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The theory of free-electron lasers is extended to include the new coupling between an electron

beam and optical wave propagating at an angle 5 in an arbitrary harmonic. The coupling allows the

laser to be tuned to a wider range of wavelengths and to include the effects of emittance in the elec-

tron beam. The formulation of the results in terms of coupling constants means that the existing

knowledge of high gain, low gain, weak optical fields, strong optical fields, and short pulses in free-

electron lasers can be immediately generalized to off-axis propagation in an arbitrary harmonic.

I. INTRODUCTION

In a free-electron laser (FEL) oscillator, a beam of rela-
tivistic electrons is injected into an undulator magnet
where they undergo transverse oscillations. The undulat-
ing electrons couple to and amplify co-propagating laser
light which may be stored in an optical resonator. There
is significant research exploring both the experimental
and theoretical aspects of FEL operation in the range
from millimeter to x-ray wavelengths. '

One of FEL's most attractive features is its ability to
produce tunable radiation. This is usually accomplished
by changing the initial electron beam energy, @me, but it
has been shown that the range of tunability may be fur-
ther extended to shorter wavelengths by exploiting odd-
numbered higher harmonics on axis in a linearly polarized
undulator. ' ' Gain off axis at the fundamental wave-
length has been calculated for the case of a weak elec-
tromagnetic undulator field. ' ' The electromagnetic un-
dulator can be related to the magnetic undulator using the
Weizsacker-Vhlliams approximation. ' '

In this paper, we calculate the FEL gain at all angles in
both the helical and the linearly polarized undulators in
all higher harmonics. Shown in Fig. 1 is an FEL oscilla-
tor schematic with the optical mode skewed at angle 0
with respect to the electron beam and undulator axis.
Relativistic electrons with longitudinal velocity P,c travel
along the magnetic undulator and oscillate in the trans-
verse direction with frequency P,co„,where co„=2mc/A,„,
A,

„

is the undulator wavelength, and c is the speed of
light. In weak undulator fields /3, = 1 —I/2y, and the re-

sulting emission frequency received at an angle 8 is cen-
tered at" "

P,co„n 2y co„n
1 —P,cos@ 1+y2&2

where n labels the harmonic (n = 1 denotes the fundamen-
tal). Since the emission is predominantly confined to a
forward cone with 5&y ', a small angle expansion is
used when @~~1. The large factor y shows how the

II. SPONTANEOUS EMISSION FROM PERFECT
HELICAL TRAJECTORIES

The emission spectrum from any electron is determined
by its trajectory, or path through the undulator. Unlike

r

FIG. 1. FEL schematic shows an electro
through a periodic undulator, but with th
tilted at an angle 8.

n beam propagating
e optical resonator

FEL makes use of a large Doppler shift to emit at fre-
quencies much higher than the electron oscillation fre-
quency P,co„.A typical undulator wavelength is A,„=3
cm so that @=200 gives optical frequencies in the funda-
mental n =1. If the eleventh harmonic is used, then only
y=60 is needed to reach the same wavelength. In any
wavelength range, a change in the angle 5 can be used to
tune the FEL frequency with n, A,„,and y fixed. If
y8 = 1, the emission frequency is decreased by half.
Sometimes experiments with y&&1 are not sufficiently
aligned, nor is the electron beam of sufficient angular
quality (nonzero emittance) to allow all electrons to radi-
ate coherently at the expected frequency. In that case, the
coupling calculated in this paper can help diagnose the
operation of an FEL.

In Sec. II we derive the perfect trajectories of an elec-
tron in a helical undulator and present the resulting spon-
taneous emission spectrum d I(co,@)/dQdco. Also in
Sec. II the FEL gain surface G(co, @) is calculated for the
helical undulator. In Sec. III, we discuss the same results
for a linearly polarized undulator. In Sec. IV, an expres-
sion is calculated for the net gain from an electron beam
with nonzero emittance. Finally, in Sec. V there is a dis-
cussion with some remarks on the Madey theorem.
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the broadband synchrotron radiation from a relativistic
electron in a bending magnet, the FEL undulator radia-
tion can have a spectrum rich with detailed structure in
frequency co and emission angle 8. The same physical
principles give the detailed structure to the FEL gain
spectrum that wiH be calculated later.

The electron trajectories are determined by the Lorentz
force equations of motion

dPt.
dt

e (PXB)r, —0, y =1—P, —Pr,ymc dt

(2.1)

Bt, ——(B cos(k„z),B sin(k„z),0) for 0 & z &L, (2.2)

where B is the peak field strength, X„=2irlk„is the un-
dulator wavelength, and L =%A.

„

is the undulator length.
This representation is only accurate if the electron's path
remains near the undulator axis where there are no beta-
tron oscillations. ' With perfect injection into helical
orbits the first integral of the motion is exactly

where Pc is the electron velocity, P z.c =(P„c,P„c,O) is the
transverse electron velocity, B is the undulator field, m is
the electron mass, and e =

~

e
~

is the electron charge
magnitude. We ignore the longitudinal equation of
motion because it's first integral is already known from
the Lorentz factor y, so that (2.1) completely specifies the
general motion. The magnetic field of the helical undula-
tor is

K K
Pz —— ——cos(k„z),——sin(k„z),0 (2.3)

y
"

y

where IC =eBA.„/2mmc and B=B is the root-mean-
square magnetic field for the helical undulator. We will
see that K is an important parameter determining the
characteristics of spontaneous emission and gain spec-
trums in higher harmonics. The last equation in (2.1)
gives y (1+@ ) =1—/3, . Integrating further with con-
stants of integration set equal to zero (perfect injection),
the exact trajectory is

KA,
„

KA,
„r(t) = — sin(p, co„t), cos(p, co„t),p, ct . (2.4)

27' 21TQ

In a typical FEL A,„=3cm, %=10, @=10,and K=1
so that the electrons travel at speed =c along the z axis
for several meters while executing small transverse oscilla-
tions with amplitude EA.„/2my =50 pm.

The transverse deflections cause radiation in the for-
ward direction. The characteristics of the spontaneous
emission spectrum from an electron in a helical trajectory
has been discussed in a number of previous pa-
pers, " ' but we review the work again to better clar-
ify the calculation of off-axis gain in the next section.
The energy emitted into a frequency interval dc@ and a
solid angle dfl is calculated by means of the Lienard-
Wiechert potential in a straightforward way. ' ' It has
been shown that for a large number of undulator periods
X» 1, the radiation must become azimuthally sym-
metric; ' this fact simplifies the derivation. For y ~&1 we
can expand the small emission angle 5 and write the in-
tensity distribution as

8(eye) " ng» ( nv)

c.
„ i K v„ J„+i(nX)+J„i(nX) —

z J„(nX)2 2(1+K )

K
(2.5)

where J„is the nth order Bessel function of the first kind, and

K
1+% +y 5 1+IC +y 5 2y co„

The spectral width of each emission line is determined by
the number of periods X in the argument of sin (v„)/v„.
Emission occurs in a narrow range of wavelengths satisfy-
ing v„=O. The resonant frequency co* satisfies v„=O.
The existence of energy spread or emittance in the elec-
tron beam will cause inhomogeneous broadening of the
line.

