A&B, the system is not separable in spherical polar coor-
dinates. However the resulting Hamilton- Jacobi equation
for the action Sp,

p f(g) —f(g)
$2 2

where g and q are confocal coordinates, is separable.
The form of I2 has also been mentioned by Hietarinta.

(iii) Similarly, in the case of (39), if we transform the
Cartisean coordinates to parabolic cylinder coordinates
x =Eg, y = —,(e —g ) for the parametric values a=16P,
5=12P, 2 =4B, then the resulting Hamilton-Jacobi equa-
tion is separable. This result has also been noted by An-
kjewicz and Pask recently.

IV. P PROPERTIES OF THREE QUARTICALLY
COUPLED OSCILLATORS

x Qo r, y 'boy, z cot, %~0,
we find from (5) that

Cop(p —1)r~ = 4aaor ~ —25aobpr'—+"

(41)

A. Leading-order behaviors

Assuming now that the leading-order terms of the solu-
tions of (5) are

I
H2 ———, p +2Ap +Zap + p'.

—2coapcp7 ~

boq(q —1)H = 4Pbor ~ 2—5aobor ~+—~

(42a)

so that the equation of motion (4) in radial coordinates be-
comes

2I2
p+2Ap+4ap =

p'

Lakshmanan and Kaliappan integrated it as

p( t) =a
& [ I —P&sn ( I t) ]'~

where

Pf= —,
' 3 1+

3cxa )

—2' pe'e+"
co$ ($ —1)r = 4ycor ' 2'—aoco~~+—

(42b)

2ebocor ~—+' . (42c)
We have essentially three distinct sets of solutions [noting
the complete symmetry between the coordinates x,y, z in
(2) or (5)].
Case 1

p=q=s= —1

(e, —4'+ 2y5 —ecv —&5+2Pco )ap=

2I2
+ 2 + 2 g +aa, u a, ua,

I' =(A +3aa
& )+ A +2aAa&+a a &+ z Iz

a&

1/2

(a) —4ay+ 2am —@co—co5+ 2@5)
bp ——

(5 4aP+ 2am co5 —e5+ 2Pco )— —
Cp=

b, , =[8aPy+25eco —2(ae ~Pcs +y5 )],

(43)

Here, the square of the modu1us of the Jaeobian elliptic
and the following:
case 2(a)

p = —1, q= —,'+ —,'[1—8(5ao+eco)]'~ & —,', $ = —1,
2 CO —2y 2 . 2 u —2a

ap —— 6p =arb&trary, cp = A2 =4AQ —CO

~2
' '

~2

(44a)
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case 2b

p = —1, q = —,
' —

z [1—8(5ao+&co)l' & —1, s = —1,
~—2g 2 . 2 co —2A

ao b p =arbitrary, cp ——

(44b)

case 3a

p = —1, q = —,
' + —,

' [1+4(5/a)]'~ & —,', s = —,
' + —,

' [1+4(co/a)]'~~ & —,
'

a o
———,ho ——arbitrary, cp ——arbitrary,2 2

2(x

case 31

p = —1, q = —, + —,[1+4(5/a)]'~ & —,', s = —,
' ——,

' [1+4(co/a)]'~~ & —1,

a o ———,b p ——arbitrary, co ——arbitrary,2 & 2 2

2A

case 3c

p = —1, q= —,
' ——,'[1+4(5/a)]'~ & —1, s = —,

' ——,
' [I+4(co/a)]'~2& —1,

a p
———,b p ——arbitrary, cp =arbitrary .2 — 1 2= 2=

2'

(44"-)

(44d)

(44e)

B. Resonances

In order to find the resonances, we substitute

x =apr~+Q(r~+", y=bpH+QpH+",

z =cps +Q3/+", r +0, —

into the leading-order terms of (5) and obtain a system of linear algebraic equations in Q~, Qz, and Q3 and for a nontrivi-
al set of solutions (Q&, Qz, Q3) we require that

(r +p)(r +p —1)+85a o —2

detM3(r) = 45aobo

boa oco

45aobo

(r +q)(r + q —I)+8pbp2 —2

4' pco

aocp

4eboco

(r +s)(r +s —1)+8yco —2

=0. (46)

For case 1, p =q =s = —1 and so (46) becomes

r'+8aao 45aobo 4coaoco

45apbp r'+8Pbp 4ebpcp ——0, r'=r 3r . —
4coQpco 46&pep I' +Sfcp

(47)

It is easy to check that r'=4 is a root of (47), and so

(r' —4)(r'+X/)(r'+Xz) =0,
where

(48)

&i+&z= 4[1+2(aao+Pbo+ yco)]

X&Xz——16I —,(X&+X2)+4[(aP 5 l4)a oh o+ (Py —e l4)b oc o+ (a—y co l4)a oc o) I
—.

