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Photoionization of sodium atoms and electron scattering from ionized sodium
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The polarized-orbital method [originally developed by A. Temkin, Phys. Rev. 107, 1004 (1957}]is
used to calculate the photoionization cross sections of sodium atoms, from threshold to about 60 eV.
The polarized orbitals are calculated from Sternheimer's equation. The polarizability of Na+ is
found to be 1.0914ao, which is very close to the experimental value. The scattering equation is

solved in the exchange, the exchange-adiabatic, and the polarized-orbita1 approximations. For con-

sistency, both the bound-state and the continuum-state wave functions are obtained in the same ap-
proximation. En the calculation of these wave functions, all perturbed orbitals are taken into ac-
count in the direct polarization potential and only the perturbation of the very tightly bound 1s orbi-

tal is neglected in the exchange-polarization terms. The length form for the photoionization-cross-
section formula is used and all terms are included in the photoionization matrix element. Our re-

sults are in good agreement with the many-body calculations of Chang and Kelly. However, no cal-
culation to date, including this one, agrees well with experiment except at low energies. The phase
shifts thus obtained for s, p, and d waves for the e + Na+ system are used to calculate the differen-
tial cross sections; the phase shifts, as well as these cross sections, agree very well with other avail-

able results.

I. INTRODUCTION

Photoionization processes have useful applications in
determining the temperature and population density of
the astrophysical and laboratory plasmas, especially if the
plasmas are not in thermal equilibrium. In the case of
photoionization of a neutral atom, the final state is
equivalent to electron scattering from a positive ion. The
information from the scattering problem can be useful in
understanding the processes occurring in the upper atmo-
sphere and in the laboratory plasmas, for example, in
gaining information about transport of electrons through
ionized gases.

The polarized-orbital method (POM) developed origi-
nally by Temkin' has been applied extensively for scatter-
ing problems. It is here used to calculate the wave func-
tions for the continuum electron in the final state and for
the bound 3s electron of the sodium atom in the initial
state. Since there is one electron outside the closed sheHs
in the alkali-metal atoms, one finds this method extremely
suitable for calculations of photoionization cross sections
for these atoms. Another reason that this method is very
useful for photoionization calculations is the fact that one
can solve both the initial-state and the final-state wave
functions from the same equation and thus improve them
consistently. Throughout this paper, we refer to the total
system as the atomic Na+ core plus the valence 3s elec-
tron in the initial state and core plus the continuum elec-
tron in the final state.

The application of POM in the photoionization of lithi-
um by Bhatia et al. gave good results when used in as
orthodox a manner as possible. Other polarized-orbital-
like calculations can be criticized precisely because they

apply the POM inconsistently (a discussion of this is
given in Ref. 2).

%'e shaH find that in spite of the fact that our results,
like all other theoretical results, disagree with the experi-
ment except at low energies, the close agreement of this
calculation with the detailed many-body perturbation cal-
culation of Chang and Kelly is very encouraging.

In this paper we not only present the photoionization
cross sections but also the phase shifts and differential
cross sections for the elastic scattering of electrons from
the Na+ ion. Theoretical results of electron scattering
from positive ions are rare and the availability of experi-
mental data even scarcer. We thus think that these results
would be of help for future use. In Sec. II we give the for-
mula for the photoionization cross section. Section III is
devoted to deriving the equation for the initial bound state
and the final continuum state for the outer electron in the
POM. Numerical results and graphs concerning these
two states have also been included in that section. In Sec.
IV the photoionization matrix elements are discussed and
the cross sections obtained in this calculation are present-
ed there. These photoionization cross sections are also
compared to other theoretical and experimental results in
this section. Finally, conclusions are presented briefiy in
Sec. V.

II. THE FORMULA FOR THE PHOTOIONIZATION
CROSS SECTION

The photoionlzatlon cross section (in Rydberg units}
for a transition from an initial state i to a final state f is

given by

(2.1)
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where ~ is the energy of the incident photon and k the
momentum of the outgoing electron. g; and

half
are the

initial- and final-state wave functions. a is the fine-
structure constant and ap the Bohr radius.

The basic part of the calculation of the photoionization
cross sections then consists of the calculation of the pho-
toionization matrix element

where we have introduced the notation

g(1)=f(2,3, . . . , %+1) . (3.9)

f YLO(+1)~l/2(~1)1t0(1)(H1
1

X g("do1 + d3r daJ ——0, l =i,f
(3.8)

M=(gy g zj g;).

III. THE INITIAL AND FINAL STATES

(2.2)
as

The antisymmetrized wave function g~" can be written

N+1
g ( —1V+'1t/(j )u1(j), l =i,f (3.10)ex+1 i=1

The wave function for the total system both in the ini-
tial and the final state can be written as'

f=/I I u 'f(1)[pp(2, 3, . . . , X + 1)

+1t"'(1;2,3, . . . , %+1))I, (3.1)

HN+] ——HN +H),
where

(3.3)

where /I is the antisymmetrization operator. u1 (1),
l =i,f, represents the wave function for the 3s electron in
the initial and the continuum electron in the final state.
We notice that the wave function P1'" representing the po-
larization of the core contains parametrically the coordi-
nate of the "outer" electron. This dependence is expected
considering the fact that polarization is caused by the in-
teraction of the outer electron with the core electrons.