The properties of the emitted radiation as expressed in
(2.5) depend crucially on the size of the'parameter K. For
K &1, only small harmonic numbers contribute to the
emission. For K-1, the energy in the fundamental in-
creases, and the first few harmonics also have comparable
intensity. For K & 1, more harmonics appear. Finally for
K »1, there are many closely spaced harmonics, and the
emission spectrum is close to the broadband synchrotron
spectrum of a bending magnet. For K & 1, the magnet
is called an "undulator, " while for K»1 it is called a

"wiggler. "
Figure 2 plots the radiated intensity distribution

d I/dQdco for the helical undulator with K=0.5 as a
function of y5 and the dimensionless frequency co/2y co„.
Figure 2 actually plots intensity with brighter points
(white) in the (y5, co/2y co„)plane indicating peak emis-
sion of [8(eye) /c] &&0.04, while black areas indicated no
emission. The scale at the top can be used to evaluate the
intermediate grey emission intensities. Only the narrow
regions satisfying v„=Oshow significant amounts of radi-
ation. We have plotted (2.5) for a relatively short undula-
tor with X =5 in order to make the emission more visible;
typically, N =100, and the lines are much more narrow.
The fractional linewidth is given by

~
v„~& m, or

5co/co & 1/2N. The frequency at the line center of each
harmonic is shifted towards lower frequencies with in-
creasing 8 according to the relationship
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FIG. 2. FEL spontaneous emission intensity from a helical undulator is plotted as a function of y5 and frequency co/2y ~„for
K =0.5 and X =5. The intensity scale is indicated in grey)&[g(eye) /c]. Only the fundamental shows emission at this small value

of E.

(2.6)

Qn axis only the first harmonic contributes, but for 8 ~ 0
other harmonics may be present. %'hen K is small
(IC =0.5 in Fig 2), on. ly the first harmonic has appreci-

able intensity compared to the intensity in higher harmon-
1cs.

Figure 3 shows the same plot as Fig. 2, but with
E = 1.0. The grey scale at the top indicates peak emission
of [8(eye) /c] &&0.063. Increasing E from 0.5 to 1.0 in-
creases the contribution of the harmonics off axis. There

aa g~n~aEC
K=1.0

i BCe5H) &c 3 x 0

&&28 G3~

FIG. 3. FEL spontaneous emission intensity from a helical undulator is plotted for E = 1.0 and N =5. Due to the higher value of
K, there is more emission in the higher harmonics off axis and the emission frequency at each harmonic is lower with increasing K
and f5.
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is still no emission on axis except in the fundamental for
the helical undulator. The line centers at co* decrease with
angle 5 according to (2.6), but keep the same fractional
width.

To better illustrate the angular dependence Fig. 4 plots
the intensity at the line center co* for the first eight har-
monics as a function of y8 with K = l. Off axis the peak
emission is near y8 = 1, and moves farther off axis in
higher harmonics. The intensity is again plotted in units
of [8(eye) /c].

Figure 5 shows the intensity of the line center co* versus
K at y@=1 in the first six harmonics. For all the har-
monics at this characteristic angle, the peak emission is
near K=&2. While the power in each lower harmonic
first increases then decreases with X, the total power in-
cr'eases with K, and the spectrum starts to become broad
with contributions from many harmonics.

dI
dred'

(~RA a a x ~~ mam. a mC0

6.0

K K
pT = — cos(kgz) +4', — sin(k~z), 0

y
"

y
(2.7)

6 ~:~ &%ca ~~ w EflltsGxx1

dI

CI

FIG. 4. The peak FEL spontaneous emission intensity from a
helical undulator is plotted as a function of y5 in the first eight
harmonics for E =1.0. Only the fundamental has emission on
axis at 5=0. As the harmonic number increases, the peak in-
tensity decreases and moves to a larger value of y8.

A. Imperfect helical trajectories

%'hen electrons enter the undulator with imperfect ini-
tial conditions, they will deviate from the ideal helical or-
bits. There will then be oscillations in the resonance con-
dition with respect to a co-propagating light wave. The
more complex motion caused by the imperfect injection
reduces the coupling to the optical fundamental frequen-
cy, and also causes emission and gain in higher harmon-
ics. For slight angles, a misaHgned electron beam is
equivalent to a slightly misaligned light wave.

We integrate the equations of motion (2.1) in the helical
field (2.2), but now with a constant of motion
@=P„(0)/P,(0) describing the imperfect injection angle.
The resulting paths are not perfect helices as in (2.3).
Now we have

FIG. S. The peak FEL spontaneous emission intensity from a
helical undulator is plotted as a function of K in the first eight
harmonics for y4 =1.0. As the harmonic number increases, the
peak intensity first increases, then decreases, and moves to
smaller values of K. The fundamental, n =1, is broader in E,
while the higher harmonics are progressively more narrow.

Averaging over one or a number of undulator periods
breaks up the motion into "fast oscillating" terms and
"slow-drift" terms. The slow-drift terms are

1+K2
P, = 1 — —,z=i3,ct,

2y'
(2.9)

where we have assumed y&~1 and 8&&1. The fast
motion is

KM,
„cos(co„t),M(t) = sin(co„t) .2'

We have used P, =1 to simplify the argument of the fast
oscillating terms. The exact solution involves integrals
over elliptic integrals, and small oscillations within the ar-
guments of the oscillating terms of (2.10), but since the
coefficients K5/y are already small, these extra oscilla-

bP, (t) = K
'V

(2.10)

The constant 8 leads to a drifting of the electron beam in
the x direction. For a long helical undulator, it is clear
that a drift in x is equivalent to a drift in y so we neglect
the y component constant of integration without loss of
generality. The effect of this drift is accumulated over
the undulator length L =Xi,„.The slow drift alone can
be obtained by averaging (2.7) over an integral number of
undulator periods to get rT Oct =BLr——, where r=ct/L.
Note that ~=0—+1 when an electron passes through the
undulator. Typically L =3 m, and 5=10 so that rr at
i= 1 gives a deflection in the transverse direction of about
0.3 mm.

