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Quantum theory of spontaneous and stimulated resonant transition radiation
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Resonant transition radiation generated by high-energy electron beams traversing a periodic medi-

um has been considered by many researchers as a potential source of both spontaneous and stimulat-
ed emission at short wavelengths. To our knowledge, this problem has only been treated classically.
This paper presents a quantum-mechanical theory that leads to a unified description of both spon-
taneous and stimulated emission and agrees closely with the classical results.

I. INTRODUCTION
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FIG. 1. Emission of electromagnetic waves by an electron
traversing a periodic medium. (a) Configuration, (b) permit-
tivity e(z) vs z, (c) direction of.electron current (p;), electromag-
netic wave vector (k) and wave polarization (v).

Electrons traveling at high speed emit electromagnetic
waves when they move from one medium to another with
a different dielectric constant. This is known as transition
radiation. In a spatially periodic medium there is an in-
terference of the waves emitted at different interfaces pro-
ducing a resonant transition radiation when the following
condition is satisfied (Fig. 1):

c' nVcosO= ——
v I

where A, is the wavelength of radiation in free space, l is
the period of the spatially varying dielectric constant e(z)
(the variations are usually assumed to be small), F is the
"mean" relative dielectric constant, c is the velocity of
light, c'=c/V e, A, '=L/'(/e, U is the velocity of the elec-
trons in the z direction perpendicular to the interfaces, 8
is the angle between the direction of wave propagation
and the z axis, and n is an integer.

Resonant transition radiation has been considered by a
number of workers as a possible source of short-
wavelength radiation. Usually the period l is much
greater than k so that ultrarelativistic electron beams
with U/c=1 are required to satisfy Eq. 1. The possibility
of using nonrelativistic electron beams with short-period
solid-state superlattices to generate x-ray radiation has
also been considered recently. '

To our knowledge the problem of resonant transition
radiation has only been treated classically. In classical
theory spontaneous and stimulated emission are two dif-
ferent problems. Spontaneous emission is obtained from
Maxwell's equations, treating the electron beam as a fixed
current source. To obtain stimulated emission, however,
we must consider the effect of the electromagnetic wave
on the electron beam. This can be done using either a col-
lective approach (Boltzmann equation) or a single-
particle approach. '

In this paper we will present a quantum-mechanical
treatment of resonant transition radiation. In the
quantum-mechanical approach, the electrons and the elec-
tromagnetic wave are treated simultaneously and both
spontaneous and stimulated emission come out of the
same formalism. A simple fundamental relation is estab-
lished between the spontaneous emission rate and the
stimulated emission gain. In the quantum-mechanical
theory we consider the interaction between the electron
beam and the electromagnetic normal modes of the
periodic medium. These normal modes consist of an in-
finite number of spatial harmonics with wave numbers
kcos8+2nm/l(n is an integer, k =2m/A. ', 8 is an angle
between the direction of wave propagation and the direc-
tion perpendicular to the layers) whose amplitudes depend
on the Fourier components of e(z). The spatial harmonics
have phase'velocities smaller than that of the fundamental
(n =0) by the factor (1+n A'/1 cos8). Conse, quently it is
possible for the electron beam to Cerenkov radiate into
the higher spatial harmonics even though u &c. In this
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paper we will view resonant transition radiation as a pro-
cess of Cerenkov emission into the higher spatial harmon-
ics; the results for both spontaneous and stimulated
resonant transition radiation are obtained from those for
ordinary Cerenkov radiation by multiplying by the
squared amplitude of the nth spatial harmonic of an ap-
propriate field component. It is interesting that the spon-
taneous emission obtained using this approach agrees ex-
actly with the classical Ginzburg-Frank result obtained
from a totally different approach. The advantage of this
viewpoint is that it reduces resonant transition radiation
to a special case of Cerenkov radiation.