In the spirit of the POM (Ref. 1) u1(1) is then deter-
mined from the equation

Ygp 0] g]g2 O~ p 2&. . . &%+1 HN+~ —E
N+1

X/1 do.
1 + d r/do =0, l =i,f

(3.2)
where integrations are made over all spin and space coor-
dinates except the radial coordinate r&. The total Hamil-
tonian HN+ ~ of the system can be written as

where

$(1)=[1t/o(1)+g~"(I;2,3, . . . , %+1)]
= [Qp(1)+ g~"( I )] .

If we use the notation

YL~s(1)= YLO(~~1)+1/2(o 1) ~

then the equation for uI becomes

N+1

f Y* (1)11*(1)(H,—k )P(1)u (1)d, + d r;do;
l =2

(3.11)

FLg 1 p 1 H) —k

N+1
X1ij(2)uL(2)der, + d r;do;,

l =2
(3.12)

(3.13)

where the energy e1 in Eq. (3.6) has been replaced by k2

for the continuum electron.
Now specializing to the problem of photoionization

from neutral sodium atoms, we use the Hartree-Fock-
Slater determinantal wave function for the unperturbed
state go of the atomic core. We write

1A(1)= det
~
u1(j),v2(j), v3(j) u1o(j)

~
j&110!

N+1
HN

l =2 r.l

N+1 N+1+XX„
i=2 J=2 lJ

J~i

(3.4)
where

u1(1)

u2(1)
u1, (r1) + 1/2(~1)

Ypp(&1) X '

( ),
and

2Z N+1
H1 ———V'1 — +

r& .
2 r]J

(3.5)

v3(1)

u~(1)
u2, (r1) +1/2(~1)

Ypp(&1) x '
( ),

and Z is the nuclear charge. We note that subscript 1

refers to the outer electron. The energy E in Eq. (3.2) is
given by

E —Ep+Q] (3.6)

where Ep is the ground-state energy of the atomic core
and e& represents the energy of the outer electron. The
unperturbed wave function gp of the core then satisfies

Hv 1t/o =Eofo
If we use Eq. (3.7) in Eq. (3.2), we get

v(1) ' „,(„,) X1/2(O1)

(1) = Y1p(&1)x '

( ),

u2~(r1) &1/2(~1)

v9(1) u („) &1/2(~1)

u1O(1) r 1' 1 1 x 1
(o')'

The radial orbitals u„1 are the Hartree-Fock (HF) orbitals
and they have been calculated by Clementi and Roetti.
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g(1)=$o(T) +Q~"(1)

det
~
pi(j), pq(j) . NioV) I

&10!
where

(3.15)

U (j)
p, (j}=v;(j)+ z

(3.16)

The perturbed orbitals U in Eq. (3.16) can be expressed as

UV)=+&i i
l', m' I"~

X &&, „(&&)&i" (&, )e(ri, r;)

, ~„,(~, ), i odd
X ',

Ix ]/2(cr, ), i even

where i,j =2,3, . . . , 11 and where
' 1/2

I)&
8n32.I + 1 Ci ii'C i ir

nl~l'
3 4 2I + 1

000 mmmm

(3.17}

(3.18)
the C's being the Clebsch-Gordan coefficients. The radi-
al parts of the perturbed orbitals u„i i(r) are obtained
from the equation

d 1 d
u„i(r)dr' u i(r) dr'

u„i i(r)=ru„i(r) . (3.19)l (I + 1)—l'(l'+ 1)

The Sternheimer approximation may not be accurate
because exchange is not correctly taken into account. ' In
the numerical solutions, the singularities in the second
term due to nodes in the target functions have to be
smoothed out. If an accurate version of perturbation
theory is used then exchange would be included, as was
done by Bhatia et QI. , ' and these singularities would not
arise. We have calculated all the polarized orbitals
( ls~p), (2s~p), (2p~s), and (2p~d) using Eq. (3.19).

The polarized part of the wave function, which is the
essence of POM, ' is derived from the unperturbed ground
atomic core state $0 by assuming it to be adiabatically
perturbed by the outer electron. In the adiabatic approxi-
mation, only the dipole part of the interaction between the
outer electron and the core is included and it is assumed
that the outer electron remains stationary while the target
electrons are being perturbed. This perturbation is then

11 2(Z —1)
Vad=

P1J P'1

11

2 g rz cos8&J e(r &, r~ ) . (3.14)
I'1

We notice that by introducing the step function E(ri, rj ),
the polarization effect is included only when the outer
electron is outside the atomic orbitals. Similar to Eq.
(3.13), the polarized core can be written as
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FIG. l. Polarized orbitals (2p ~d} and (2p ~s}obtained us-
ing Sternheimer's approximation, and the unperturbed orbital
Q 2p.

