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Third-harmonic generation from a laser-induced autoionizing level
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A nonperturbative theory is presented for the gas polarization induced by two lasers. The first
laser ionizes Li(2s) by three-photon absorption, with the first two photons in resonance with the 3d
level. A second laser stimulates recombination into the 3s level, thereby inducing an autoionizing-
like structure in the continuum. It is found that the polarization (and hence possibly third-harmonic
generation) is enhanced near the induced resonance.

I. INTRODUCTION

It has been suggested' that third-harmonic generation
(THG) from an autoionizing level would be an important
mechanism for the production of vacuum-ultraviolet radi-
ation. This problem has recently been studied theoretical-
ly. The theory of autoionization in the presence of a
strong radiation field has received much attention recent-
ly, and the theory has been extended to include both
radiative decay and a type of decay which affects only
the off-diagonal elements of the density matrix.

The theory of autoionizing-like resonances which are
induced in the continuum by the presence of a second,
strong radiation field has also appeared recently, ' and a
calculation" has been performed on atomic Li. It is the
purpose of this paper to extend this theory' '" to THG.

Earlier studies of THG in gases include those of New,
Ward, and Smith. ' Recently work' ' has appeared on
THG as a competing process on three-photon resonantly
enhanced multiphoton ionization. Moreover, the first ex-
perimental results on the process described in the present
paper have also appeared. '

II. THEORY

Electromagnetic (EM) wave generation in a gas is
described by the equation

n' 8 E'(r, t) 4~ 8 P(r, t)
dt c Bt

where E' is the electric field of the generated wave, P is
the gas polarization (dipole moment per unit volume) in-
duced by an incident wave, and n' is the index of refrac-
tion for propagation of the generated wave at the ap-
propriate frequency. P is

2s~3d~ep+ of,
E2

3s

(3)

where, on resonance el ——1.925 eV for e3d —e2, —2e) ——0
and e2 ——2.432 eV for e3, —e3d —e&+eq ——0 (where we have
used the atomic model discussed in Ref. 11, in which
ez, ———5.342 eV, e3, ———1.998 eV, and e3d ———1.491 eV).
Note that laser 1 can ionize 3d but not 3s and that laser 2
can ionize both 3d and 3s. The processes in Eq. (3) are
described by solving the time-dependent Schrodinger
equation. The exact wave function for a Li atom in the
presence of two lasers is expanded in the 2s, 3d, ep, ef,
and the set of np eigenstates of Li. As discussed in Ref.
11, the continuum and virtual states are eliminated by
substitution in the equations for the probability ampli-
tudes for the 2s, 3d, and 3s eigenstates. After some ap-
proximations"' a set of coupled differential equations is
obtained for these amplitudes. These are

P(r, t) =Ny(t)pEe'"'

where N is the gas number density, y(t) is a generalized
polarizability in cm /atom, and an "incident" EM wave
with frequency co and electric-field strength E propagates
in the direction of k and is polarized in the direction of
the unit vector p. For example, Eq. (2) has been studied'3
for THG, where y =

4 XE (for an atom nonlinear suscep-
tibility X in cm /erg),

~

k
~

=3nro~/c, and to=3co~ (for
photon frequency co„and an index of refraction n for
wave propagation at frequency co&, such that n' can now
be identified as the index of refraction for wave propaga-
tion at 3'~). X has been calculated for various atoms
from third order t-ime-dependent perturbation theory. ' '

We consider the following resonant processes as a
source of gas polarization in atomic Li:
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On resonance (Az ——cozd —coz, —2''=0 and b,
&
——co&, —co'" —co'+coz ——0) and for linearly polarized light, the matrix ele-

ments of Eq. (4) are given in the Appendix.
Analysis shows that the gas polarization [Eq. (2)] for the processes given by Eq. (3) is

i (3k&.r—3~&t)
P(r, t) =N[y&(t)p&E&+yz(t)pzEz]e

1/2
SmF) eJ

(Sa)

(Sb)

34a0 OO OO

y&(t) = dr uz, &(r)ru "(r)+k ' dr dr'uz, (r)rG&(kr & )F&(kr & )r'u3d(r')
3 5 0 0

—ik ' dr F& kr ru2s r dr F& kr ru3d r b2, t b3d (Sc)

32a0 QO OO

yz(t)= druz, z(r)ruz, (r)+k ' dr dr'uz, (r)rG, (kr )F, (kr&)r'u3(r)
3 0 0 0

—ik-' f"drF, (kr)ruz, (r) f drF~(kr)ru z(r) bz, (t)b3(t), (Sd)

where b„i are the slowly varying amplitudes defined by

b2, ——a2, ,
—i 52t

b3d =e
—i (b, i+62)t

b3, ——e a3s

(6a)

(6b)

(6c)

The contributions to y&(t) and yz(t) are given in Table I. The unperturbed radial orbitals (u„t), first-order perturbed ra-
dial orbitals (u„t+', where q = 1,2 refers to laser 1,2 for + or —frequency), and continuum radial orbitals are discussed
in the Appendix.