From (49), we infer that the resonances occur at

r = —1,4, —,+ —,(9—4Xi)', —, + —,(9—472)'

(49a)

(49b)

As before, the restriction that the resonance values (except r = —1) be nonnegative integers leads to the following pos-
sibilities:
case 1(i)
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X&
——2, X2=2, P =0, Q= ——,', , » = —1, 1, 1,2, 2,4,

case 1(ii)

X, =O, X2=0, P = ——,', Q =0, » = —1,0,0,3,3,4,
case 1(iii)

(51)

(52)

X~ ——2, X2——0, or X&
——0, X2 ——2, P= ——,, Q= ——, , »= —101234. (53)

In Eqs. (51)—(53), P =aap+Pbp+ycp, and

Q =(aP 5 /4—)a pb p+(Py e!4—)b

pep+�(ay

co /—4)a pbp,

where a p, b p, and cp are as given in Eq. (43).
For case 2, p = —1, q & —1, and s =—1, we obtain the resonance condition (46) after omitting the coefficients of

lesser dominant terms as

0r'+Saap 4~a pep

45apbp» (» +2q —1) 4ebpcp ——0, »'= » 3»—,
4uapcp 0 r +8/cp

(54a)

which on expanding gives

»(»+2q —1)(»'—4)(»'+fp) =0, gp ——4[1+2(aa@+ ye@)] .

Thus the associated resonances are

(54b)

» = —1,0,4, (1—2q), —,
' + —,(9—4gp)'~ (55)

It is interesting to note that the resonance values of the case 1 given by (17) of two coupled oscillators merges with the
case 2 resonances given by (55) of the three-coupled oscillators with the additional resonances at 0 and (1—2q), and with
appropriate parametric rearrangement.

Case 2a. From Eq. (55), we find that the nonnegative integer resonance for» =(1—2q) is possible only if q & 0, which
leads to a contradiction that q & —,

'
given in (44a) unless q = —,'. However, for the latter the associated solution does not

have sufficient number of arbitrary constants.
Case 2b. Here we have the following four possibilities:

q =0, 1tp ——0, 5ap+ecp ——0, aap+ycp = ——,, » = —1,0,0, 1,3,4,
q =0 1ttp=2 5ap+e'cp=0 cMp+ycp= —4» = —1,0, 1, 1,2,4,

1t'p
——0, 5ap+ecp = ——,, aap+ycp = ——,, » = —1,0,0,2, 3,4,

gp ——2, 5ap+ecp ————,, aap+ycp ————„, » = —1,0, 1,2, 2,4 .2 2 3 2 2

Case 3. Here p = —1, q & —1, and s & —1, and so the resonant determinant (46) becomes

(56a)

(56b)

(56c)

4&a pep

r —3r —42 0
45apbp» (»+2q —1)

0

0
0

»(»+2s —1)

=0. (57)

Thus we have

» = —1,0,0,(1—2q), (1—2s), 4 . (58)

It is easy to check that for nonnegative integer resonances» =(1—2q) and (1—2s) in Eq. (58), we should have q &0 and
s &0 which contradict the fact that q & —,

' and s & —,
' for the cases 3a and 3b, Eqs. (44c) and (44d), and thus leading to

lesser parameter solutions only.
Case 3c. The requirement of nonnegative integer resonances now leads to the following four choices:

q =0, s =0, 5=0, co=0, r = —1,0,0, 1,1,4, (59a)

q=0, s = —z, 5=0, co=-', a, » = —1,0,0, 1,2,4, (59b)

q = ——,', s =0, 5=—a, co=0, » =—1,0,0, 1,2,4,
4

(59c)

(59d)
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/

Thus we have isolated eleven distinct sets of integer res-
onances corresponding to Eqs. (51)—(53). In the next sec-
tion we proceed to analyze the arbitrariness of the coeffi-
cients which enter at these resonance values. It is impor-
tant to note that in the case of three degrees of freedom,
the coincidence of two resonance values in the above is
possible without the introduction of logarithmic terms in
the solution, unlike the case of two degrees of freedom.