These orbitals are made orthogonal to all bound orbitals
of the same symmetry. Because of the 1s orbitals being
tightly bound, the contribution from (1s~p) orbitals to
the polarizability of the Na+ ion is very small. Therefore,
we have neglected its contribution in the exchange polari-
zation terms (although, we have added the contribution
due to this perturbed orbital in the direct polarization po-
tential). Figure 1 shows the perturbed orbitals u2&, and
u2p d and the unperturbed orbital u2p of the sodium ion
as a function of position r. As expected, the perturbed or-
bitals are much smaller in magnitude compared to the un-
perturbed orbital. Figure 2 shows the perturbed orbitals
u2, z and the unperturbed orbital u2, . The unperturbed
orbital u1, is not shown in Fig. 2 as it peaks around
r=0.l and falls off very rapidly. Again, the perturbed or-
bitals, in particular u1, ~, are very small in comparison
to the unperturbed orbitals.

Thus, after constructing the unperturbed ground ionic
core $0 and the perturbed core ($0+

gati'")

from the bound
and perturbed atomic orbitals we can explicitly derive the
equation satisfied by the outer electron from Eq. (3.12).
The resulting integro-differential equation satisfied by the
outer electron is
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FIG. 2. Polarized orbitals (2s~p} and (1s—+p} obtained us-
ing Sternheimer's approximation and the unperturbed orbital
~2s
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L(L+1) k2 ( )
r

=[Vc(r)+ Vp(r)+ W]ukL (r), (3.20)

In Eq. (3.20), Vc is the direct static potential, Vp is the
direct polarization potential. The expressions for these
potentials are as follows:

Vc(r)=41 (ls, ls;r)+4I (2s2s;r)

ukI. (r)
ug ( 1 ) = FL p( fl )x ] y2 ( cT )

+121 (Zp, 2p;r)—
r

Vp(r) = [I],—p(r)+I2, p(r)+I2p d(r)],
where

(3.21)

(3.22)

1 8 r r
/'( )=

q "/(x)u / /'(x)xdx —g u„/ /(x)u /(x)dx u /'(x)u /(x)xdx4 3 0 n n-+ 0 0
n, i'

(3.23)

except

16 1
I2p d(r) = u2p(x)xu2p d(x)dx

0
(3.24)

Wu/L (r)=[W,„u/L(r)+ W,pukl (r)] . (3.25)

In Eq. (3.25) W,„uki (r) and W,pukL (r) are exchange and exchange-polarization terms, respectively, and they are as
follows:

W.,u/L, (r)= — u]g(r)& (»,kL;r) — u2g(r)r (2s, kL;r) —3 y C]Lgr (2p, kL;r)u2p(r)
2L, +1 2L, +1

+5/~(k2+e„/)u„/(r) f uki (r')u„/(r')dr', (3.26)

W,pukL(r) = —r I W,p(r)+5L, O[2I,p(r)+27 P P '(r)]+5L, ][2I,'p(r)+ —,'7 ' ' P(r)]+5L 2[2I,p(r)+ —', J P P (r)]I,
(3.27)

Jtl/ II/~/
( )

d 2Z2

'dr r
I'(&'+1) 2

" u /(r])ukL(rl )+k u„/ /(r)
"

2 dr,r r ~ 2

2 d
u„/(r) u„/ / (r) 1 d 2

2 u„/(r) —
3 u„/(r) u„/ /(r) ukL, (r)r2 dr " r3

du/I (r)
2 u„/(r)uz/ / (r)

dr (3.28)

W'( )= '
5 L+' 52L+1 ~'L+» 2I. +3 + ~'L 2I —1

u2 p(/ )
/ u~(r] )ukL (r] )

r
r r

4 u2p, (r) ~ u2p(r])
5gg r u/I. (r] )«]2L +1 r r

y &+3

u2p g(r) g u2p(r] )ukL (r] )+ /8ooo c&)
P r r~

(3.29)
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x /Jp, x (g
y

(3.31)

The indices n'I' in Eq. (3.30) refer to bound as well as
continuum electron kl', and e„/ are the orbital energies.
The direct polarization potential Vz(r) given by Eq. (3.22)
is shown in Fig. 3. %'e see that close to the origin it has a
very attractive part followed by a repulsive part. Howev-
er, it behaves properly in the asymptotic region, that is

CX

Vz(r) —& —
&

as r~ co,

where a is the electrostatic dipole polarizability of Na+.
The polarizability obtained in this calculation is 1.0914a0,
compared to the value of a=0.9459ao as obtained by
Lahiri and Mukherji. " The individual contributions are
1s p 0 0005+ 0 ~ P 0 0337~0 o'2p s =0.1690&0
and 0,'qz d ——0.8882a0. However, a more recent calcula-3

tion' based on quantum defect obtained by using very ac-
curately measured energy levels gives a=1.0015a0. As
mentioned before, both the bound-state wave function for
the 3s valence electron and the continuum-state wave
function for the photoejected electron are calculated using
Eq. (3.20). The equation is solved in both cases in (i) the
exchange approximation, (ii) the exchange-adiabatic ap-
proximation, and (iii) the polarized-orbital (PO) approxi-
rnation. The latter corresponds to keeping all the terms in
the equation. Neglecting Vz(r) and W,~(r) in Eq. (3.20)
corresponds to the exchange approximation and neglect-
ing only W,~(r) we get the equation in the exchange-
adiabatic approximation. It should be mentioned that the
orthogonality terms appearing in Eq. (3.26)

5/L(k +E„/)ukL, (r) J u/I (r)u„/(r)dr
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FIG. 3. Polarization potential V~ using the polarized orbitals.

