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The partial cross section, the satellite branching ratio, and the angular-distribution asymmetry pa-
rameter for simultaneous photoionization and excitation to the n=2 states of the He+ ion have been
measured in the 67.5—90-eV photon-energy range. In the nonresonance regions (67.5 eV & h v& 69.5
eV and 75 eV & h v & 90 eV), the asymmetry-parameter values have been used to infer the ratio of
the 2p cross section to the 2s cross section. These results indicate that the He+(n=2) satellite is
predominantly 2p near threshold, in agreement with the experimental and most of the theoretical re-
sults reported to date. In the region below the He+(n=3) threshold (69.5 eV & h v & 73.0 eV), the ef-
fects of a series of autoionizing Rydberg levels on the n=2 cross section, branching ratio, and asym-
metry parameter have been measured, this being the first detailed measurement of the angular dis-
tribution of a satellite over an autoionization resonance. In addition, qualitative information con-
cerning the total' cross section and the 1s partial cross section has been obtained for the first member
of this series (3s3p), disagreeing with previous experimental and theoretical results for the total
cross section, but in agreement with recent photoemission measurements of the 1s cross section.
The present results suggest that the qualitative shapes of the total and 1s cross sections over the
3s3p resonance are similar to the profile of the n=2 cross section for this resonance. To illustrate
quantitative methods for the interpretation of autoionization phenomena, the derivation from the
resonance data of several parameters defining the autoionization process is described.

I. INTRODUCTION

The photoionization of helium provides the simplest ex-
ample of electron correlation in atomic physics. Because
correlation cannot occur in the hydrogenlike final state,
theoretical studies of initial-state and continuum-state
correlation effects are easier to interpret for the photoioni-
zation process. For this reason helium is an important
system for testing various theoretical approaches to the
phenomenon of electron correlation. Past interest focused
upon absolute cross-section measurements, as reviewed by
Marr and West. ' Theoretical calculations of the total
cross section, at least below the He+(n =2) threshold,
have proven to be very accurate. Recent interest ' has
centered upon the photoionization processes above this
threshold, which can leave the residual He+ ion in the 2s
or 2p excited states. Several calculations' ' of the par-
tial photoionization cross section, the satellite and sub-
shell branching ratios, and the angular-distribution asym-
metry parameter have been performed for the He+(n =2)
states, indicating that much is still to be learned from this
simple system about the influence of correlation on
measurable quantities.

Figure 1 depicts the atomic and ionic states in'helium
relevant to this experiment. We have studied the pho-
toionization processes

He(ls )+hv~He+(ls, 2s, 2p)+e

as a function of photon energy and photoelectron ejection
angle. The He+(2s) and He+(2p) states are effectively de-
generate in a photoemission experiment and thus comprise
a single satellite line, which we designate He+(n =2). We
have measured the partial cross sections o., and angular-
distribution asymmetry parameters P, for the processes
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FIG. 1. Energy-level diagram for helium. DI is direct ioniza-
tion. AI is autoionization. The energy scale above the break is
expanded four times relative to the energy scale below the break.

31 714 1985 The American Physical Society



PHOTGIONIZATION OF HELIUM ABOVE THE He+( n =2) THRESHOLD:

represented in Eq. (1) that leave the He+ ion in the ls or
the n =2 final states, as well as the branching ratio
Rz& ——o„z/o.~„of the satellite intensity relative to that
of the main line. The threshold for production of the
n =2 states from the ground state of the helium atom is
65.4 eV. We have taken photoelectron spectra for photon
energies from 1.9 eV above this threshold to 90 eV. This
energy range can be divided into resonance and nonreso-
nance regions. In the resonance region it is possible to ex-
cite a series of Rydberg levels leading to the third ioniza-
tion threshold at 73.0 eV with subsequent autoionization.