1 2 2
p~4

—~pb4 (aob 2 b—oa z ),
2apbp

aoboa4 —(co+ao)b4+bococ42 2

8
b2 2 (3bob2+boa2+2aoa2b24u

+bpc 2 +2coc2b2 )
2

(64a)

(64b)

1. Strong-P eases

For the case 1(i), Eq. (51), the resonances occur at
r = —1, 1, 1,2, 2, 4. Therefore for the strong-P property to
hold we will have to show that five of the coefficients in
(60) are arbitrary in addition to t'. Now the coefficients
of (r,r, r ) in (5) are given by

(4aa 0 —1)a i +25a oh pb i +2coapcoc i
——0,

25apbpai+(4Pbo —1)b, +2ebpcpc& ——0,
2piaocoa i +2ebocob i + (4y co —1)ci ——0,

(6la)

(61b)

(61c)

where ao, bo, and cp are as given in (43). As the reso-
nance has a double value at r = 1, it indicates that two ar-
bitrary constants can enter here. From (61) this requires
that aao pbo ——y——cp. . However, this on comparison with
the value of P in (51) shows that ap bp =cp=0 a—n—d so
contradicting the form of Q in (51). We thus infer that
none of the coefficients a &, b&, and c i is arbitrary, and so
this case is of no further interest.

For case 1(ii), Eq. (52), the resonances are
r = —1,0,0,3,3,4. From the leading-order analysis we ob-
tain

2aa 0+5b

@+cticks

= —1 5ap+2Pbp+E'cp = —1,

cuba p+eb p+2ycp ———1 .2 2 2=
(62)

Then the coefficients ao, bo (or bo, cp or cp, ap) are arbi-
trary only if

a=p=y, 5=a=pi=2a . (63)

Proceeding further we determine ak, bk, and ck, . k =1,2
uniquely. Then the coefficients of (r,v, r ) lead to the
single equation apai+bpbi+cpc3=0, so that two of the
quantities a3, b3, and c3 are arbitrary. Collecting now
the coefficients of (v', v', r') in (5), and rearranging, we ob-
tain the two equations

C. Evaluation of arbitrary constants of integration

In order to compute the constants of integration we in-
troduce the following power series representations into the
equations of motion (5):

4, 4
x =aper'+ g akron'+", y =boy+ g bkH+",

k=1 k=1
(60)

4
z =cp1 + g cpr, 1'~0 .

k=1

We will search for the arbitrary constants of integration
of the cases 1, 2b, and 3c separately.

thereby showing that the coefficient a4 or b4 is arbitrary
irrespective of the values of A,B,C in (5). Thus for the
choice (63), a full six-parameter P branch of solution ex-
ists for (5).

For case 1(iii), Eq. (53), r = —1,0, 1,2, 3,4, proceeding
in a similar way we check that the coefficient equations
(62) and (61) hold here also. But the fact that arbitrari-
ness is needed both for r =0 and 1 leads to a contradic-
tion on the coefficients thereby disallowing this case.

2. 8'eak-P cases

(x=y, co=2m, 5=@, 3o.=45, (65)

such that the coefficient ap (or cp) is arbitrary. Proceed-
ing further, with the restriction (65), we determine a i, b &,

and c1 uniquely and that

(4aap —1)a2+4aaococz= —~ao+5(6 —8P)aobp, (66a)

25apa z+ 0 X b 2+ 2ecpci

= —8 ——„(5—48P5+288P )bp,

4uapcoa2+(4acp —1)cz —— Ceo+5(5 8P—)cobo . —2 4

(66b)

(66c)

Solving (66), we find that for consistency it is required
that

and

A =48 =C,
(67)

For case 2b, we isolated four distinct possibilities in
Eqs. (56). Again using (60) in (5) with the appropriate
leading orders, (44), we find that three of the possibilities
corresponding to (56a), (56b), and (56d) do not satisfy the
Painleve criteria. For example, in the case of resonances
given by (56a), r = —1,0,0, 1,3,4. Since r =0 appears
twice, two of the coefficients ao, bp, and cp should be ar-
bitrary. The leading-order analysis, (44b), identifies that
b p is arbitrary with the parametric equations
2o.ap+cocp ——=1, coap+2ycp ———1. But the resonance2 2=- 2 2=
analysis, (56a) shows that 5a20+ec20 —0, aao+yc20 ——

2

Consistency requires that there exists no parametric value
for which the coefficient ap oi' cp is arbitrary and hence
the solution can have only lesser number of arbitrary coef-
ficients. Similar conclusion can be arrived at for the cases
of the resonances given by (56b) and (56d).