The explicit forms of the exchange polarization terms
I,~(r), I,z(r), and I,z (r) are given in Appendix A. In
these equations,

I"~(nl, n'1', r) = u„/(x)u„/(x)g/„(x, r)dx, (3.30)
0

where

are set equal to zero in solving Eq. (3.20) in all three ap-
proximations. It has been shown by I.aBahn' that if the
polarization potential Vz(r) is chosen consistently, a,'s was
done here by the HF perturbation theory, the orthogonali-
ty constraint has little effect on the scattering functions
and therefore, on phase shifts. The integro-differential
equation given by Eq. (3.20) was solved by using a "modi-
fied Nordsieck" predictor-corrector method. '

In calculating the bound-state wave functions Eq. (3.20)
is solved for l=0, letting the energy k go into an eigen-
value

1 . Imuk/(r)~ sin kr —— —y In(2kr)
k 2

+o./+5/, as r~ ~ (3.32)

where

and u/ ——argI ( I +1+ / y ) is the Coulomb phase shift. The
phase shift 5/ in Eq. (3.32) is the additional phase shift
due to the departure from pure Coulomb scattering at
small distances. Thus Eq. (3.32) was used to extract the
phase shifts for s, p, and d waves in all the approxima-
tions. %'e note here that, as mentioned earlier, for pho-

TABLE I. Binding energy of the 3s orbital of the sodium
ground state in various approximations.

Approximation

Exchange
Exchange adiabatic
Polarized orbital
Many-body perturbation'
Hartree-Fock"
Experiment'

'Reference 15.
Reference 7.

'Reference 16.

Binding energy (Ry)

0.3636
0.3774
0.3780
0.3792
0.3642
0.3778

k ~—I3, ,2

where I3, is the binding energy of the 3s electron in the
appropriate approximation. A comparison of the binding
energies in various approximations is given in Table I.
They are also compared to other calculated values ' and
to the experimental ionization energy' of the sodium
atom. We see clearly from the table that including polari-
zation and exchange polarization (full POM) gives the

''closest agreement with the experiment. ' Table II lists the
bound-state functions in the three different approxima-
tions.

The integro-differential Eq. (3.20) was solved for the
p-wave continuum function for the photoelectron for
several k values, starting from threshold, in the three ap-
proximations. The asymptotic form of the radial wave
function in a modified Coulomb field is given by the
well-known expression



ARATI DASCxUPTA AND A. K. BHATIA 31

T /Qp

0.0
0.05
0.15
0.2
0.3
0.5
0.7
0.9
1.0
1.05
1.15
1.35
1.5
1.7
2.1S
2.6
3.0
3.3
3.6
4.8
6.3
8.1

9.9
15.0
20.0

Exchange
approx.

0.0
0.071 35
0.038 28

—0.005 17
—0.08606
—0.156 76
—0.1297
—0.057 63
—0.015 11

0.006 72
0.050 55
0.1355
0.19468
0.265 S7
0.389 13
0.4656
0.500 33
0.509 84
0.508 12
0.432 32
0.29047
0.154 55
0.074 52
0.007 09
0.000 57

Exchange-
adiabatic approx.

0.0
0.075 70
0.040 21
0.00608

—0.091 99
—0.1666
—0.13723
—0.059 47
—0.013 62

0.009 87
0.056 97
0.147 75
0.210 30
0.284 35
0.409 83
0.483 25
0.513 16
0.518 61
0.512 82
0.42443
0.276 92
0.142 83
0.069 35
0.005 92
0.00044

Polarized-
orbital approx.

0.0
0.084 0S
0.05091

—0.008 24
—0.11481
—0.17924
—0.13528
—0.056 94
—0.012 74

0.009 94
0.055 64
0, 145 22
0.208 02
0.283 28
0.411 56
0.486 37
0.51668
0.522 18
0.507 17
0.419 32
0.273 28
0.14079
0.065 91
0.005 81
0.00043

TABLE IE. Bound-state wave functions for the valence 3s or-
bital in various approximations.

I(8)R(8)= (3.33)

where Ic(8) is the differential cross section due to a pure
Coulomb field,

Ic(8)= 1

2k sin (8/2)

2

(3.34)

I(8)=
i
f(8)

i

2

with

f(8)= g (21+1)Pt(cos8)(e ' ' 1) . —
2ik I

(3.35)

Equation (3.34) is the Rutherford formula for scatter-
ing through an angle 0. It can be shown that

R(8)=X'+ Y',

exchange-adiabatic approximation are in better agreement
with the quantum-defect results than the PO results. The
close agreement of these phase shifts, when calculated in-
cluding polarization, with the accurately measured
quantum-defect results is very encouraging.

These phase shifts were used to calculate the "reduced"
differential cross section for electron scattering from the
Na+ ion. The reduced differential cross section R (8) is
given by

toionization calculations we need to solve the scattering
equation only for 1=1 for the continuum function. The
s-, p-, and d-wave phase shifts at various electron energies
are listed in Tables III, IV, and V. The right-hand
columns of Tables III, IV, and V contain the phase shifts
derived from the experimentally measured quantum de-
fects. ' We notice that our calculated phase shifts in the

where

X = 1 — g (2l + 1 )PI(cos8) cospt sin5t,
2 sin (8/2)

P l

Y = — g (2l + 1)P&(cos8) sinp~ sin5I,
2 sin (8/2)

7"
I

(3.36)

TABLE III. s-wave phase shifts in rad (relative to pure Coulomb phase shift) for e+ Na+ scatter-
ing.

k
(a.u. )

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

'Reference 17.