The nonresonance data, taken with photon energies in
the ranges 67.5—69.5 and 75—90 eV, show good agree-
ment with previous measurements ' ' ' and calcula-
tions' ' of the partial cross sections for both the n =1
and 2 final states [direct ionization (DI) processes in Fig.
1] and for the total (i.e., 2s plus 2p] satellite branching ra-
tio. The ratio of the 2p cross section to the 2s cross sec-
tion, R, which can be derived from P„z, provides a more
sensitive test of theory. Discrepancies exist among the
various experimental ' and theoretical' ' values of R
reported to date. Chang' has predicted that near thresh-
old the 2s contribution to cr„z is larger than that of the
2p level, in contrast to several other predictions. ' ' '
Experimentally, the earliest photoemission data were
consistent with either calculation, but later photoemis-
sion" ' and fluorescence' measurements tended to
discount Chang's prediction. Our results support the con-
clusion that the He+(n =2) final state is predominantly
2p near threshold. The disagreement in the theoretical re-
sults indicates the need for a better understanding of the
contributions of electron correlation to the photoioniza-
tion process.

A different perspective on correlation can be obtained
in the analysis of autoionization resonances. The interac-
tion of various continuum-state wave functions with an
excited Rydberg level determines the extent and profile of
the autoionization process. We have taken photoelectron
spectra in the region of the lowest four Rydberg levels
leading to the He+(n =3) ionization threshold at 73.0 eV.
The four levels studied are indicated in the left-hand por-
tion of Fig. 1. Large variations in o„z and P„z were
found at these resonances. Our measured variation in
o.„2agrees with the fluorescence data of Woodruff and
Samson. ' The detailed variation of P„z over the au-
toionization resonances is presented here for the first time.
In addition, we infer from our measurements that the
qualitative shape of the total cross section over the first
member of this Rydberg series differs with earlier experi-
mental and theoretical ' results, but is consistent with
recent photoemission data. '

The experimental procedures are described in Sec. II.
The nonresonance data are presented in Sec. III, and the
behavior of the cross sections, branching ratios, and asym-
metry parameters over the autoionization resonances is
discussed in Sec. IV. Conclusions are presented in Sec. V.

Laboratory (SSRL) was used to photoionize an effusive jet
of helium atoms. The photoelectrons were detected at 0
and 54.7 with respect to the polarization vector of the
photon beam by the double-angle time-of-flight (DATOF)
method, taking advantage of the pulsed time structure
of the synchrotron radiation. This configuration allowed
us to measure simultaneously the partial cross sections
and angular-distribution asymmetry parameters for both
the main and satellite lines of He+.

The angular distribution of photoelectrons ejected from
a randomly oriented sample by linearly polarized radia-
tion, in the dipole approximation, is given by

do(hv'8) = o hv) [1 p(h )p ( o 8)], (2)

where hv is the photon energy, 0 is the angle between the
propagation vector of the photoelectron and the polariza-
tion vector of the ionizing radiation, cr(hv) is the total
cross section, P(h v) is the asymmetry parameter that
completely describes the angular distribution, and
Pz(cos8) is the second Legendre polynomial. Photoelect-
ron intensities measured at 8=54.7', for which Pz(cos8)
vanishes, are directly proportional to o(hv) after normali-
zation to the photon flux and gas pressure. The measure-
ment of photoelectron intensities at the additional angle of
0' suffices to determine values of P(hv) that do not re-
quire such normalization. Calibration of the analyzers
was accomplished by the measurement of the known par-
tial cross sections and asymmetry parameters of the 2s
and 2p levels of Ne+. This procedure is described in de-

. tail in Refs. 24 and 26, where it is shown that systematic
errors are reduced significantly by this method. We esti-
mate systematic errors to be +0.10 or less for measure-
ment of asymmetry parameters and + 10—15 % for cross
sections and branching ratios. The calibration also effec-
tively eliminates systematic errors due to nonlinear polari-
zation of the radiation. In fact, the polarization only
need be greater than -70%. For this work it has been es-
timated to be 98%.

The DATOF photoelectron spectrometer has been
described previously. It is ideally suited for studying
low cross-section satellite lines, such as in helium, because
of its high signal-to-noise ratio and its ability to collect
many photoelectron energies simultaneously. Briefly, the
experimental chamber was isolated from the ultrahigh-
vacuum monochromator by a 1500-A-thick aluminum
window. The typical pressure in the interaction region
was estimated to be 3 to 4&10 Torr. For partial cross-
section measurements the sample pressure was monitored
by a capacitance manometer and the photon flux by a
sodium-salicylate scintillator and an optical photomulti-
plier tube (RCA 8850). Typical count rates for the
He+(n =2) satellite were 3—8/sec, with accumulation
times of 1000 sec for each spectrum. An example of a
time-of-flight spectrum for helium from the 54.7' detector
is shown in Fig. 2.