However, for the choice (iii) given in Eq. (56c), we have
r = —1,0,0,2, 3,4. From the leading-order analysis we
know that t and b p are arbitrary and that
2aap+cocp ———1, uap+2ycp ———1, while the resonance
analysis, (56c), shows that 5a 0+6'cp =—
aap+ycp ————,. Now unlike the previous cases, it is
possible to choose a set of parametric values.
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TABLE II. Painleve cases of three-coupled quartic anharmonic oscillator system. (Note: In case 1, for the additional restriction
~ =& =C, I l

——(xp~ —yp„), I2 ——(xp~ —yp„)'+(yp, - —zp~ ) +(zp —xp, ) are the second and third integrals of mot'on. )

Cases
(see text)

Parametric
restriction

Main or
subsidiary

branch
Leading orders

q

Resonances
No. of

arbitrary
constants

a=p=r,
6=E=co=2(x

MB
SB-1
SB-2

—1,0,0, 3,3,4
—4, —1,0,0,3,4
—3, —3, —1,0,0,4

2b(iii)- 1 a=16P=y;
5=e=12P,
co=32P, A =4B =C

MB

SB-1
SB-2 3

2

3
2

1

2
—1,0,0, 2, 3,4
—2, —1,0,3,4, 5

—2, —1,0,0, 3,4

—3, —2, —1,0,0,4

2b(iii)-2 a=SP=y,
5=E=6P,
co=16P, A =4B =C

MB

SB-2

SB-3

3
2

3
2

1

2
—1,0,0,2, 3,4
—5, —1,0, 3,4, 8

—2, —1,0,0, 3,4

—3, —2, —1,0,0,4

a=16P=y, B=e=12P, co=32P, A =48 =C
and, case 2b(iii)-2,

a=8P=y, 5=e=6P, co=16P, A =48 =C,

(68a)

(68b)

Eqs. (5) possess a full P branch of solution with sufficient
number (six) of arbitrary constants.

For the case 3c we have four sets of resonances
(59a)—(59d). Substituting (60) in (5), we compute ak, bk,
and ck, k =1,2, 3,4, by comparing the coefficients of
(p 3,r 5,9 z). The detailed calculations show that
none. of the four choices lead to sufficient number (six) of
arbitrary constants. For example, considering the reso-
nance values (59a), r =—1,0,0, 1, 1,4, and using the fact
that bp, cp are arbitrary, Eq. (44e), from the coefficients
of (~,r ,r ) in (5)., we obtain a set of equations
for a ~, b &, and c

&
and solving them we find a

&
——0,

b) ——Sb ( pP2bpz+Ecp) c] =8cp(2/ p+cEbp). This clearly
shows that two of the coefficients a&,b&, c& are not arbi-
trary. Thus the corresponding solution will have lesser
number of arbitrary constants. Similar conclusion is also
arrived at for the remaining possibilities.

5 —18P5+72P =0,
from which the coefficient bz becomes arbitrary. Con-
tinuing further we find that the coefficients a3 (or c3) and
a4 (or c4) are arbitrary without any additional parametric
constraints. Thus from (65) and (67) we conclude that for
the following two sets of parametric values, case 2b(iii)-1,

The salient features of the above analysis are schemati-
cally sketched in Table II. Finally we have to explicitly
show that for the above three parametric choices, the
solution in the remaining subsidiary branches does not in-
troduce any movable singularity. %'e have checked in all
the branches the solution remains single valued (within
the strong- and weak-P criteria). The details are also
given in Table II. Thus for the three-coupled anharmonic
oscillators, (2), the three choices exhibit Painleve property.

I=Og +O2py+O3t, +O4t py+O5pyp,

+O6t p. +O7p +Ost +O9p. +Oio (69)

where 8 s are functions of (x,y, z) alone. When the coeffi-
cients of p„p~ p,", in the Poisson bracket II,H Ip~ ——0 are
set equal to zero, the following partial differential equa-
tions result:

D. Integrals of motion

We now investigate the form of the associated second
and third integrals of motion for the Painleve cases in
Table II. For this purpose we again consider a general in- '

tegral of motion which contains velocities up to fourth
power and proceed as in the previous section. However,
for the sake of clarity, here we present the results explicit-
ly for the case with quadratic velocities alone:

aO, aO, aO,=0, + =0,
Bx By Bx

BO3 BO5 8O3=0, -=0,
cly Bz Bz

BO2 BO4 BOg BO6

Bx By Bz Bx

aO, aO, aO, aO,
Bz Bx By Bx

aO, aO, aO, aO, aO,

BOa BO9 BO7 8Oa=0, =0, + =0,
By

'
Bz

'
By Bx
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ae, ae, ae, ae, .. .. ae„.. . a 8„
Bz By Bz Bx