The transverse motion is directly coupled to the longi-
tudinal motion z(t) because the electron energy is con-
stant. So

P 1
1+K 2K@

(k )
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tions have been shown to be inconsequential in the results
that follow. " The fast oscillations (2.10) accurately ex-
press the physics that we need to address in this calcula-
tion. These z oscillations cause emission into higher har-
monics and reduce the coupling to the electromagnetic
wave when 0 & 0.

Before actually calculating the new coupling, we can es-
timate when the fast z motion becomes important. Since
bunching on the optical wavelength scale is the key to any
coherent emission process, the fast z motion becomes im-
portant when its amplitude is comparable to A, . Consider
the oscillating phase

k„z+g=(nk&+k„)z n—co,t+p
=n (k~+k„)z neo—,t —(n —1)k„z+y
= n (+y (—n —1)co„t+nX sin(co„t) n—Ave,

(2.14)

where

g=(k)+k„)z co)t—,

7=K@ki A,
„

/2my

= 2Ky&/(1+K'+ y'8'),

k~= si
2~7

(2.11)

K&ki,
n(co„t) = sin(co„t),(1+K +y 8 )

and

Av =2~Ny'8'/(1+K'+ y'0') .

Then (2.13) becomes

where k =2'/A, =2m.c/co. When y8 and K are compar-
able to unity, the amplitude of kM is large enough to
cause emission and gain into higher harmonics and reduce
the coupling to the fundamental.

dt /Pic
cos[n g+g nkvd —(n —1—)~„t+g sin(co„t)] .

(2.15)

B. The pendulum equation with imperfect
helical trajectories

To calculate the off-axis coupling, we add an optical
field to the equation of motion (2.1). The calculational
technique is similar to that exploited earlier to evaluate
the gain in higher FEL harmonics on axis. "' The opti-
cal vector potential is

A„= [sin(g), cos(g), 0],
nkj

(2.12)

where g=nk&z nco~t+y—, the carrier frequency in the
fundamental is co&

——k&c, the carrier frequency is co =nck ~,
and the harmonic number is n =1,2, 3, . . . . This form of
A„explicitly displays the dependence on the harmonic
number n, and will simplify our results to the same form
as those already known for the fundamental. A„is taken
to have a slowly varying amplitude E and phase cp.

Neglecting the small transverse optical force when

y && 1, in the Lorentz force equation, the transverse
motion is solved immediately and the result is the same as
(2.7).

Substitution of 13& into the fourth component of the
Lorentz equation gives

~ ~

nv=ng=
I
at,

I
cos(ng+y nkvd), — (2.17)

2'/CO

Averaging, J dt ( . . ), eliminates the fast motion
and gives

dy eEEI. J„~(nX)cos(ng+y—nkvd), (2.16)
QEpzc

where we have used y =y ." For 5=0, and g=hv=0,
(2.16) reduces to the well-known FEL result. " The elec-
tron phase with respect to the optical field is ng The.se
phases evolve slowly and bunch to drive the optical wave
coherently. The Bessel function describes the reduced
coupling to the optical wave when 4 & 0. There is greater
reduction in the higher harmonics. The factor nhv modi-
fies the resonance condition, or phase velocity, when the
electromagnetic wave is viewed at a slight angle 8. The
form of (2.16) is a clear representation of the effects of
misalignment (5 & 0). The complicated "fast" oscillations
created by misalignment have been simply expressed as a
new coupling constant J„&(ng),and a new phase veloci-
ty nAv experienced by the electrons.

Another useful form of (2.16) is the pendulum equa-
tion. When %~~1, the electron energy y is almost
constant, and /=V =4n.Xy/y, where (') indicates the
derivative with respect to r. So (2.16) may be written as

dy e BA 'Pr=
dt mc2 Bt

eE K—cos( k„z+P) +8 cos( g)
mc y

where the dimensionless optical-field strength is

(2.13)

I'he two terms on the right oscillate at quite different fre-
quencies. The argument (k„z+g) evolves slowly when
the FEL is near resonance, while P evolves =y times fas-
ter. When (2.13) is averaged over a discrete number of
undulator periods, the fast oscillating term become very
small or even zero. The important phase evolution is
(k„z+&/i) which can be written in a more convenient and
sufficiently accurate form:

g 77ZC

and V=dg/dr is the electron phase velocity The pen. du-
lum equation (2.17) and even (2.16) can be written in the
more usual form with the substitution v, (8)=(v Av)n;—
then g, (8)=(g—b,vr)n. The pendulum equation can now
be written in the standard form:

v. =0.=
I ~h I

cos(0*+9» . (2.18)

The physical meaning of (2.18) has been fundamental in
the understanding of the FEL. We quickly. review the
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main features again to clarify the new definitions when
4 &0. A beam of electrons occupies a range of initial
conditions go

——g, (0) and vo ——v, (0) in phase space at r =0.
If the beam is monoenergetic and all electrons propagate
at the same angle 8, then only one phase velocity vo is
populated. For short wavelengths, a uniform distribution
of phases $0 will cover every 2~ section of phase space.
Bunching and coherent emission occur when the phase

g, =m is overpopulated and the average electron energy
(v, ) decreases. In order to maintain an over'populated
phase for a significant time we must have

~
v,

~

&vr
Since the field strength

~
a»

~

changes the rate at which
each v, evolves, we see that

~
a»

~

&m. implies weak fields
and slight bunching, whereas ~a»

~

&it implies strong
fields and strong bunching. If

~
a»

~

&&m, bunching is no
longer possible over long times. Such strong fields reduce
the amount of bunching, or gain, and lead to saturation.

The parameter v, defines a resonant wavelength where
there is optimum coupling between the electrons and
light. This requires A, /n =A,„(1+K+y 5 )/2ny which
agrees with the expression for the wavelength emitted at
angle 8 in (2.6) and establishes the equivalence between a
skewed electron beam and resonator mode.