Section II gives a brief summary of the classical results
for spontaneous and stimulated resonant transition radia-
tion. In Sec. III we first describe the quantum theory of
ordinary Cerenkov radiation using the Schrodinger equa-
tion for nonrelativistic electrons; relativistic effects are
then introduced using the Dirac equation. The results are
in agreement with a quantum theory of stimulated
Cerenkov radiation that has been presented recently using
the Klein-Crordon equation for relativistic electrons. We
discuss both the spontaneous emission rate and the stimu-
lated emission gain and establish a simple fundamental re-
lationship between them. In Sec. IV we first calculate the
spatial harmonic amplitudes of an electromagnetic wave
in a periodic medium assuming that the dielectric-
constant variation is small (be/@&~1); however, we do
not make the usual WKB approximation so that the re-
sults are valid even if the period l is comparable to a
wavelength A, . ' The results for ordinary Cerenkov radia-
tion from Sec. III are then adapted to resonant transition
radiation, using these spatial harmonic amplitudes.

II. CLASSICAL THEORY

A. Spontaneous emission

The energy Uo radiated in a frequency range dc@ in a
solid angle dQ by an electron traversing an interface be-
tween two media with dielectric constants e~ and e2 can be
obtained directly from Maxwell's equations:

2 2 . 2 2d Uo e sinO Ae
d~ d 4~eoec' 4w2 e

d U
dQ) dQ

d2UO
2 n~ll

SmN sin 5(g—2yg ~)

d Uo 2 null
4Nq sin 5(cos8+ nq —1/p') .

Integrating over the solid angle we get the energy U radi-
ated into the frequency interval de for a particular value
of n,

dU
dco

2

4%6'OE'c

2
. 2 Ae 2'sin O sin

where

nq —p'

n q (2 nqP'—)

,

2

crt =k~ U,

k„=k cos8+ 2~n /l,
k=2m/A, ' .

(4a)

(4b)

(4c)

Here we have used Eq. (2b) for d Uo/dcodQ and as-
sumed that it varies slowly compared to the 5 function.
Equations (4) are really another way of writing the reso-
nance condition expressed by Eq. (1). Equation (3) gives
the total energy radiated by one electron; multiplying by
J/e (J= current density ) we get the radiated power I
per unit area,

dI TeAusin 8p,
I

4meoec'

where

(5a)

ber of layers, and g=(2m. l/A, ')( I/P' —cos8). If N is suffi-
ciently large, the radiation shows very narrow spectral
peaks around values of 8 for which g is an integer multi-
ple of 2m. The location of the peaks is given by

/=2m. n

which is identical to Eq. (1). The narrow spectral peaks
can be approximated by 5 functions around a particular
value of n,

xp' t2 2
1 —P' cos8 —P'

(2a)
(1—P'cos8)(1 —P' cos 8)

1 b.e (nq —P')
sin

n~ e nq(2 nqP')— (5b)

where be=
I e& e2

I
/eo e=(ei+ez)/2eo eo is per-

mittivity of vacuum, p=u/c, p'=pVe. Using Eq. (1)
we can rewrite Eq. (2a) as

and

T=Nl/u (5c)
2 —

2 ~ 2 ,
2d Uo e' sin'8 b.e

d~ dO 4meoec' 4~ e
(nq —p')

n q (2—nqP')
(2b)

is the time of interaction.

B. Stimulated emission

where q =A, '/l.
In a periodic medium with multiple interfaces the total

radiated energy U is given by

d Uo 4sin (gl&/2l)sin (gN/2)
de dQ de d Q sjn2(g/2)

where l l is the length of one of the layers, 2)V is the num-

Stimulated emission can be treated classically using ei-
ther a collective approach (Boltzmann equation) or a
single-particle approach ' (Lorentz equation); the latter is
probably more explicit an'd straightforward. In this ap-
proach we calculate the change in energy of an individual
electron due to its interaction with an electromagnetic
wave. The energy lost by the electrons contributes to the
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dU =ecP.E,
dt

(6a)

where E is the electric field at the location of the electron
r(t) and

gain of the wave. The change in the electron energy U is
given by

d sin P
dP

P=(1—P'cos8 P'q—)cv T/2=(co k„—v )T/2,

( 1 P2) —1/2

(7b)

(7c)

(7d)

E=QE„expi(k„r cot +—P„) .