+ =0, + =0, 281x+0~+0~+ =0, 84x+28~+8~+ =0,
Bx Bp

Be
86x+esy+283z+ =0, 87x+esIi+89z =0 .

az

By solving (70) successively we find that nontrivial
solutions exist for the parametric case,

where the leading coefficients are given by

a=p=y, 5=@=co=2a, A =8 =C, (71a) a2o ——arbitrary

and the corresponding second and third integrals of
motion become

(71c)

V. P PROPERTIES OF N QUARTICALLY COUPLED
OSCILLATORS

In this section we extend our P analysis to the case of
arbitrary X quartically coupled oscillators obeying the
equation of motion (6}.

Ii =(xpy ypx } ~

lz —(xpy —yp„) + (ypg —zpy ) + (zp„—xp, )
i

Obviously this case corresponds to a special choice of the
Eq. (63), and is separable in spherical polar coordinates.
Apart from this, we have not yet succeeded to isolate any
other integrals of motion in calculations involving up to
fourth power in velocities. Therefore it is not clear to us
at present as to what general form one has to assume to
proceed with the above type of analysis to obtain the
second and third integrals of motion for the remaining p
cases.

and
N

2 2—2aiatp+ g Pij Jpj=l
(j+2)

Case 3,

pl —p4 — —pN ——1 ~

N
1 —8 g Pqj aj.p

2

j=l
(j~2,3)

N
1 —8 $ p3Jajo

2

j=l
(j+2,3)

pl =p4 = =pe = —1 ~

N
1 —8 g Pea J~p

j=l
(j+2,3)

1

2

1)—
2 7

(74c)

(75a)

(751)

A. Leading-order behaviors

Assuming now

1 1p3= 2
—

2

N
1 —8 g pijajp

2

j=l
(j+2,3)

1/2

)—1,

xi =aIo& ~ &~0~ & =1~2. ~ N (72) p1=p4= =pN= —1 ~

in (6) we isolate N distinct sets of leading-order behaviors.
Case 1,

Pl —P2 — —PN ———1,
p2= 2

—
2 1 —8 $ P))asap

2

j=l
(j+2,3)

' 1/2

(75c)

2 2—2a;atp+ g p,jajo ———1,
j=l
(j &i)

Case 2,

i =1,2, . . . , &. p3= 2
—

2

Here

1 —8 $ p3J ajo
2

j=l
{j&2,3)

pl ——p3 ——. . - ——p~ ———1,
N

1 —8 g p2Jajo
2

j=l
(j&2)

1/2
(74a}

a 2o, a 3o ——arbitrary

N

2a;arp+ g Pjajo ———1, i =1,4, . . . , X .
j=l

(j2, 3)

(75d)

P1=P3 =

p2= 2
—

2

N
1 —8 $ p2j.ajp

2

j=l
(j+2)

1/2

)—1,
(74b)

Vfe can continue this process by considering i —1 p s at a
time to be greater than —1 and the remaining p's to be
equal to —1, i =1,2, . . . , X and write down the corre-
sponding values of p's and ap's. Thus for the case N we
have
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»= —1 pz= 2+ z(1 —8AIaIO)'"& —,',
p3 =T~+ 3 (1—8pzia Io) & 2 ~ ~

»= YI+ YI(1—8~NIa Io)
2 1/2

2 12pI ———1, p2=T+ 2 (1—8pzla10)

»= 2+ z(1—8AiaIO)'"& 2,

»=TI —2(1 —8AIaIo)' '& —1,1/2

(76a)

(76b)

and this continues up to

p1 1 p2 2 3 (1 8Pzla 10)
2 1/2

ps ———,——,(1—8Pzia io) & —1, . . . ,
1 1 2 1/2

pN =
2
—

2 (1—8' la 10)' '
& —11/2

2 1.~ 1Q
— +2p &3p ~ ~ ~ QNp= arbitrary .