In this work, the probability amplitudes [Eqs. (6)] are evaluated nonperturbatively by numerically solving Eq. (4); how-
ever, it is instructive to evaluate these amplitudes in the perturbative limit, in which case the gas polarization [Eq. (Sa)]
reduces to a familiar-looking expression in terms of the atomic nonlinear susceptibilities. ' Thus

N [+3P1~1++spzE i~z]

for a third-order susceptibility Xz in cm /erg and a fifth-order susceptibility X5 in cm /erg . In arriving at Eq. (7) we
have used the following perturbative limits for the amplitudes:

b2, ~1,
3 24ao (1) E1

bzd~ dr u3(f(r)ruz, +~(r)
3 SA'Az

s 4

(8a)

(8b)

b3s~
16a 0

45A2a, a2
k ' f dr f dr'u~, (r')G&(kr )F&(kr&)r'u3d(r')

3
00 OO QO E,E—ik dr F'(kr)ruz, (r) dr F'(kr)ruz"(r) dr used(r)ruz, +'(r)0 0 0 16

(8c)

The fifth-order term also depends on the factor
i (3k&.r —3'�&t)

e since the second-laser photon Acoz is emitted
and reabsorbed in the transmission connecting the 3s and
ep levels [Eq. (3)].

III. NUMERICAL RESULTS AND DISCUSSION

Although Eq. (4) can be solved exactly analytically, we
choose to solve it numerically. Our results are shown in
Figs. 1 and 2. The laser pulse is assumed to be square and
of duration 5 ns. The intensities are 3.08 and 77.9
MWcm for the first and second lasers, respectively.
The ionization probability Pl =1—

~
az,

~

—
~
azd

~

—
~
aq,

~

is plotted at the bottom, and the magnitude of
the induced dipole moment [magnitude of the terms in
square brackets in Eq. (Sa) with p~

——pz ——1], is plotted
above it. In Fig. 1 these quantities are plotted versus A2
for 6& ——0.019 cm and in Fig. 2 these quantities are
plotted versus 6& for b2 ——0.01 cm '. The dotted-dashed
curve [see Eq. (Sa)] is ~y'E, ~, the dashed curve is

TABLE I. Contributions to the generalized polarizabilities
given by Eqs. (5c) and {Sd) (in units of 10 cm ).

yl(t) =( —6.439+7.200+1.363i)bgs~3d
yp(t) =(4.361—6.488 —1.397i)by b3,
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FICx. I. Ionization and induced-dipole moment vs A2 ——m3g)

~2s 26)1 for 51 c03s &3D &1+c02——0.019 cm '; I1 ——3.08
MW cm and I2 ——77.9 MW cm

FIG. 2. Ionization and induced-dipole moment vs AJ —ct73s
—c03 —co +co for A2 =c03D c02s 2co1 —0.01 cm; I1 ——3.08—1.

M%' cm and I2 ——77.9 MW cm

~
yzE2 ~, and the solid curve is y~E~+yzE2 ~. Other

calculations show that when
~

b,
&

is large, the induced-
dipole moment magnitude reduces to

~ y ~E~ j
.

For 6& ——0.019 cm ', the squared magnitude of the in-
duced dipole moment is enhanced by the growth of the
y2E2 contribution (Fig. 1 at b, 2—0.01 cm ') near the
point where the bump occurs in the ionization curve due
to the "induced autoionizing resonance" by the second
laser. ' '" Then, near unit ionization probability, both
contributions to the induced-dipole moment pass through
a minimum. This is due simply to the smallness of the
bound-state amplitudes at this point [Eqs. (5c) and (5d)].
Figure 2 shows a blow-up of the third-harmonic max-
imum at 52-0.01 cm '. Now the plot versus 5& clearly
shows the induced autoionizing resonance peak in the ion-
ization curve and the rapid growth of

~
y2E2 ~. The

structure in
~
y&E&+yzEz

~

results from the interference
of the two contributions y&E& and y2E2. Note that the
ionization curve here does not show the characteristic
"Pano asymmetry" of previous calculations. ' " Howev-
er, these were calculations of one-photon (rather than
three-photon) ionization rates.