The index n runs over all the spatial harmonics. A large
exchange of energy between an electron and the elec-
tromagnetic wave becomes possible if it moves synchro-
nously with the wave so as to see almost a constant elec-
tric field. Assuming r(t)=P'ct, we can see that this
resonant condition is achieved if

k„.P 'c =co

which is the same condition as Eqs. (4). Assuming that
the resonant condition is satisfied, we can calculate the
energy exchange between the electron and the wave from
Eq. (6a); depending on the phase P„of the wave, the elec-
tron can either gain or lose energy. If we average this en-

ergy over all possible phases P„, the result is zero. To get
a nonzero result we need to take into account the pertur-
bation of the electron trajectory r(t) due to the elec-
tromagnetic wave. We then get from Eq. (6a),

T
hU= ec E.h + AE dt, 6b

0

where E and P are the unperturbed values, hP and
bE[=.E(r+br)] are the deviations due to the effect of
the electromagnetic wave, T is the time of interaction, and
the angular brackets () represent the averaging over P„.
bP and b,E are obtained from the Lorentz equation. As-
suming a plane wave, we can show that the wave is ampli-
fied by the electron beam only if its electric field E is po-
larized in the plane of incidence (x-z plane); for this polar-
ization only the z components of P and E contribute to
the change of energy. We have from the Lorentz equa-
tion,

Pm 4~morc' cosO

Using Eq. (6a) for dI/dm we can write Eq. (8a) as

T dI (1—P cos 8)cos8
Qm dN

(8b)

III. QUANTUM THEORY OF CERENKOV
RADIATION

In this section we will describe spontaneous and stimu-
lated Cerenkov radiation using a quantum-mechanical
formalism. As we have mentioned in the Introduction,
the results for Cerenkov radiation are readily adapted to
resonant transition radiation simply by multiplying with
the squared amplitude of the spatial harmonic of an ap-
propriate field component; this is done in Sec. IV.

A. Nonrelativistic electron beam

We first consider a free nonrelativistic electron interact-
ing with a radiation field; relativistic effects are incor-
porated in Sec. III8 with a simple modification,

Ho= + girtcvkak, ak,
2&i

(9a)

This is a one-dimensional analysis assuming a guided
mode. As discussed in Ref. 9, when the oblique angle of
the EM wave is taken into account, the gain is multiplied
by the factor (1 —I3 cos 8)y /cos 8, so that

5P,=, f E, dk.
mcy 0

(6c) Hint g+k, va k, v+Ikk, v ak, v
k, v

(9b)

Also,
T

Az=c f Ikp, dt, (6d) 2&0Vmk

' 1/2

(
—sk R+e —ik R

) (9c)
2m

BE,
AE, = Lz .

Bz
(6e)

Using Eqs. (6c)—(6e) in Eq. (6b) we can calculate the ener-
gy exchange hU between the electron and the electromag-
netic wave. In order to obtain the amplification of an
electromagnetic wave due to an electron beam carrying an
electric current density J, we have to multiply AU by J/e
and divide it by the energy flux of the incident wave per
unit area (= 2 ED''cos8). The small signal gain I at a
frequency co is then obtained as '

T3 2

Is. I' (7a)
47TE0EC COSH

where

/

I&= /p;& Q fn, .& . (1oa)

We consider transitions to a final state
~
F) with the elec-

tron in state
~ pf ) and one more (or one less ) photon in

where k, v represent the wave vector and polarization of
the photon mode, cok =c'k, V is the volume of normaliza-
tion, p is the momentum operator for the electron, m is
the electron mass, R is the electron position operator, and.
a, a are the annihilation and creation operators for pho-
ton modes. The initial state

~

I ) has the photon modes in
harmonic oscillator

states/
nk, ) and the electron in the

momentum state
~ p;) [=(V) ' expi(p; R E;t)/fi,E;—

=p; /2m],
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mode k, v corresponding to photon emission (or absorp-
tion),

I+&= lp & ff I,.+-,'+-,'
& .

k, v

The upper sign corresponds to emission and the lower
sign to absorption. Assuming that the length of the in-
teraction region is I-„,I-~,I-, in the x,y, z directions and
that the time of interaction is T, we can write the first-
order matrix elemerit M for this transition

~M
~
=(n„„+-,'+ —,')'~'

2EEoV~k
( p; +pf )Q„L»L„T

sin(Q„L„/2) sin(Q»L»/2) sin(Q, L, /2) sjn(QT/2)
(Q»L»/2) (Q,L g /2) (QT/2)

where

Q,»,,=(p; pf+—haik)„», /A,

Q= (E; Ef +15@0—k )/A' .