2a

(76c)

(76d)

B. Determination of resonances

Here again we substitute

x;=a;p~'+Q;~', ~—+0, i =1,2, . . . , X, (77)

into the leading-order terms of (6) and obtain a system of N linear algebraic equations for the 0; s. To have a nontrivial
set of solutions (QI, Qz, . . . , QN) we require that

detMN(r) =0, MN(r) =AN+DN(r), (78a)

Sara 1o
2 4PIza Ioazo

2
4P2 la 20a 10 8izza 20

4PN IaNOaIo 4PNzaNoazo

4@IN a IoaNo'

4P2Na 20aN0

2
SaNQNp

(78b)

DN(r) =diag[(r +pI)(r +pI —1)—2, (r +pz)(r +pz —1)—2, . . . , (r +pN)(r +pN —1)—2] .
Considering case 1, (73) implies that DN(r) =(r 3r)~I, so tha—t detMN(r) is the characteristic polynomial of [AN] in
the variable r 3r T—he .coefficients of this polynomial can be expressed on the one hand in terms of its roots
XO,XI,Xz, . . . , XN I, and ori the other hand in terms of the quantities trAN, i =1,2, . . . , N. Using (73), we can prove
that there is a root, Xo say, equal to 4. As a result, for the case 1, we find that (78) becomes

detMN ——(r + 1)(r 4)(r —3r +XI)(r——3r+Xz) (r 3r+XN I ) =0—,

so that the resonances occur at

=—1,4, —', + —,'(9—4X )',—,+ —,'(9—4X )', . . . , —,+(9—4X )'

Here the quantities Xi, I =1,2, . . . , N —1, satisfy the following conditions:

N —1 N

y X,=4 1+2 y a, a,'0

(79a)

(79b)

(80a)

N —1 N —1

g —,'(X.X„)=4',—,
' g X, +4

m, n =1 l=l
(m~n)

N
Q.aJ

ij =1
(ij)

2
I ij z zip (80b)

N —1

—,
' (X X„X ) =4'

m, n,p =1
(m~n+p)

N —1

, (X~X„)
m, n =1
(m+n)

N
1 1 2 2 2 2 2 2
3 [~i izj ~k 4 (rzi Pjk +conj Pik +izkPj'0jPjkPk' )]aioajoako'

ij,k =1
{i~j~k)

(80c)

and so on. Continuing further we can finally write down the value of the product (XIX2X3 . XN I) from the expansion
of the determinant in (78). We can easily verify that our results for N =2,3 given in Secs. III and IV follow straightfor-
wardly.
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Again, the allowed values of resonances such that all the r's (except r = —1) in (79) are nonnegative integers corre-
spond to the following possibilities:

/ of the X;=2, (N —1 —l) of the X;=0, i, /=1, 2, . . . , N —1,
r = —1; 0,0, . . . , (N —l —1) times; 1,1, . . . , l times; 2,2, . . . , l times; 3,3, . . . , (N —l —1) times; 4 .

(81)

(82)

For case 2, p; = —1, i =1,3, . . . , N, and, pz & —1 and hence the elements of the second column of the matrix [A&],
Eq. (78b), become zero, except the diagonal one. As a consequence, we find that

r = —1,0,(1—2pz), T~+ —,
' (9—4+i)', —,+ —,'(9—4X3)', . . . , T~+ ,' (9 —4X—~ i)',4, (83)

which correspond to the resonance values of case 1 of the (N —1) degrees of freedom system with additional roots at 0
and (1—2pz). Here the quantities Xi, / =1,3, . . . , N —1, are obtained from (80) by omitting the coefficient a20 and the
parameter Pzj on the right-hand sides of (80). As the resonances are to be nonnegative integers, from Eq. (83), we neces-
sarily require that pz & —,

' which contradicts the fact that pz & —,', [cf. (74a)] except for pz ———, and case 2a necessarily cor-
responds to lesser parameter branches. Further, for case 2b, the restriction on nonnegative integer resonances leads to the
following. (i) p2 ——0, l of the g; =2, (N —2—l) of the 7; =O, i, l = 1,3, . . . , N —1 in (83) and so

r = —1, 0,0, . . . , N —l —1 times; 1,1, . . . , (/+1) times; 2,2, . . . , l times; 3,3, . . . , (N —l —2) times; 4 .