C. The wave equation with imperfect helical trajectories

We now go on and develop the modified coupling of
electrons to the self-consistent wave equation. The calcu-
lation follows and generalizes previous work. " The
wave equation in the Coulomb gauge is

2 Bt2
J r 4~e g P r—5—"'( x —r, ),

C

(2.19)

where the dimensionless current density is
2 2 2 2Sm¹KL p[

P PPlC

(2.20)

Together with (2.16) or (2.18), the self-consistent wave and
electron equations of motion yield a powerful formulation

where J & is the transverse electron current, and rj is the
trajectory of the jth electron in the beam. When the form

A„is substituted into (2.19), the slowly varying amplitude
E(z, t) and phase y(z, t) guarantees that higher order
derivatives are small compared to single derivatives. The
contribution of each electron is then proportional to

(,k„+f)[(K/y)e " —+Be' ]. This is the same phase behavior
we saw in (2.13) during the derivation of the pendulum
equation; the term proportional to 8 again oscillates fast, .

and can be averaged away. The argument (k„z+g) is
evaluated in the same way as in (2.14) to obtain the re-
duced coupling expressed by the Bessel function in (2.16).
The complete sum in the current can be replaced by an
average { . ) over sampled electrons if the electron den-
sity p is used as a weight factor. The wave equation is
then simplified to its final form by the substitution
s =z ct and r =ct/—L.

of the FEL problem. These equations are valid for weak
or strong optical fields

~
a»

~

with high or low gain. High
gain effects occur when j» »1, and the fields must be in-
tegrated self-consistently. When j~ &1, the gain is con-
sidered low and the field does not have to be integrated
self-consistently. The equations can be easily extended to
include short pulse effects, mulitmode behavior, 3 39 and
Coulomb forces. " In each case the modified coupling due
to misalignment is expressed through the simple new cou-
pling factor nJ„,(nX). Since the form of (2.18) and
(2.20) remains the same as in the 5=0 case, all the previ-
ously derived mathematical results remain unchanged in
form.

The important expression of FEI. low-gain (j» (1) in
weak fields (

~
a»

~

(n)can .be straightforwardly calculat-
ed. Solving (2.18) and (2.20) together gives the gain, de-
fined as (

~

a»(1)
~

—
~

a»(0)
~

)/
~
a»(0) ~, in the nth har-

monic at angle 8 with the initial electron beam at reso-
nance parameter vo.

[2—2 cos(v, ) —v, sin( v, )]
GI =JI

V

Jh d
2 dVs

sin (v, /2)

(v, /2)'
(2.21)

III. SPONTANEOUS EMISSION FROM
PERFECT LINEAR TRAJECTORIES

The electron trajectories for the linearly polarized un-
dulator (referred to as the "linear" case) are more compli-
cated than in the helical case. Even with perfect injection
there is fast oscillatory z motion which causes spontane-
ous emission on axis into the odd higher harmonics. '

The magnetic field of a linear undulator near the axis is

where we recall that v, =vo —hv(8). The maximum gain
occurs at v, =2.6 and v, =0 gives no gain. The gain
bandwidth is

~
v,

~
& 2m and the gain curve has the usual

antisymmetric shape. Note that the gain spectrum is pro-
portional to the slope of the spontaneous emission line-
shape sin (v, )/v, .

Figure 6 shows an intensity plot of 6» in the helical un-
dulator versus the angle y5 and the dimensionless fre-
quency co/2y co„for K=0.5. The brightest points (white)
indicate peak gain of [SX(meKL) p/y mc ]&&(0.135),
while the darkest points (black) indicate peak absorption,
or a loss of [SX(meKL) p/y mc ]X( —0.135). Zero gain
is indicated by the intermediate grey shown in the scale at
the top. The gain clearly follows the resonance condition
v, (c0,4)=0 as did the spontaneous emission spectrum At.
each harmonic, the shape of the gain curve in cu is approx-
imately determined by the slope of sin [v, (co)/2]/v, (co)
when X»1, since the frequency dependence in j» is rela-
tively broad. Note that %=10 in Figs. 6 and 7 so that
their features can be seen more easily; usually X= 100. In
the fundamental, the gain far off axis remains comparable
to the gain on axis. With K =0.5, the off-axis gain in
higher harmonics is small compared to the fundamental.
Figure 7 is identical to Fig. 6, but with K = 1.0. The cou-
p1ing, or gain, in higher harmonics is increased with
respect to the fundamental.
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GChTl SpQC mLJCIl

K=0. 5

EBN&meKL) p&8 mc jx =
—0. 135 Q 0. 135

FIG. 6. FEL gain spectrum in a helical undulator is plotted for E =0.5 and % =10. Black indicates peak absorption, or negative
gain, while white indicates peak gain; the intermediate scale is indicated in grey && [g&(me&L, )'p/y'mc~]. There is suhstantial gain
off axis and the frequency ~ can be tuned over a large range with almost no decrease in coupling. At this low value of E, the gain in
higher harmonics is much less than in the fundamental. There is no gain on axis except at the fundamental.

B(=(O,B sin(k„z),0) for 0«(I v'ZI~.
cos( k„z),0,0 (3.2)

For perfect injection, the Lorentz force equations (2.1) can
be solved exactly to give where K =eBA,„/2~me, and now B=B/V2. The elec-

Haec& C~~a I

K=1.0 8=10
CBN(meKL) p i5 mc~ ]x —0. 135 0 Q. '3l

X.

(d&28

FIG. 7. FEL gain spectrum in a helical undulator is plotted for E =1.0 and 2V =10. Again there is substantial gain off axis, but
with this increased value of K, the gain in higher harmonics is now comparable to the gain in the fundamental. Comparison with
Fig. 3 shows gain only occurs where there is spontaneous emission, since each process must roughly satisfy the resonance condition
v„=0.As the optical resonator is tilted in angle 5, the FEL can be tuned to a large range of frequencies with good coupling.
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tron z motion now dependents of z even though perfect
injection has been assumed

P, = 1 —y — cos (k„z).2E
y'

(3.3)

The next integration gives elliptic integrals for z (t).
However, we are interested in the specific case where
K/y « 1 so we expand to order (IC/y) to get the trajec-
tory

&~u
r(t) = — "

sin(co„t),0,p, ct+ ",cos(2'„t)~ 2m'p 8~y2

(3.4)

where p, = 1 —(1+K )/2y = 1 is the average z

velocity/c. To order (K/y), the oscillating part of the
trajectory is purely transverse, but to higher order the z
motion has another oscillatory part. The size of these os-
cillations can become comparable to an optical wave-
length when %=1; then there is significant emission into
higher harmonics both even and odd.

The energy emitted into a frequency interval dm and a
solid angle dQ is calculated as in (2.5) but using the tra-
jectory (3 4). In the linear undulator, the intensity distri-
bution is not azimuthally symmetric as it was in the heli-
cal case. The angle 8 is measured away from the z axis
while 4 rotates in the x-y plane, and is measured away
from the x axis. For small values of the emission angle,
the energy radiated per unit solid angle and frequency
bandwidth is"

d I 8(eyN) ng sin(&n)

dQdrp c „& K v„
where

Ap ++ cos(N)Ap &A 1 5+3 & + (3.5)

~~,,=( —1)"+ g ( —1)"J„(ng)[J„2„(nZ)+J„~„+(nz)],

for a=O and 1, where Z =~2X cos(@).
To evaluate this complicated expression Fig. 8 shows an

intensity plot of d I/dQdro for K =0.5 with 4=0. The
maximum emission (white) is [8(eyN) /c]X0.036, and
lower levels of emission are indicated in grey; black indi-
cates no emission. At this low value of K, the only signi-

ficant emission occurs in the first two harmonics.
Figure 9 shows the intensity plot for K = 1 with @=0.