II. EXPERIMENTAL III. NONRESONANCE PHOTOIONIZATION

Synchrotron radiation from the new 4 Grasshopper
monochromator at the Stanford Synchrotron Radiation

Our measurement of the branching ratio R2& is shown
in Fig. 3 along with several theoretical curves and other
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FIG. 2. TOF photoelectron spectrum of helium taken with
the S4.7' detector at a photon energy of 80 eV. The peak labels
indicate the principal quantum number of the single-electron fi-
nal state of the ion.

experimental measurements. The value of Rz~ in the
high-energy limit has been calculated' ' to be 4.8%,
which can be compared to the values of 6(1)% at 190
(Ref. 6) and 278 eV photon energy and 5.0(8)% for an Al
Ea measurement. Our results in the near-threshold re-
gion show good agreement with previous measure-
ments. ' ' We see also that the available theoretical cal-
culations' ' predict reasonably well the qualitative
behavior of the branching ratio near threshold, although
two of them' ' deviate from the measured values at the
lowest energies. The calculations differ in that most of
them, ' ' including one of the errant curves, ' contain a
significant amount of configuration interaction (CI), while
one' includes none at all, indicating that the ability to
predict the energy dependence of R&~ is dependent mostly
on the way in which CI is included in the calculations.
This also holds true when we consider the individual par-
tial cross sections for the 2p and 2s final states. The mea-
surement of these partial cross sections, or their ratio R,
constitutes a more sensitive test of the theoretical calcula-

P.=a=

By rearranging Eq. (3), and assuming that Pz, is always 2,
R can be expressed in terms of P„

R=
o.

gp 2 —P„
o2s Pn =2 P2p

(4)

This latter approach, of course, must rely on the calculat-
ed values of Pqp. Fortunately, the two available calcula-
tions ' of Pzp behave similarly as a function of energy

Our results for P„q are presented in Fig. 4 along with
the theoretical calculations ' of P„z and Pqp, and a
curve representing a fit to all of the experimental results
for P„z, including the present data, reported to date
Figure 5 shows the values of R derived from the experi-
mental data in Fig. 4 (our points and the fitted curve) and
from the calculated values of Pzp from Jacobs and
Burke. ' Also shown are five calculations of R. ' ' Ap-
proximately 75%%uo of the experimental measurements
represented by the solid curve in Fig. 4 are within +0. 1 of
this curve, and greater than 90% are within +0.2, indicat-
ing the good agreement among the five sets of data. How-
ever, agreement is poorer for R in Fig. 5 because Eq. (4)
magnifies small differences between measured P„
values into larger differences between inferred values of
R. This effect can be observed by reference to the present

tions because the energy dependences of o.
qz and o.q, are

quite different.
Experimentally, two approaches have been taken.

%'oodruff and Samson' measured R directly by taking
advantage of the long lifetime of He+(2s) to distinguish
between fluorescence from the 2s and 2p levels. A second
method, used by several groups "' including ours, relies
on the measurement of the asymmetry parameter P„z,
which is a weighted average of Pps and P~p:

o'zs Pzs +o zpPzp
(3)
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FIG. 3. Branching ratio 8» ——o.„&/o.» for the He+(n =2)
satellite relative to the 1s main line. Experimental results: solid
circles, present results; solid square, Samson, Ref. 4; open circle,
Krause and Wuilleumier, Ref. 6; ~, Wuilleumier et al. , Ref. 8.
Theoretical curves: short dashed, Salpeter and Zaidi, Ref. 13;
dashed-dotted, Jacobs, Ref. 14; long-short dashed, Jacobs and
Burke, Ref. 1S; long dashed, Chang, Ref. 16; dotted, Richards,
Ref. 17. Where applicable (Refs. 14—17) we have plotted only
the velocity results for consistency.