(ii) pz ————,', l of the 7;=2, (N —2 —l) of theX;=0, i, l =1,3, . . . , N —1 in (83) and so

r = —1,0,0, . . . , (N —l —1) times; 1, 1, . . . , l times; 2,2, . . . , (/+1) times; 3,3, . . . , (N —/ —2) times; 4. (84b)

In a similar fashion we derive the resonances for the remaining cases. Finally, the resonance values of case N become

r = —1,0,0, . . . , (N —1)times, (1—2pz), (1—2p3), . . . , (1—2p~), 4. (8&)

From (85), it is easy to check that nonnegative integer res-
onances are possible only if p; &0, i =2,3, . . . , N which
in general contradicts the leading-order behaviors, Eqs.
(76a) and (76b), that p; & —,

' except for the last possibility
given by Eq. (76c). In the latter case we may then obtain
2N —2 sets of integer resonances corresponding to one of
the p s, i =2,3, . . . , N equal to zero and the rest equal to
——, and so on.1

C. Identification of arbitrary constants

We now explicitly evaluate the coefficients of a;„,
p = 1,2, 3,4 by using the series representation

4
x;=a;OP+ g a,„r"+", g 0 (86)

@=1

in the equation of motion (6). The following analysis is
used to compute the coefficients a;, p=1,2, 3,4. By
equatiny the coefficients of (rP{ P 2Pp+P ——2

) to zero in (6), at each p, we obtain an equation
of the form

Mx za» =S&(ai {p {)) ~—
where M&„ is an N)&N matrix, a;„and S„are N&&1
column matrices. The matrix S& depends only on a; [&
coefficients. The application of Cramer's rule for deter-
minants yields a unique solution to (87),

detM~ p
a;p —— '", detM~ p&0 (88)

detM~ „'
where the X&X matrix M~ & is obtained by replacing the
ith column in M~& by the column matrix S&. At the res-
onance p, the detM& may vanish and so Eq. (87) may not

I

have a unique solution. Suppose further that the det Mz „
also vanishes at the same resonance; then one of the coef-
ficients of a;& may be arbitrary. Furthermore, if m rows
of M~ & are identical and so also the corresponding m ele-
ments of S&, then m —1 of the a;„'s will be arbitrary.
Making use of the above technique we identified that only
three cases, one from case 1, and the other two from case
2b, possess the required number of 2N arbitrary constants
to be of Painleve type, while the remaining cases do not
satisfy the necessary conditions of Painieve property. The
details are briefly outlined below.

1. Strong-I' case

For the case 1 [cf. Eqs. (73)],p; = —1, i = 1,2, . . . , N,
N

2a;a o+ g Pjajo ———l, i~j, ij =1,2, . . . , N .
j=1
(j+i)

aj ——ai, I3& 2ai (i&j), ij,=——1,2, . . . , N (89)

from which the (N —1)'s of the coefficients a;0 are arbi-
trary. Using (89) in (6) we further infer that

(4aia;0 —1)a;,+4a{ g a;Oajoa» ——0,
j=l
(j+i)

(90)

For the choice all the X;=0, i =1,2, . . . , N in (81), the
resonance values (82) become r = —1,0,0, . . . , (N —1)
times, 3,3, . . . , (N —1) times, 4, and from (80) we have

,u;a 0 ————,', . . . , so that consistency requires that
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From (90) we check that the determinant M~ ~ vanishes,
while detMiv i&0, cf. (88), and hence a; i ——0,
i =1,2, . . . , X. Moreover,

N

g a,oa,.3=0, (92)

(4aiaio 1)ai2+4a2 $ aipajpaj2 Aiaio
2

j=l
(j+j)

i =1,2, . . . , N (91)
I

from which a;2, i =1,2, . . . , N can be found uniquely.
Then considering the coefficients of (r,~, . . . , v ) in (6),
we find that they reduce to a single equation

N

2p2j g a, pa, 2+oa„
J =1

(j&2)

= —A2 —» (I32j —48a+2j. +288a2)a 2O
2 2 4

i&j, i,j=1,3, . . . , N . (94b)

Solving (94a), we find that

a;o 4
ai2

3
[Ai P2j (P2j 8a2)a20] i 1 3 ~ ~ ~ N ~

Using this in (94b), we infer that the coefficient a22 is ar-
bitrary if

A; =4A2, 132j —18a+2j+72a2 ——0, (95a)

Considering now the case-2 [Eq. (74b)] singularity solu-
tions associated with the resonance values (84), we can
verify that they do not possess the required number of ar-
bitrary constants as in the three-coupled-oscillator system
except for the choice P; = —1, i =1,3, . . . , N, P2 ————,',
and that all X; =0, i =1,3, . . . , N —1 in (84b) with
r = —1,0,0, . . . , (N —1) times, 2, 3,3, . . . , (N —2) times,
4. Thus from (74) and (80) we obtain the conditions

2 22a;a;p+ g 13(jajo
j=l
{j+2)

N
2 32ap=-

j=l
(j+2)

1

u;asp = —2.
j=l

i&j, i =1,3, . . . , N .