Exchange
approx.
6p (rad)

4.151
4.146
4.137
4.126
4.111
4.093
4.071
4.047
4.020
3.991
3.960
3.927
3.892
3.8S7
3.820

Exchange-
adiabatic
approx.
5p (rad)

4.227
4.221
4.212
4.198
4.181
4.161
4.138
4.112
4.083
4.052
4.019
3.984
3.948
3.911
3.874

Polarized-
orbital

approx.
So (rad)

4.20S
4.192
4.177
4.158
4.136
4.111
4.083
4.053
4.020
3.985
3.950
3.913
3.875

Quantum
defect'

6o (rad)

4.2328
4.2271

.4.2178
4.2053
4.1901
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TABLE IV. p-wave phase shifts in rad (relative to pure Coulomb phase shift) for e + Na+ scattering.

k
(a.u. )

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1,0
1.1
1.2
1.3
1.4
1.5

'Reference 17.

Exchange
approx.
5) (rad)

2.624
2.613
2.597
2.575
2.548
2.517
2.483
2.447
2.4&0
2.372
2.334
2.296
2.259
2 223
2.188

Exchange-
adiabatic
approx.
5) (rad)

2.687
2.676
2.659
2.637
2.609
2.577
2.543
2.506
2.468
2.430
2.391
2.352
2.314
2.277
2.241

Polarized-
orbital
approx.
5~ (rad)

2.691
2.680
2.666
2.643
2.615
2.583
2.548
2.511
2.473
2.434
2.395
2.357
2.319
2.281
2.245

Quantum
defect'

5& (rad)

2.6814
2.6712
2.6549
2.6336
2.6085

pI(e, r) =2(ui —era)+2y in[sin(g/2)]+ 5& .

The phase shifts calculated for s, p, and d waves are used
to calculate the reduced differential cross sections. These
are listed in Table VI. These cross sections agree very
well with those obtained by Seaton' using the quantum-
defect method.

IV. PHOTOIONIZATION CROSS SECTIONS

Now that we have the bound-state wave function for
the valence 3s electron for the sodium atom and the con-
tinuum wave function for the photoejected electron we

have the total wave function for the system P; in the ini-
tial state and f~ in the final state. Thus, using Eq. (2.1)
we now calculate the photoionization cross sections.

In the formula given by Eq. (2.1),
4maao ——2.568X10 ' cm . We notice that the formula
for the cross section is given in the length form. In the
polarized-orbital method, the basis assumption is that the
core is polarized only when the outer electron (valence or
continuum) is outside the core electron. Hence the transi-
tion operator which emphasizes the asymptotic region of
the wave functions should be used in this application and
thus it is the length form of the matrix element which is
most appropriate for this method.

The matrix element M given by

TABLE V. d-wave phase shifts in rad (relative to pure Coulomb phase shiA) for e + Na+ scattering.

k
(a.u. )

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

'Reference 17.

Exchange
approx.
52 (rad)

0.019
0.021
0.026
0.032
0.040
0.051
0.063
0.079
0.096
0.116
0.138
0.161
0.186
0.211
0.238

Exchange-
adiabatic
approx.
52 (rad)

0.051
0.054
0.062
0.072
0.084
0.099
0.117
0.137
0.159
0.183
0.209
0.235
0.263
0.290
0.318

Polarized-
orbital
approx.
52 (rad)

0.059
0.057

' 0.065
0.074
0.084
0.096
0.110
0.125
0.142
0.161
0.182
0.205
0.228
0.253
0.278

Quantum
defect'
52 (rad)

0.0481
0.0521
0.0589
0.0685
0.0811
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TABI-E VI. Reduced differential cross sections R (8) in polarized-orbital approximation for
e + Na+ scattering.

0
(deg)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

k=0.3 a.u.

1.0
0.993
1.072
0.855
1.040
1.366
1.250
0.899
0.659
0.602
0.611
0.579
0.490
0.389
0.332
0.340
0.395
0.455
0.481

k=0.4 a.u.

1.0
1.029
0;903
1.092
1.361
1.179
0.764
0.483
0.451
0.559
0.646
0.620
0.491
0.329
0.214
0.181
0.218
0.276
0.302

k=0.5 a.u.

1.0
0.987
1.011
1.282
1.189
0.777
0.419
0.331
0.478
0.689
0.797
0.727
0.517
0.270
0.096
0.048
0.105
0.193
0.233

k=0.6 a.u.