The total transition probability is given by
~

M
~

summed over the possible final electron states dpf. If
L„,L»,L, are sufficiently large, we can treat the sin~x/x
factors as 5 functions in this integration, so that Q„»,——0.
We can also assume L„L,»L, = V so that the wave func-
tions are normalized to the interaction volume

2 2 2 2
e P(»n 8 z sin(QT/2)+bng ——(n(, + —, + —, ) T

2eeo Vm iruuk

pf =p(+% .
(12a)
(12b)

Q=+(cok —kv cos8+A'k /2m)
T

1 haik=+kU, —cos8+P' 2p;

(12c)

(12d)

The electron couples only to the photons which are polar-
ized in the plane containing p; and k [Fig. (lc)]; it is evi-
dent from Eq. (9c) that the photon polarization must have
a component along the electron momentum for nonzero
coupling. Using the momentum conservation condition
[Eq. (12b)] and the energy momentum relation
(E=p /2m), we can write

d sin 16
(maximum ),

T eJ(o sin 8 „,
m rmeorc'

(14b)

B. Relativistic electron beam

To consider relativistic effects we need to use the Dirac
equation rather than the Schrodinger equation for the
electrons so that the initial- and final-state electronic wave
functions are four-component spinors of the form'

1/2
+mc ei(p R Et)/O'I—
2EV

(15a)

Q=QT/2 .

Equations (13a) and (13b) give the spontaneously radiated
energy in a frequency interval co to (v+dco and the gain
per pass at a frequency m due to a single electron traveling
at a velocity v. For a beam of electrons with a current
density J (:—env, n = electron density ), we should multi-
ply Eq. (13a) by J/e to get the intensity I(W/m ) and
Eq. (13b) by the total number of electrons JV/ev in the
volume Vto get the total gain 1,

dI T eJ(o sin 8 ~, (14a)
4~core'

where U =p;/m is the electron velocity.
The total -spontaneous emission U, by an electron, is ob-

tained by integrating Eq. (12a) (taking the upper sign with
nq ——0) over all photon modes k. If the time of interac-
tion T is long enough, we can treat the sin x/x as a 5
function in this integration to get

2dU e cov
(13a)

4&6'oE'c

where

1

0

p,c/(E+mc )

(p„+ip»)c/(E+mc )

for up spin (15b)

Ank

where

e cov sin 0
4eeomc' V

(13b)

where 8 is fixed by the condition Q =0.
To obtain the gain per pass we need the difference be-

tween stimulated emission and absorption which arises
from the sinall difference in Q for the two cases [Eq.
(12c)]

0
1

Iu I =
(

.
) /(E z)

. for down spin.

p, cl(E+mc )—
The interaction Hamiltonian is given by —eca A [instead
of the nonrelativistic —e(p A+ A p)/2m] where a„»,
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are 4&&4 matrices given by
r

o. 0

o.; being the Pauli matrices. Consequently, in calculating
the matrix element M [Eq. (11)], instead of
e(p;+pf)y/2mV, we get

2 1/2
(Z, +mc )(Ef+mc )

u (pf)a„u(p;),
i f

(16a)

where u(p) is the four-component spinor defined in Eq.
(15b) and u (p) is its complex conjugate transpose. In
most cases of practical interest the energy and momentum
of the photon is very small compared to that of the elec-
tron, so that Ef—E; and pf —p;. Assuming that the elec-
tron is initially in the up-spin state with momentum along
the z direction, we get

u (pf)a~u(p;)=u (pf)a~u(p;)=0,
(16b)

u (pf)a, u(p;)=2p;c/(E+mc ) .