Consistency then requires that

a; =a~, P;j ——2ai, 3ai ——4P2j,

i&j, i,j =1,3, . . . , N (93)

so that the (N —2) coefficients of a;p, i =1,3, . . . , N are
arbitrary in addition to a2p.

Making use of the parametric constraints (93) now in
(6), we determine a;&, i =1,2, . . . , N uniquely. Then we
obtain

(4aqa;p —1)a 2+4a~ g a pa&pa&2
2

J =l
(j&2)

A;aip+p2j—(p2j —8a2)a;p 2O, (94a)

so that the (N —1)'s of the coefficients a;3, i =1,2, . . . , N
are arbitrary, while the coefficients of (r', r', . . . , 7') after
rearrangement [as in the case of three degrees of freedom,
Eqs. (64)] lead to (N —1) equations for the N coefficients
a;4, thereby showing that one of them is arbitrary, without
any further parametric restrictions. Thus for the choice
(89), (6) possesses a full 2N parameter P branch of solu-
tion. For the other resonance possibilities given in Eq.
(82), a similar analysis can be carried out to check that no
other 2X parameter P branch exists here.

2. 8'eak-I' ease

or

A; =4A2, /32j ——12a2, 6a2, i,j = 1,3, . . . , N . (95b)

Proceeding then with (95b), we can show that the (N —2)
coefficients of a;3, i =1,3, . . . , N are arbitrary, and that
one of the coefficients of a;4, i =1,3, . . . , N is arbitrary
without any new parametric restrictions. The latter two
facts follow straightforwardly from our earlier assertion
in Sec. V that the resonance values of case 2 of Nth de-
grees of freedom merge with case 1 resonance values of
(N —1) degrees of freedom and that the general solution
possess the required number 2(N —1) arbitrary constants.
Thus collecting all the above facts, we conclude that for
the following two parametric values, case 2b(i),

a; = 16a2, P2j ——12a2, Pij ——32a2, Ag ——4A 2,
and case 2b(ii),

(96a)

a,. =8a„p,j=6a„p,,=16a2, A;=4A2,

i~j, i,j =1,3, . . . , N (96b)

D. Integrals of motion

If we transform the Cartesian coordinates x; to the po-
lar coordinates of % dimension then the Hamiltonain H~
becomes radially symmetric for the parametric values
a; =a~, P;j ——2a~, A; =Aiv, i = 1,2, . . . , N, and the equa-
tions of motion become separable and hence the system
possess X integrals of motion, thereby the integrability is
established. It remains to be seen how to obtain the in-
tegrals of motion for the other cases.

Eq. (6) possesses a full 2N parameter P branch of solu-
tions.

Similar investigations are carried out for the remaining
cases 3—N and we find that the weak-P property does not
hold good for the above cases. As the procedure is analo-
gous, we do not present the details here. Table III gives
the essential features of our Painleve cases for the N-
coupled-oscillator system. The final task of checking that
the remaining subsidiary branches (SB) for the above three
choices, namely (89), (96a), and (96b), are also single
valued within the Painleve criteria proceeds in an analo-
gous manner and we verify that these choices do indeed
correspond to the Painleve cases.
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VI. DISCUSSION

In this work we have applied two methods, namely the
Painleve analysis and the direct computation of integrals
of motion, to investigate the integrability of two, three,
and & quartically coupled anharmonic oscillators. Con-
sidering the two coupled oscillators, the Painleve analysis
shows that this is integrable for four specific sets of pa-
rameters, among which three of them are separable under
appropriate transformations. By direct computation, the
associated second integrals of motion have also been
presented for all the above four cases. For the three-
coupled-oscillator system, we have shown that the general
solution of (6) possesses the sufficient number of six arbi-
trary constants for three sets of parametric values. We
have derived the second and third integrals of motion to
one of the cases, namely a special case of the strong P,
thereby substantiating the integrability. For the remain-
ing cases we have not succeeded in obtaining them. Also
in the two degrees of freedom case, we have shown that
for the set of parametric values (24) and (26), the equation

of motion (4) of H2 is separable under linear transforma-'
tions, but such a possibility does not occur in higher de-
grees of freedom.

We have successfully extended the Painleve analysis for
both strong- and weak-P properties, to the arbitrary N-
coupled-oscillator system and obtained a set of three in-
tegrable cases, which are the generalizations of the three-
coupled-oscillators system, one corresponding to a
strong-P property and the remaining two to weak-P prop-
erty. It now remains to investigate the singularity struc-
ture, fractal structure associated with natural boundaries,
etc., of the non-Painleve cases.
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