1.0
0.965
1.143
1.213
0.896
0.476
0.265
0.358
0.645
0.921
1.016
0.870
0.553

0.221
0.023
0.029
0.191
0.380
0.461

M=(()f X *) (" l (4.1)

1
{(Ul)r/»((T) {g z) A{u,(()q,(T){l,j=l

(4 2)

can be written as a sum of zeroth-, first-, and second-
order terms, Ml, M2, and M3, respectively. Thus

M =Ml +M2+M3,
where

tion terms in the photoionization matrix element, has been
assessed and found to be important when compared to the
accurate many-body theoretical results' in Li photoioni-
zation. The explicit forms of the matrix elements Ml,
M2, and M3 are given in Appendix B. In Table VII, we
give the numerical values of the photoionization cross sec-
tions as a function of the photoelectron energy k along
with other results. This calculation was carried out up to
a photon energy of 60 eV. Beyond that energy, photoioni-
zation cross sections were not calculated since the POM is
expected to be good only for low energies, in fact, 60 eV
may already be too high. Figure 4 shows the cross sec-

25.0

11
M2 ——

11
2 UL1 ~

1 zjAUbl 01
j=l 20.0-

E
~ ~ ~ ~

and

1+ (( &{ ( )gUi(1)({ 0g z, A{U~())y~"((){),
j=l

(4.3)

C4
I

15.0--

Z
D
I-
C3

10.0 -.

CO
CO
C)
CL

5.0-
11

Mz= A{ (1 r/~Ul())){ g zz A{u (1) b'(l){()) .
11

(4.4)

0.0
0.0 2.5 5.0 7.5 10.0

PHOTOELECTRON ENERGY (eV)

12.5 15.0

The reason for dividing M into components is that previ-
ous calculations on photoionization of the sodium atom
have been performed including Ml and M2 only. In the
exchange and exchange-adiabatic approximations M2 and
M3 are neglected, and in the PO approximation all three
of them are included in the matrix element -M. The sig-
nificance of the contribution of M3, that is, the polariza-

FICx. 4. Photoionization cross section of the sodium atom vs
the energy of the ejected electron. , PO approximation;

exchange-adiabatic approximation; ———,exchange
approximation; —- —-, results obtained by Chang and Kelly;—.. . —,cross sections obtained by Chang. Experimental re-

sults of Hudson and Carter are shown as points on the graph.
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TABLE VII. Photoionization cross sections of the Na atom in several different approximations (in
units of 10 cm ).

k
(a.u.}

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Photon
energy

(eV)

5.1425
5.2786
5.6867
6.3670
7.3194
8.544
9.6406

11.8094
13.8502
16.1632
18.7483
21.6055
24.7349
28.1363
31.8099
35.7556
39.9734
44.4633
49.2254
54.2595
59.5658

Exchange
approx.

9.297
6.417
1.546
0.0738
2.446
6.003
8.674
9.894
9.949
9.315
8.374
7.357
6.391
5.527
4.478
4.146
3.610
3.159
2.780
2.459
2.185

Exchange-
adlab.

approx.

12.808
9.355
3.049
0.031
1.435
4.749
7.643
9.259
9.692
9.346
8.597
7.698
6.792
5.9S1
5.206
4.556
3.999
3.524
3.117
2.769
2.470

Pol.-orb.
approx.

8.419
5.748
1.228
0.319
3.S36
7.832

11.111
12.627
12.815
12.157
11.047
9.934
8;602
7.714
6.893
6.134
5.361
4.843
4.392
3.90S
3.507

6.612
1.632
O.OS8

2.375
5.933
8.622
9.875
9.959
9.339
8.411
7.39S
6.435

2.309
0.413
0.363
2.972
6.655

10.051
12.133
13.119
12.709
11.413
9.931
9.148

8.496
5.390
1.142
0.264
3.513
7.773

11.416
13.411
13.740
12.957
12.102
10.892

'Lowest-order contribution in the nonrelativistic calculation [using the length form of Chang and Kelly
(Ref. 5)].
Final nonrelativistic calculation including correlation effects (in velocity form} in Chang and Kelly

(Ref. 5).
'Close-coupling results (interpolated) in Butler and Mendoza (Ref. 20).

tions as a function of photoelectron energy. Other
theoretical cross sections and the experimental results are
also shown in the graph. The calculated values of the
cross section at the spectral head (k =0) are quite dif-
ferent in the three approximations as can be seen from
Table VII and Fig. 4. Almost complete cancellation of
the positive and negative portions of the integrands in the
photoionization matrix element accounts for this. How-
ever, our result at the spectral head in the PO approxima-
tion is close to that obtained by Butler and Mendoza (Ref.
20) who carried out a close-coupling calculation. Our
low-energy results in the PO approximation are very close
to those given in Ref. 20. The first calculation for pho-
toionization of the sodium atom was worked out by
Seaton ' using the HF wave functions. Our results in the
exchange approximation agree very well with Seaton's re-
sults, as expected. Both of these in turn are essentially
those obtained by Chang and Kelly in their lowest-order
approximation. None of these theoretical results, howev-
er, agree well with the experimental ones. The agreement
with the experiment for the photoionization cross section
in the exchange-adiabatic approximation is quite good
from threshold to about 2 eV of photoelectron energy
above the threshold. Beyond that they differ consider-
ably, the experimental results being always much higher
than the theoretical results.