The maximum emission (white) is [8(eyN) /c]&0.046.
As in the helical case there is more emission in higher
harmonics with respect to the fundamental when K in-
creases The .most striking difference from the helical

K=0. 5 N=5

58(e8N) ic j x 0

=G-GOO

C3. 036

FIG. 8. FEL spontaneous emission intensity from a linear undulator is plotted for K =0.5, X =5, and observed at 4=0. The in-
tensity scale is indicated in grey X [8(eye) /c]. In addition to emission at the fundamental, there is emission in the first harmonic off
axis.
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LE&~R~
F

~ ~~~K% 1

K=1.0
E8CeSN& r~g

$=o.ooo

0.046

43&28 G3~

FIG. 9. FEL spontaneous emission intensity from a linear undulator is plotted for E =1.0, X =5, and observed at @=0. At this
higher value of I|, there is increased emission in several higher harmonics. Unlike the helical undulator case, the linear case has emis-
sion on axis in the odd harmonics n =1,3, 5, . . . . In aH harmonics, there is structure in the angle 5, which gives a more complicated
spectrum. This is because the motion in a linear undulator is more complicated than in the helical case.,

case is the presence of odd harmonics at 5=0, and the
number of peaks in each harmonic as y8 is increased.
The number of peaks in each harmonic over the fu11 angu-
lar range is equal to the harmonic number n. These new
features are due to the fast oscillatory term in the trajecto-

ry even for perfect injection.
Figure 10 shows the intensity plot for K = 1, but with

the observation point rotated to 4=~/2. The emission in
the even harmonics decreases sharply, and the structure in
the odd harmonics disappears. The intensity plot for

La ~~= a a q ~~ aaa a m
K= 1.0 N=5

Ce(eSN) &el x 0 0.046

&28 G)~

FICr. 10. FEL spontaneous emission intensity from a linear undulator is plotted for K =1.0, X =5, and observed at @=@/2.
%"hen the detector is moved to this observation point, the emission in the even harmonics n =2,4, 6, . . . vanishes and the structure in
the angle 5 is removed from the odd harmonics.
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@=rr is the same as for 4=0; see (3.5). In Figs. 8—10,
the number of undulator periods (N =5) is smaller than
typical to make the emission pattern more visible.

As for the helical case, the fast z motion becomes irn-
portant when it is comparable to optical wavelength A, .
This occurs when

K A,„'V ZKA, „@cos(@)
k M = — sin(2co„t) + sin(co„t)

4A,y

A. Imperfect linear trajectories = —g sin(2co„t)+V 2X cos(N)sin(co„t) = 1, (3.9)

The trajectories calculated here will include an imper-
fect injection angle which will give more complex fast os-
cillations. Solving (2.1) in the field (3.1) with more gen-
eral constants of integration gives

r

where /=K /2(1+K +y 5 ) and X=2Ky5/(1+K
+y 8 ). For K=1 and y&„=y@cos(@)=1the fast z
motion can be important.

V 2K
Pr —— — cos(k„z)+8„,8», 0

y
(3.6) B. The pendulum and wave equation with imperfect

linear trajectories
where 8„=P„(0)/P,(0)=icos(4) and 0» =P»(0)/
P, (0)=@sin(4) are constants of integration describing
the injection angle. Unlike the helical case, the motion is
not azimuthally symmetric so that the angles &„and4»
have different effects on the mode coupling. The z
motion is

P, =l —y — cos (k„z)2K
y'

2V 2K@cos(4) (3.7)
y

where 82=8„+4. Average over an integral number of
undulator wavelengths to separate the fast and slow oscil-
lating terms as before. In the limit of y »1 expand to or-
der (K/y) to get

b p, (t) = — cos(2co„t) +K v 2KB cos(@)cos(co„t),
2y' y

(3.8)
K k„ KA.„5cos(N)

b, z (t) = —
2

sin(2co„t)+ sin(co„t),
8my 2m'y

where P~=1 —(1+K )/2y —0' /2=1. Now there are
two kinds of fast oscillations and their amplitudes can be
comparable in typical cases. The effect of 5» &0 alone is
a change in p, and the resonance condition, but there are
no additional oscillations.

To calculate the coupling for the linear case we must
introduce the electromagnetic wave. The vector potential
of the linearly polarized optical field is

A„= [sin(g), 0,0],
nk]

(3.10)

dy eEK
[cos(k„z+ I/I) +cos(kgz —lP) ]dt 2ymc

eEQ„
-cos(1() .

PlC
(3.11)

The three terms on the right in (3.11) oscillate at different
frequencies. The phases (k„z—p) and g oscillate =y2
times faster than (k„z+g)and can be averaged away as
in (IIB). The important slow, resonant phase (k„z+g)
may be rewritten as

g+ k„z=n g+y (n —1)co—„t—ng sin(2co„t)

+n V 2X cos(cp)sin(co„t) nb.vr,— (3.12)

where g and hv are defined below (2.14). Inserting (3.12)
into (3.11) and averaging over a number of discrete
undulator periods to eliminate the fast motion we get

where again g =nk &z nco, t +—p. Substitution into the
energy equation gives

dy eKEL 1
Jg (ng)[Jpg +/+](nZ)+ Jpg +„$(nZ)] cos(ng+q nay), — (3.13)

ymc 2 n'

where Z =v icos(4). When 8=0, then X=Xv=0 and (3.13) reduces to the previous result describing gain at odd
higher harmonics. "' When N »1, we can introduce the variables v, (5)=n (v —bv) and g, (5)=n (g—Ave) so that we
get the pendulum equation

v, =g, =
~
at

~
cos(g, +y),

where the dimensionless field strength is now

(3.14)

4mNeKEL
at

P P72C

pg
00

J„(ng)[Jp„+„+)(nZ)+J2„+„i(nZ)]
2 n =—ao

(3.15)

The wave equation can now be derived with the same procedure as iri the helical case. In its simplified form we have
—its



838 %'. B. COLSON, G. DATTOLI, AND F. CIOCCI 31

8m2&e 2L 2I.~pji=
g PTC n'= —oo

J„(ng)[J2„+„+t(nZ)+J2„+„t(nZ)]

where the dimensionless current density is now
r 2

where Z =V2Xcos(@). The form of the wave and pen-
dulum equations are exactly the same as in the helical uii-
dulator case so that the all results for each may be directly
related with the substitution j~~j~ and a~ ~aI. The new
coupling is expressed in the Bessel functions of these vari-
ables. The gain GI is determined by replacing jI, ~j~ in
(2.21):