Here we have assumed pf —p;; in this approximation the
electron spin is unchanged by the transition. Using Eqs.
(16a) and (16b), we see that in the relativistic case ep;/m V

is replaced by epic /EV; that is, m is replaced by ym
where

dI eJco sin 0
4~a-eoc

(18a)

It is tempting to conclude that the stimulated emission
gain I in the relativistic case is obtained from Eq. (13a)
[and (14b)] by replacing m with ym in the denominator.
However, the m comes from the last term in the reso-
nance factor II [Eq. (12c)]. This term needs to be
reevaluated taking into account the relativistic energy-
momentum relationship E =p c +m c . Using a
Taylor's series expansion for E, assuming that the change
in the electron momentum (which is equal to the photon
momentum Rk) is small compared to electron momentum,
we get

0=(E; Ef +ficok )/A'—
r

=+ cok —ku coso+ (1 —13 cos 9)Ak

2/ Pl
(18b)

where u=p/ym. Consequently Eq. (14b) for the stimu-
lated emission gain I is modified by a factor
(1—P cos 0)/y:

(18c)
~m 4~eoec'

E=/me

( 1 P2) —1/2

Since the relativistic velocity is defined as p/ym rather
than p/m [Eq. (13a)], there is no change in U. Conse-
quently Eq. (14a) for spontaneous emission remains un-

changed, as

The spontaneous emission given by Eq. (18a) agrees exact-
ly with the classical result for spontaneous Cerenkov radi-
ation. It is also in agreement with the quantum-
mechanical result derived in Ref. 11 using the Klein-
Gordon equation for electrons. The stimulated emission
gain given by Eq. (18c) agrees with a quantum-mechanical
theory of stimulated Cerenkov radiation that has been
presented recently using the Klein-Gordon equation for
relativistic electrons. It also agrees with the classical re-
sult in Ref. 9. The classical theory in Ref. 12, however,
gives a gain —1/y3 rather than 1/y; the reason for this
lies in the difference in geometry as explained in Ref. 9.

Equations (18a) and (18c) apply to ordinary Cerenkov
radiation; it is shown in Sec. IV that the results for
resonant transition radiation are identical except for a
multiplying factor depending on the relative amplitude of
the appropriate spatial harmonic. From Eqs. (18a) and
(18c) we can derive a simple relationship between the
spontaneous emission intensity and the stimulated emis-
sion gain which will hold true even for resonant transition
radiation

I = I'"~ (1—P-cos 8) .
dI T
dc' pm

IV. QUANTUM THEORY OF RESONANT
TRANSITION RADIATION

In our discussion of ordinary Cerenkov radiation we as-
sumed that the electromagnetic waves were plane waves of
the form exp[i(kz cot)];—the necessary condition for
Cerenkov emission is then found to be U ~co/k [Eq.
(12c)]. In a periodic medium with period I, the fields are
composed of spatial harmonics of the form
e ' 'g„c„e " where k„=k cosO+n 2'//. Even if the
condition for Cerenkov emission is not satisfied by the
lowest spatial harmonic ( n =0), it may be
satisfied by the higher-order harmonics ( n & 0). Resonant
transition radiation can be viewed as a process involving
"Cerenkov" emission into the higher-order spatial har-
monics. We have seen in Sec. III that the component of
the electric field alorig the direction of electron motion
(E, ) determines the matrix element for emission and ab-
sorption. So, in order to obtain the results for resonant
transition radiation, we need to multiply the results for or-
dinary Cerenkov radiation by the squared magnitude of
the nth spatial harmonic of E, . We will now determine
the spatial harmonic amplitudes starting directly from
Maxwell's equations in inhomogeneous media following
the approach of our previous work. As in Refs. 5 and 6
we do not make the WKB approximation so that the re-
sults are valid even if l ~ X. However, we make the usual
assumption that Ae/e ~~ 1.

Consider an electromagnetic wave propagating at an
angle 0 to the z direction which is perpendicular to the
plane of the layers [Fig. (lc)]. The coupling of the wave
to the electrons is proportional to the component of the
electron momentum along the direction of the electric
field [Eq. (10)]; consequently the electrons couple only to
the waves polarized in the plane containing pi and k. For
this polarization the field components are E,E„and H~;
the component that determines the coupling strength is
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E, since the electron current is along z.
The problem is to find out the amplitudes of the spatial

harmonics of E,. Usually the WKB approximation is
used which is not valid if the period I is comparable to the
electromagnetic-wave wavelength. So we use an alterna-
tive approach starting directly from Maxwell's equation in
inhomogeneous media (assuming Ae/e«1). In general
the vector potential A in a medium with an inhomogene-
ous dielectric constant 8(r) is described by the following
equation (Lorentz gauge )

ing together terms with the same spatial frequency
ko cos8+nq, retaining only terms linear in a„and c„,we
can determine each amplitude c„separately ' with

an 1+nq cos8
2 (2 cos8+ nq )nq

Now, using (26), (25), and (22), we can obtain spatial har-
monics of the z component of the electric field E„'

sm88 ik(z sin8+z cos8)( 1 +gc ci8nz)