These results imply that THG can possibly be enhanced
by the growth of the induced-dipole moment near the in-
duced resonance. However, this question is a complicated
one, and it requires the solution of Eq. (1) for wave propa-
gation through the medium for an answer. This leads to
the important problem of phase mismatch due to the
refractive-index difference of the generated wave (at 3'~)
and the incident wave (at co&). Phase mismatch is further
complicated in the case of resonant absorption by popula-
tion growth in excited states, a situation which has been
studied recently by Puell et ah. for a saturated bound-
bound transition. In our case the bound-to-continuum
transition is nearly saturated so that the effect of this sa-
turation on the phase mismatch should be carefully exam-
ined before any conclusions can be made on THG
enhancement.
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APPENDIX

The matrix elements of Eq. (4) (in s ') are presented in this appendix. We have

Spg —— aaoF/E$ dr u2$(r)rupg+$(r)+ dr u2g(r)ru2g $(r)
4m. 2 ~ (1) (&)

3 0 0

aa OF/E2 dr u2, (r)ru2, +2(r)+ dr u2, (r)ru p, p(r)
4m (&)

3 0 0
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Sm (&)
2 +3d, 2 V+2, 3d —a+& IE1 dr u3d( )V 2 +1(r)3v'5 0 (A2)

S3d=4~aaoF&E~ ——,', k ' dr dr'u3d(r)VG&(kr )F~(kr )r'u3d(r')
0 0

k dv dr u3d(r)VG3(kr &)F3(kl )r u3d(r')
0 0

+ —„ f, dr u3d(r)ru 3d'
~ (v)+ —,', dr u 3d(r)ru 3d', (r)

0

+4~aaoF2E2 ——,', k' ' dr dr'u3d(r)VG~(k'v& )Fl(k'r&)r'u3d(r')
0 0

——,', k' ' dr dr'u3d(r)VG3(k'r )F3k 1 & )V ll3d(r')0 0

+ ~~ dr u3d(v)ru 3d 2(v)+ 35 dv u3d(v)vu 3d 2(1 )
(i) (3)

0

2 2
9 QQ 2

7 3d —SmaaoF~El —„k ' dr F~ (kr)ru3d(r) +—„k ' dr F3(k1 )Vu3d(1 )0 0
OO

+SmaaoF2E2 + k' ' dr F~(k'r)ru3d(r) +—„k' ' dr F3(k'r)ru3d(r)0 0

2

1/2—allo(FiEiF2E2)' '
3&5

X —k ' f dr f dr'u3, (r)G~(kr & )F~(kr & )r'u3d(r)

+ f dr u 3 (r)ru 3d 2 ik ' f dv F~ (kr)ru 3,(r) f dr F, (kr)ru 3d(r) (A5)

S3,—— aaoF~E& dr u3, (r)ru3 +/+ dl u3 (r)ru3 ](V)
4~ 2 ~ ()) (1)

S 0 0

+ aaoF2E2 —k ' dr dr'u3, (r)VG~(kr& )Fl(kr & )r'u3, (r')+ dr u3, (r)ru3 2(r)3 0 0 g ) ( s 0
(A6)

)13 — ag QF2E2 k dr F& ( kr)ru 3,(r)
8m.

3 0

k
2

++2

k'
2

=E3d+E2,

(A7)

(AS)

(A9)

dr
[
I+1

/
( f

1+I
) + 1)

r2
—2VsE r

+ 2(E„1+Eq) u„')+q' ~ '(r) =r u„l(r), (A10)

where VsE is the nonlocal static-exchange potential. "
The unperturbed and perturbed bound orbitals are cal-

where a is the fine-structure constant, ao the Bohr radius,
Fl. the jth laser (with photon energy El. in a.u. ) flux in
cm s ', u„~ are the unperturbed radial orbitals having-
energies E„l in a.u. , and Fl (Gl) are the regular (irregular)
partial waves of the photoelectron. These values are used
throughout although Eq (4) is sol. ved for various values of
6& and A2 (Figs. 1 and 2) about zero detuning, valid since
the matrix elements are slowly varying with energy.

The perturbed orbitals u„l +~ (where q refers to laser 1

or laser 2) are calculated from the equation of first-order
perturbation theory (in a.u.),

culated" in the static-exchange approximation for e,Li+,
and the continuum partial waves are calculated"' in a
local approximation to the static-exchange approximation
for e,Li+. The numerical values for each Inatrix of Eq.
(5) are given in Table II. Note that terms involving u2,"+&

TABLE II. Matrix elements of Eq. (4) [see Eqs. (5)]. The
coefficients of laser flux are in units of 10 ' cm . The terms in
Eqs. (5) are grouped consecutively below (where the J'=1 and
I =3 contributions to S2d and y3d have been combined).

S2s = ( 16.601—0.377 )F] + (2.973—0.42 1 )Fp

2 +3d, 2s = 16.6384F~

S3d ——(10.335+ 11.487)Fl +(9.276 —9.858)F2
y3d ——2.365F) +0.632F2

2 +3s,3d ( 4. 150+6.005+ 1 0.569)(FlF2)
S3$ ( 5 733—5.3 1 5 )Fl + ( 5.472 —4.666)F2

y3, ——0.656F2
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are large since the laser-1 photon (1.925 eV) is almost in
tune with the 2s, 2p transition (1.841 eV in our atomic
model). Despite this fact, the u2,"+~ perturbed orbital was
found to be numerically stable against increasing the

number of basis orbitals in the variational method" used
to calculate it. See Ref. 11 for further discussion on the
calculation of matrix elements of this form.
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