[2—2 cos(v„)—v„sin(v„)]Gi=ji
&n

(3.16)

Figure 11 shows the gain GI in the linear undulator as a
function of angle y5 and the dimensionless frequency
co/2y co„ for K=0.5 and C&=0. The brightest points
(white) indicate peak gain of [8N (meKL) p/y mc ]
&&(0. 12), while the black points indicate negative this
value; intermediate values are shown in the grey scale at
the top. Recall that K in the linear case is V'2 times
smaller than in the helical case for the same peak field 8;
this means that for the same weak undulator field 8, such
that E «1, the gain in the linear undulator case is only
half of the gain in the helical undulator case. The detailed
shape of the gain curve is the same as in the linear case,
but the large scale structure in (8,co) differs. because of
new coupling factor jt. Now the odd harmonics have gain
on axis at 5=0, and in each harmonic there is more struc-
ture with changing angle y8.

Figure 12 shows the gain for %=1.0 and @=0. The
peak gain (white) indicates [8N(meKL) p/y mc ]
&((0.10). The figure shows that the amount of gain in
higher harmonics is increased just as in the helical case.
The structure of the gain in each harmonic is more clear
because it's brighter compared to the fundamental.

Figure 13 shows the gain for K =1.0, but the observa-
tion angle is rotated to C&=~/2. The peak gain (white) in-
dicates [8N(rreKL) p/y mc ]&(0.124). The gain in
even harmonics is now greatly reduced for all values of
y5. The gain for @=~is the same as for +=0. This az-
imuthal structure in the gain angular spectrum can cause
excitation of higher order modes in a spherical mirror
resonator.

IV. ENERGY AND ANGULAR DISTRIBUTIONS

The new couplings calculated here may be used to ex-
tend the tunable range of an FEL, but may also be used to
analyze the effects of emittance or misalignment of an
electron beam. Excess emittance is like a large energy
spread which destroys the resonance condition and de-
creases gain. Electrons cannot be effectively bunched
within an optical wavelength for an extended interaction
time if there is significant spread in their z velocities. The
gain reduction in higher harmonics is larger than in the
fundamental simply because the wavelength is shorter;

I ~ ~ a
L.e ~~- &~a s ~~=- arMITI

K=O. 5 M=10 Q=O. OO
Y

ESN(aeKL) 2pi53oc23x M. 1200 Q O. 1200

r"

P

e e e s.v/gpy. Zrgj+ig: j+/+g(pP~Yg)cj~g+/j, irq~i)rgb~:. '+g&~j/gjpj&,
'

FIG. 11. FEL gain spectrum in a linear undulator is plotted for K =0.5, N =10, and 4=0. Black indicates peak absorption,
while white indicates peak gain; the intermediate scale is indicated in grey && [8N(meKL) p/y mc ]. Again, there is substantial gain
off axis in several harmonics, but unHke the helical case, there is now gain on axis in the odd harmonics n = 1,3, 5, . . . .
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La —== &:» ~=:=~-&+
K=1.0 M=10 ~0.00

KSNC aaKL l p &5 ac 3x
O. 1000

&28 QU

g n p ««m in a»nea«n«»«r is plotted for %=10 &=]0 and Cl=Q At this higher value of
much more gain available in the higher harmonics The structure of the gain spectrum as a function of 5 can lead to some interesting
effects when the optical wavefront is amplified.

this is the primary difficulty for FELs operating in higher
harmonics.

From the definition of v„,a variation in energy 5y
causes a variation in the resonance of 6v=4~%5y/yn. '

A beam with 5v=m. suffers a gain decrease of about half
compared to the monoenergetic case. Emittance e and

thus the associated angular spread o., affects the z velocity
of electron and also alters the resonance condition. An
electron traveling at an angle 8 has a change in resonance
of 5v= —27rXy 8 /(I+K )n. ' In terms of emittance
this is 5v= Xy e /r (—1+K )n, where r is the electron
beam radius.

a~~= &~as = ~:-or~i
K=1.0

f8NC%MLP p&5 lac

¹1
3xM. 12

0 /=1. 57

0.1240

FIG. 13. FEL gain spectrum in a linear undulator is plotted for K = 1.0, X =10, and 4 =+/2. At this observation angle, the gain
in the even harmonics n =2,4, 6, . . . and the angular structure of the odd harmonics disappears.
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Gp, (o ) =Gi, (0)(1—X /2+ . . ), (4.1)

where X=2Kyo/(1+K ), Gi, (0) is the on-axis (5=0)
gain for the perfect beam in (2.21), and n =l. In the
linear case

Gi(o)=Gi(0)[1 (nX) + . —. ], (4.2)

where G&(0) is the on-axis gain (5=0) for a perfect beam
in (3.16), and n =1,3,5, . . . .

In addition to decreasing the gain at those (co,8) points
where gain is nonvanishing, the existence of emittance
creates new gain where there was no gain. This occurs be-
cause the electron beam'. s angular spread mixes off-axis
couplings in j& and j~. In the helical case, the new gain
occurs at ri =2,3,4, . . . arid is given by

(0) (2n —3)!! nKyu
[(n —1)!] 1+K

2(n —1 )

(4.3)

In the linear case, the new gain occurs at n =2,4,6, . . .
arid is given by

I

V 2nKycr cos(4)
1+/ (4.4)

V. CONCLUSIONS
f

In both the helical and linear undulator cases we saw
that when K increases, a larger number of harmonics ap-
pear in the spectrum. The harmonics become more close-
ly spaced and the spectrum starts to resemble the broad-
band spectrum of a bending magnet which is useful as a
synchrotron radiation source. ' A simple argument
gives an understanding of the transitiori from the undula-

An electron beam with poor quality has a range of ini-
tial resonance conditions vo. In our formulation, an
electron s initial coordinates are specified by go ——g(0),
vo ——v(0), and 8. We neglect 8z here for simplicity. The
average over sampled electrons in the wave equation must
be interpreted as ( ' )=(((. )~ ) )e. Typically,

these separate averages over go, vo, and 8 are not correlat-
ed and the average ( . )~, is taken to be uniform,

J ( . )dg /2m. . The average ( . )„maydescribe a

Gaussian energy spread, for example. The angular spread
due to emittance can be taken to be Gaussian

&,=(2/~)"' J d(e/~)e-'" (

where o &&n is the characteristic rms angle; The electron
beam here is centered on axis and the spread in angles is
due to emittance.