The inclusion of the exchange polarization terms both
in obtaining the wave functions as well as in the photoion-

ization matrix element, to improve accuracy, leads to the
PO approximation, the central topic of this research. We
notice from Fig. 4 that, after the minimum, the cross sec-
tions obtained in the PO approximation are always higher
than those obtained in the exchange and in the exchange-
adiabatic approximations. Thus even though our results
in the PO approximation are closer to the experimental
values up to about 10 eV of photoelectron energy, they are
far from being close beyond that energy. From 10 to 54
eV of photoelectron energy all theoretical curves decrease,
while the experimental curve increases. In Fig. 4 we have
also included the results of the many-body perturbation
calculations of Chang and Kelly. Beyond the minimum,
Chang' has also carried out a many-body perturbation
calculation in which the effects of virtual excitations of
the inner-shell electrons have been included by calculating
the lowest diagrammatic terms using orbitals obtained
from a long-range polarization potential instead of
evaluating an infinite sum of diagrams corresponding to
virtual excitations of Hartree-Fock orbitals. However, the
cross sections obtained are sensitive to the choice of the
long-range polarization potential. The results of Chang
obtained by using a length approximation for a cross sec-
tion are also shown in Fig. 4 and they are seen to be
higher than the other calculated cross sections shown, but
closer to the experimental results.

As indicated above, the results at low energies in the
PO approximation are less than the exchange-adiabatic
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and experimental results. An attempt was made to im-
prove these results in the PQ approximation by retaining
only the (2p~d) orbital in Eq. (3.20). This orbital was
modified to give the experimental binding energy 0.3778
Ry when solving for the bound-state function from Eq.
(3.20). The modified orbital gives a=0.995ao and the
photoionization cross sections below the minimum im-
prove considerably, being close to the full exchange-
adiabatic but still below the experimental results. The
cross sections beyond the minimum are substantially
smaller than the full exchange-adiabatic and PO results.
However, since there are still questions about the accuracy
of the experimental results (cf. the Conclusion) we believe
the (2p~d) polarized-orbital results may still have merit.

tion cross section to a significant extent. Thus we believe
this may be the source of the experimental enhancement
in this as well as other alkali-metal photoionization cross
sections.

A recent close-coupling calcu/ation by Butler and Men-
doza does not give the hump iri the photoionization
cross section. They also find that the experimental results
are too high and renormalization of the experimental re-
sults by multiplying by 0.7 gives good agreement with the
calculated values. Though the results of Chang' agree
with the experimental results as they exist, the closeness
of the present calculations and those of Refs. 5 and 20 is
significant. Thus we believe further experimental investi-
gation is desirable.
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APPENDIX A

The explicit forms of the integrals I, (r), I,' (r), and I, (r) appearing in Eq. (3.27) are as follows:

0 4 uzp~g(r) 00 ukI (ry )uzp(r$ )I,p(r) = —— dr& 1 (2p, 2p;r)
5 r r]

t

uzp, (r) ~ ukI (r) )uzp(r) )
dr~ [4I (ls, ls;r)+41 (2s, 2s;r)+101 (2p, 2p;r)]r ry

2 uz, p(r)
3 r

uj I (r ~ )uzp(r ~ )f

�dr
i 1"'(2s,2s;r)

r)

uzp(r) ~ ukI (r& )uzp(r~ )+ r 0 r)

1 r&

X 3 uzp p(rz )uzp( )gr&z(F 1 z )drz ——,
' f uzp, (rz )uzp(rz )g& (r, rz )drz

oo

+ 3 uz, (rp) zu(rz) zi(gr, r )dzr z

u ),(r) '
ukr (r) )uzp(r ) )

r 0 r&
z dr, u &,(rz )uzp, (rz)go(r, rz )drz0

2uz, (r) ~ ukI (r& )uzp(r~ )

r 0 r
~rz uzs(rz)uzp s(rz)go(r~rz)~rz0
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4 uzp d(r) ukL(rl)u], (r, )I,' (r)= —— dr] I'(2p, ls;r)9 r T r2
1

4 uzp ~(r) ukL(r])uz, (r])
dr] I'(2p, 2s;r)r r

r

8 u lg(/') ao ukL(rl )u lg(rl )+- dr] uzp~d(rz)uzp(rz)g](r, rz)drz9 r 0 rI 0

8 uzg(r) - ukL(r])uz, (r])+- dr] uzp d{rz)uzp(rz)g](r, rz)drz9 r 0 r& 0

2 uz, p(r) m ukL(r, )uz, (r, )+—-"' f z dr, [21 o(ls, ls;r)+ I (2s, 2s;r)+61 (2p, 2p;r)]
7 r I" )

2 uz, p(r) u/L(r])u]g(r])
dr] I' ( ls, ls;r)r l' p

r

2 uzp, (r) ~ ukL(rl )u»(r])
z dr] 1 '( ls, 2p;r)9 r l'