(20)
where

V A+k A ——(V'A)Vk=0,
k

where k (r)=co 8(r)/c . In the present problem 8 is a
periodic function of z (Fig. 1); also,

(21)A~ =Ay ——0,
so that A=A, e, .
plane of incidence
expressed in terms

The electric field is polarized in the
(i.e., E =0), and its components can be
of a,:"

BA,
(22a)

Bz k2 Bz
Ez ~~ ~z+

an l —nqcosO —n q
2 2

2 nq(2cos8+nq)
(27)

and Eo is the amplitude of the principal spatial harmonic.
Using the resonant condition (1), c~ can be rewritten in
the form

an (p' nq —)
2 nq(2 nqP—')

(28)

The results [Eqs. (18)] in Sec. III have to be multiplied
by

~

c
~

in order to get the results for resonant transi-
tion radiation

i CO ~) ~z
k2 Bx Bz

(22b)
dco 4&&gc

(29)

g"——(b,e)'A'+k A cos 8+2' he
E E

(23)

Assuming A, =A (z)e' "",we get the following equation
for A from Eq. (20):

2 Aea„= sin
n~

Assuming e(z) has a rectangular form, we can readily cal-
culate its Fourier coefficients a„as

nm. l)
(30)

where the prime denotes derivative with respect to z, and
b,e(z) is a periodic function with period l, which can be
written as a Fourier series:

oo

(a 2inmzil+ C )Nl

rn =1
(24)

The Floquet theorem for the linear differential equations
with periodic coefficients allows us to write a solution to
Eq. (23) in the form (for a wave traveling in the positive z
direction)

eikzcos8 y c 82innzli (25)
n= —oo

The fields thus contain an infinite set of spatial harmonics
with k„=k cos8+ (2mn /l ). The wave traveling in the
negative z direction contains the spatial harmonics
—k c os8+(2m. n/)l. In an infinite medium the two solu-
tions are independent as long as k cosO does not lie in the
vicinity of a multiple of m/l. Of course in a finite medi-
um the two solutions are coupled together giving rise to
the problem of retrorefiections; this difficulty may be
avoided in practice by choosing ' the angle of emission to
match the Brewster angle.

In general, using Eq. (25), we can obtain an infinite sys-
tem of linear-coupled algebraic equations for c„. Howev-
er, if b.e/e «1 so that a„«1 (which is of particular in-
terest in the theory of x-ray generation), we may decouple
these equations assuming that the amplitudes c„are small
(c„«co——1). Substituting (24) and (25) into (23), collect-

1 nA,—cos9—
I

(32)

Setting 0=0 yields the resonant condition [Eqs. (1) or (4)]
for transition radiation.

V. CONCLUSIONS

In this paper we have described a quantum-mechanical
theory for spontaneous and stimulated resonant transition

Using Eq. (30) in (28) we see that c =p„[Eq. (Sb)] so
that the quantum-mechanical result [Eq. (29)] is identical
to the classical result [Eq. (5a)] for spontaneous emission.
The stimulated emission gain I is related to dI/dao by
the same relation as for Cerenkov radiation [Eq. (19)]
since both quantities are multiplied by the same factor

i p„ i
and

T2r= d'r T
(1—P'-"8). (31)

dco pm

This result agrees with the classical result [Eq. (8b)] ex-
cept for a factor of P'/cos8 which is almost 1 in the rela-
tivistic limit; the origin of this slight discrepancy is not
known. The resonant factor 0 for ordinary Cerenkov
radiation is readily modified for transition radiation:
k cos8 is replaced by (k cos8+ n 2m/l ). Assuming
Rk «p;, we have from Eq. (18b)

0=+ (co —k„u )
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radiation. Resonant transition radiation is viewed as a - to the WKB approximation. The quantum-mechanical
process of Cerenkov radiation into the slow spatial har- results are in close agreement with the'classical results.
monies present in an electromagnetic field in a periodic
medium. The results for transition radiation are thus ob- ACKNOWLEDGMENTS
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