When the spread o. is small enough so that b,v«m for
all electrons, there is rio sigriificant spread of resonance
conditions in the electron beam and the average ( )@
can be done analytically. When ycr «1, both bv«m',
and X «1 can be satisfied, and we expand in the small ar-
gument X. On axis the gain from a perfect beam (o =0)
only occurs at the fundamental (n =1) in the helical case,
and only at the odd harmonics (n =1,3,5, . . . ) in the
linear case. These gains are reduced by the presence of
emittance. In the helical case

tor radiation spectrum to the bending magnet spectrum.
As the undulator field strength S is increased, electrons
deviate further from their linear path along the z axis.
When B is large enough an electron would be trapped in
an orbit smaller than the undulator wavelength A,„;trajec-
tories along the undulator are no longer possible. In a
bending magnet with coiistant field 8 the bending radius
of a relativistic electron is p=2mymc /eB. ' The field at
which p-A, „means that K-y. At this limit P,~O in
the helical trajectories of (2.4), and the K/y expansion
breaks down in the linear trajectories of (3.4). The limit
K-y indicates that the electron deflection angle is larger
than the radiation cone, so that the cone passes rapidly
through a detector at any position and produces a broad-
band spectrum. The syrichrotron spectrum from an elec-
tron in a circular orbit of radius p

' is

2 22'' 2
~s

deco ~c 3y g

2 2

&& K 2n(% )+

Kin�(%

), (51)

where %=(~p/3y c)(1+y 5 ) and Kin Kzn are
modified Bessel functions. Figure 14 shows an intensity
plot of (5.1) versus y5 and the dimensionless frequency

cop/3y c. The peak intensity (white) indicates an emission
of [3e y /n c])&0.37. The spectrum is featureless com-
pared to the undulator spectrum and the emitted energy
drops off at the characteristic angle @8=0.5 and the
characteristic frequency cop/3y c = 1. Comparing the
synchrotron emission rate in (5.1) to the undulator emis-
sion rates in (2.5) and (3.5), we note that the undulators
radiate X times the energy into an element dAdco. The
total emission is more nearly equal since a synchrotron
source covers more elements dQdco as can be seen in the
figures.

Another point deserving comment concerns the Madey
theorem. The Madey theorem states that the FEL gain
spectrum is proportional to the slope of the spontaneous
emission spectrum. A straightforward application of the
theorem to the spectra presented here shows that this is
not the case for 5~0. The gain off axis is not propor-
tional to the slope of the spontaneous emission, and the
original derivation of the Madey theorem only applies on
axis. Ii may be possible, in principle, to generalize the
theorem' to off-axis propagation, but this effort must be
weighed against making the direct calculation as is done
here. Our experience is that the direct calculation appears
more clear and less difficult.

An application of the gairi calculations presented in this
paper is to use the higher haimonics to extend the tunable
range of an FEL to higher frequencies. The angular gain
spectrum in each harmonic can, in turn, be used to tune
the laser to lower frequencies. See Figs. 6, 7, and 11—13.
Iri combination, these two tricks can significantly extend
the tunable spectrum of an FEL without changing the
electron energy. Since there is often a reduction of gain in
off-axis higher harmonics, it is important to start with
respectable gain in the fundamental on axis. The amount
of reduction depends on K and the harmonic number n; if
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, 'Liii Illlkll I II is asm':

up &38 c
FIG. 14. Synchrotron spontaneous emission spectrum is plotted as a function of y 5 and frequency cop/3y c for an electron in a

path of radius p. The intensity scale is indicated in grey X[3(ey/m. ) /c]. In contrast to the undulator cases, the synchrotron spec-
trum is broad in both frequency and angle. The characteristic angle is 5=0.5/y, and the characteristic frequency is 3y c/p. While
the total energy emitted is comparable to the undulators, the peak emission is less than an undulator by &X

the undulator has K = 1, then the reduction in gain for the
first few harmonics is not too large. The electron beam
quality must improve in proportion to the harmonic num-
ber n ' in order to maintain optimum coupling. Specific
limitations are given in the last section.

The coupling factors calculated assumed a plane-wave
form for the optical field. The plane-wave approximation
is valid when the Rayleigh range zo of the optical wave-
front is much greater than the undulator length zo &)L.
The Rayleigh range is the distance over which the optical
wavefront propagates as diffraction doubles its transverse
area. Some aspects of the resonator mode problem can be
incorporated in the electron and wave equations of motion
in a simple way, but as the angle 8 is increased in order
to tune the FEL, we must be aware of the resonator
mode s transverse dimension. See the schematic in Fig. 1.
The waist area of the fundamental mode is 1Tcoo=zok, so
that the characteristic angle of the mode is estimated by
5~ =(A./zo)'/. It is often possible to use the undulator
length L, as an estimate of zo. Then, a simple approxi-
mate form is 5~=1/yN'/. Note that 5~ is typically
smaller than the spontaneous emission cone y '. Since
angles like 5=@ ' are needed to change the optical wave-
length significantly, staying within the resonator mode
can place an important restriction on the tunable range.

It is also possible to make zo ~~L, so that the mode area
is wide enough to provide a large range of angles. But an
FEL design, where the optical mode area is much larger
than the electron beam cross section, suffers a serious
reduction in gain because of this mismatch. ' ' There are
several practical aspects of the FEL design that have not
been included in the discussion here. Our goal has been to
evaluate the new coupling factors in a way that allows im-

mediate generalization to include the many other concepts
already understood in FELs. These improvements are a
natural extension of the work presented here.

Although no measurement of off-axis gain has been re-
ported experimentally, higher harmonic emission on axis
has been observed. Three of the four FEL experiments re-
ported have observed emission at harmonics just above the
fundamental. " Another experiment has measured
gain on-axis in the third harmonic of a linearly polarized
undulator.

An example of an FEL system which could make good
use of higher harmonics is a low-energy microtron. Such
an FEL system has good electron quality, is small, corn-
pact, and relatively inexpensive. But because of the low-
electron energy, say y =8, the FEL tends to work at rath-
er long wavelengths and the use of higher harmonics can
extend the operation to shorter wavelengths. Generally,
the goals of high gain, large K, and good electron beam
quality are common to all FEL work, so that the use of
higher harmonics should become more wide spread in the
future. The choice of an undulator with only a few
periods is an advantage, since the characteristic mode an-
gle I/yX / allows large excursions in 8. The higher-
harmonics gain mechanism can also be used to achieve
coherent emission in several harmonics at the same time.