L

2 uzp, (r) ~ ukL(r] )uz, (r] )
dr] I'(2s, 2p;r)9 r l' P'I

2 uz, (r) ukL(rl )uz, (r]) 1+- dr] uz, p(rz)uz, (rz)g}(r,rz)drz
9 r 0 1" (

0

l'1

+2 uzp, (rz)uzp(rz)g](r, rz)drz
0

4 u], (r) ~ ukL(rl)u»(r])+—
1 u2 p(r2)u2 ("2)gl(" "2)d"29 r 0 0

l'1

+ uzp, (rz)uzp(rz)g](r, rz)drz0

2 u ]g(r) u/L (r] )u zg(r ] )
dr] u], (rz)uz, p(rz)g](r, rz)drz9 r 0 rl 0

2 u zp(r) ukL (r] )uzg(r }) 1

1 u2p(r2)u2 p( 2)g0( 2)dr2r 0 ~1 0

1

uzp(rz)uz, p(rz)gz(r, rz)drz

2 u2p d(r) ukL(r})uzp(rl )I, (rp) =— f dr, [41 ( ls, ls;r)+41" (2s,2s;r)+10I (2p, 2p;r) —,I (Zp, 2p;r)]-r l'

r

4 uzp(r) m u/L(r])uzp(r])
15 r I&I

l'1 r1
X 2 uz, p(rz)uz, (rz)g](r, rz)drz+ 2 uzp g(rz)uzp(rz)g](r, rz)drz0 S~P s 0

14
r

27 1

uzp d(rz)uzp(rz)g](r, rz)drz ——„uzp d(rz)uzp(rz)g3(r, rz)drz0 P~ P & 35 0

4 u],(r) u/, L(r] )uzp(r] )
dr, uzp d(rz)u], (rz)gz(r, rz)drz

25 r P'I 0
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4 u2 (r) uki. (rl )u2p(rl )
dr 1 uzp d(rz}uz, (rz)gz(r, rz)drz

25 r rj 0

uzp, (r) f ukL (r 1 )uzp(r 1 )
drl l (2p, 2p;r)

25 r T r&

4 uz, p(r) f ukL(rl)uz (rl)
dr 1 I'(2s, 2p; r ),

15 r r)

where gk is given in Eq. (3.31).

APPENDIX 8

We give here the explicit expressions of matrix elements Ml, Mz, and M3 given by Eqs. (4.2), (4.3), and (4.4), respec-
tively:

OO

M, = dr uk(r)ub(r)r,
3 Q

g ~ uk(r)ub(r)3f2
—— — dr dr lr 1 u2, (r 1 )uz, p(r 1 )v3 3 r2 p

oo uk(r)ub(r) r
+ rluzp(rl)uzp ,(rl)drl

0 r 0

uk(r)ub(r)
+2 dr r 1 u 2p ( r I )u 2p d ( r 1 )dr 10 0

uzp(r)ub(r)—2f dr uzp~g (r 1 )r luk(r 1 )dr 10 r 0

uz, (r)ub(r)
dr uz, p(r, )uk(r, )dr,

0 r 0

OO

uz, (rz)rzuzp(rz)drz
u zp(r 1 )ub(r 1 )f, «1 uz, p(r3)uk(r3)dr3

0 0

uzp(r)uk(r)—2f dr uzp ,(rl)ub(rl)drl
0 r 0

oo uzi(r)uk(r) r
dr rluz, p(rl)ub(r, )dr,

3 0 r 0

OO uk(r)u»(r) r
rzul, (rz)uzp(rz)drz dr

2 uzp, (rl )ub(rl )dr 10 P 0 r o

OO uk(r)uz, (r)
+— rzuz, (rz)uzp(rz)drz dr uzp ,(r, )ub(rl)dr,

0 ' & O r 0 P~S

r

8 ~ uk(r)ub(r) T

M3 d
3 u2 p(rl )drl+ u22p (rl )dri +2 u2p d( 1)drl

3 3 Q r' o 0 P —+

4 uz, (rl)ub(rl) 1 uzp ,(rz)uk(rz)
dr) dr2

9 o r2
1

0 r2
2

Tl

r3u 2 p(r3 )uz (r3 )dr3
0

+2 uzp, (r3)uzp(r3)r3dr3
0

+4 uzp d(r3 )uzp(r3 )r3dr3
0
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8 u2p( 2)ub(r2) 2 u2p (r1)uk( 1)
0

dr2
r2 0

dr&
r( 0

u2 p(r3 )r3u2 (r3 )dr3

T)

+— uqp, (r3)r3u2p(r3)dr3

28+ u2p ~(r3)r3u2p(r3)dr3

u2p(rz)ub(r2) 2 u2p d(r~)uk(r~)+ dr2 dr&— u2p, (r3)r3u2p(r3)dr3
45 r2 0 r2

1
0

3 l')

u2p d(r3)r3u2p(r3)dr3
5 0

u2p(r) )uk(r) ) OO

dr, dr3[u2, p(r3)+u2p, (r3)] dr2
r& 0 ~p p~s r3

uz (r&)ui(r&) u
2pub (rz )

dr& dr3uzp d(r3) d
0 r] P3 r2

2

u2p(r2)ub(rg)

f2

8 oo-- f dr,
9 0

u »(r, )uk(r, )
dr3[u2t p(r3)+u2p (r3)+2u2p ~(r3)]

r& 0

u »(rz)ub(rz)
X dr2

P3

4 ~ u2(r))uk(r()
dr1 dr3[u2, p(r3)+Rue, (r3)+4ug g(r3)]

9 0 r& 0

X f"dr,
u 2~(r2 )ub (r2 )

4 u~(r~ )uk(r& ) &
0 u2p(r2)ub(rq)
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