ACKNO%'LED GMENTS

We are grateful for helpful conversations with A.
Renieri and J. Gallardo, and for the support from the U.S.
Air Force Office of Scientific Research Grant No.
AFOSR-84-0079 and the U.S. Office of Naval Research
Ctyrants Nos. N00014-81-K-0809 and N00014-81-C-2349.



%. B. COLSON, G. DATTOLI, AND F. CIOCCI 31

S. Benson, D. A. G. Deacon, J. N. Eckstein, J. M. J. Madey, K.
Robinson, T. I. Smith, and R. Taber, Bendor Free Electron
Laser Conference, Proceedings of the Bendor Free Electron
Laser Conference, Bendor, France, 1982 [J. Phys. (Paris) Col-
loq. 44, Cl-353 (1983)].

M. Billardon, P. Elleaume, J. M. Ortega, C. Bazin, M. Bergher,
M. Velghe, Y. Petroff, D. A. G. Deacon, K. E. Robinson, and
J. M. J. Madey, Phys. Rev. Lett. 51, 1652 (1983).

J. A. Edighoffer, G. R. Neil, C. E. Hess, T. I. Smith, S. W.
Fornaca, and H. A. Schwettman, Phys. Rev. Lett. 52, 344
(1984).

4R. W. Warren, B. E. Newman, %. E. Stein, J. G. Winston, R.
L. Sheffield, M. T. Lynch, J. C. Goldstein, M. C. Whitehead, -

O. R. Norris, G. Luedemann, T. O. Gibson, and G. M. Hum-

phrey, in Proceedings of the Sixth International Conference
on Lasers and Applications, San Francisco, 1983 (STS Press,
McLean, Virginia, 1984).

sBendor Free Electron Laser Conference, Proceedings of the
Bendor Free Electron Laser Conference, Bendor, France,
1982 [J. Phys. (Paris) Colloq. 44, Cl-353 (1983)].

sSpecial issues, IEEE J. Quantum Electron. QE-17, August
(1981);QE-19, March (1983).

7Physics of Quantum Electronics, edited by S. F. Jacobs et al.
(Addison-%esley, Reading, Mass. , 1978—1982), Vols. 5, 7—9.

Free E/eetron Lasers, Vol. 18 of Ettore Majorana International
Science Series, Physical Sciences, edited by S. Martellucci and
A. N. Chester (Plenum, New York, 1983).

9Free Eelectron G-enerators of Coherent Radiation, Proceedings
of Free-Electron Generators of Coherent Radiation, Orcas Is-
land Washington, 1983, edited by C. A. Brau, S. F. Jacobs,
and M. O. Scully (The Society for Photo-Optical Instrumenta-
tion Engineers, Washington, D.C., 1984), Vol. 453.

~oJ. M. J. Madey and R. C. Taber, in Physics of Quantum Elec
tronics, edited by S. F. Jacobs et al.'

(Addison-%'esley, Read-
ing, Mass. , 1980), Chap. 30.

t tW. B. Colson, IEEE J. Quantum Electron. QE-17, 1417
(1981).

'2R. Coisson, IEEE J. Quantum Electron. QE-17, 1409 (1981).
W. B. Colson, Phys. Rev. A 24, 639 {1981).

~~F. Ciocci, G. Dattoli, and A. Renieri, Nuovo Cimento Lett.
34, 341 (1982).

~5N. Al-Abawi, G. T. Moore, and M. O. Scully, Phys. Rev. A
24, 3143 (1981).

tsM. V. Fedorov, Usp. Fiz. Nauk. 134, 213 (1981) [Sov.
Phys. —Usp. 24, 801 (1981)];D. F. Zaretskii, E. A. Neresov,
and M. V. Fedorov, Zh. Eksp. Teor. Fiz. 80, 999 (1981) [Sov.
Phys. —JETP 53, 508 (1981)].

M. V. Fedorov and S. Stenholm, Opt. Commun. 49, 355
{1984).

SJ. M. J. Madey, J. Appl. Phys. 42, 1906 (1971).
W. H. Louisell, J. Lam, D. A. Copeland, and W. B. Colson,
Phys. Rev. A I9, 288 (1979).

~OW. B. Colson, Ph.D. thesis, Stanford University, 1977.
J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975).

J. M. J. Madey, Nuovo Cimento B 50, 64 {1979).
3J. Schwinger, Phys. Rev. 75, 1912 (1949).
G. A. Schott, Electromagnetic Radiation (Cambridge Universi-

ty, London, 1912).
25J. P. Blewett and R. Chasman, J. Appl. Phys. 4S, 2692 (1977}.

P. Diament, Phys. Rev. A 23, 2537 (1981).
2 D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Proc.

P. N. Lebedev Phys. Inst. (Acad. Sci. USSR) 80, 97 (1976).
~88. M. Kincaid, J. Appl. Phys. 48, 2684 (1977).

Phys. Today 34 {5),Special Issue (1981).
3 M. L. Perlman, E. M. Rowe, and R. E. Watson, Phys. Today

27 (7), 30 (1974).
3~S. K. Ride and W. B. Colson, Stanford University High Ener-

gy Physics Lab Report No. 858 (unpublished).
G. Dattoli and A. Renieri, in Experimental and Theoretical
Aspects of the Free Electron Laser, in Vol. 4 of Laser Hand
book, edited by M. L. Stitch and M. S. Bass (North-Holland,
Amsterdam, in press).
%.B. Colson, Phys. Lett. 64A, 190 (1977).

34A. Bambini and A. Renieri, Nuovo Cimento Lett. 21, 399
(1978).

35V. N. Baier and A. I. Milstein, Phys. Lett. 65A, 319 (1978).
36W. B. Colson and S. K. Ride, Phys. Lett. 76A, 379 (1980).
37%'. B. Colson and A. Renieri, J. Phys. (Paris) Colloq. 44, C1-

11 (1983).
W. B. Colson and P. Elleaume, Appl. Phys. B 29, 101 {1982).
W. B. Colson and J. L. Richardson, Phys. Rev. Lett. 50, 1050
(1983).
M. Biagini, R. Boni, S. De Simone, S. Guiducci, M. Preger,
M. Serio, S. Tazzari, F. Tazzioli, S. Trillo, M. Vescovi, M.
Ambrosio, G. C. Barbarino, M. Castellano, N. Cavallo, F.
Cevenini, M. R. Masullo, P. Patteri, R. Rinzivillo, and S. Sol-
imeno, Free Electron -Generators of Coherent Radiation,
Proceedings of Free-Electron Generators of Coherent Radia-
tion, Orcas Island Washington, 1983 edited by C. A. Brau, S.
F. Jacobs, and M. O. Scully {The Society for Photo-Optical
Instrumentation Engineers, Washington, D.C., 1984), Vol.
453, p. 275.






