FIG. 4. Asymmetry parameter of the He+(n =2) satellite.
Experimental results: solid circles, present results; solid curve,
second-order polynomial fitted to all of the available experimen-
tal data, Refs. 9—12 and the present results. Cross-hatched area
represents + 1o. standard deviation about the fitted curve.
Theoretical curves: long-short dashed, Jacobs and Burke, Ref.
1S; dashed, Chang from Bizau et al. , Ref. 9. Also shown are
calculations of the asymmetry parameter for the 2p final state
by Jacobs and Burke (Ref. 1S) and Chang (Ref. 9). The velocity
forms of the calculations have been plotted in all cases.
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FIG. 5. The subshell branching ratio R=a.~~/cr2, for the
He+(n =2) satellite; Experimental results: solid circles, present
results; solid curve, derived from experimental curve in Fig. 4.
The experimental values of R were determined from the P„2
measurements in Fig. 4 (solid circles and solid curve) and from

Pq~ calculated by Jacobs and Burke, Ref. 15 (lower long-short-
dashed curve in Fig. 4), using Eq. (4). The cross-hatched region
again represents +1cr standard deviation. Theoretical curves:
dashed-dotted, Jacobs, Ref. 14; long-short dashed, Jacobs and
Burke, Ref. 1S; long-dashed, Chang, Ref. 16; dotted, Richards
and Larkins, Ref. 19; short dashed, Berrington et al. , Ref. 18.
From Berrington et aI. we show the length form of their calcu-
lation which the authors predict to be more accurate than the
velocity form. The remainder of the curves are velocity forms.

results in Fig. 5. Consequently, caution must be exercised
concerning detailed interpretation of the experimental
curve for R (solid) because the data scatter considerably
about this curve.

We wish to interpret the results in Fig. 5 in terms of
initial-state and continuum-state configuration interaction
(ISCI and CSCI, respectively). Configuration interaction
in the hydrogenlike final state is not possible and does not
need to be considered. For ISCI the initial state of the
helium atom is written properly as an admixture of the
1s, 1s 2s, 2s, 2p, and higher configurations. The
ground state is predominantly 1s ', and we are interested
in the degree to which any one of the other configurations
mixes into the ground eigenstate. Similarly for CSCI, we
are interested in the degree to which configurations such
as 2sep, 2pes, and 2ped mix with 1sep. We are aided in
our interpretation by the fact that the energy-dependent
cross sections of satellites whose origins are from ISCI or
CSCI differ significantly. Because initial-state mixing
coefficients are essentially independent of energy, the rela-
tive intensities of ISCI-produced satellites will tend to be
constant with energy. Conversely, because the photoelec-
tron is included in the CSCI wave functions, we can ex-
pect the CSCI mixing coefficients, and hence the satellite
cross sections, to be strongly energy dependent. Further-
rnore, it is known that CSCI is most important near
threshold, diminishing in significance at higher energies.

At photon energies above 100 eV, o-2, is apparently the
major component of cr„2 The slig.ht upturn in R at the
highest energies in Fig. 5 is probably an artifact of the rel-
ative scarcity of data above 110 eV. We therefore will in-

terpret the results for R as if they approach a high-energy
asymptotic value less than unity. In the high-energy limit
we expect that only ISCI will contribute to the production

of the He+(n =2) satellites. For our assumed asymptot-
ic value of R less than one we then conclude that ISCI
favors the 2s satellite, implying that configurations of the
form 2sns are more important for the ground state of the
helium atom than the configurations 2pnp. This may not
be unexpected because the first group contains the config-
uration Is2s, which will mix well with ls .by virtue of
the fact that it only differs by one electron and is closest
in energy to the ls configuration, whereas the Zpnp
group has no such counterpart. Direct measurements'0 of
o2, indicate that the ratio o2, /cr» is fairly constant for
the first 60 eV above the 2s threshold, suggesting that the
energy dependence of the He+(2s) satellite near threshold
can be described well in terms of the ISCI formalism
alone.

If ISCI were sufficient to describe the energy behavior
of o2& as well, then R would remain less than unity at all
energies. However, the results in Fig. 5 indicate a relative
enhancement of 0'2p over o2, by approximately a factor of
4 as the threshold is approached. We attribute this rise to
the influence of CSCI on the He+(2p) satellite and con-
clude that 2pes and/or 2ped are important configurations
for the continuum state of He+.

These qualitative conclusions about the importance of
ISCI and CSCI to helium photoionization can be con-
firmed only after careful comparison to theoretical predic-
tions. Quantitatively, the degree of predominance of one
final state over the other and the applicable energy ranges
can only be determined by theoretical calculations that ac-
curately treat the effects of ISCI and CSCI. The goal is
to gain information about the type and degree of CI
present in the helium system, as well as general results
concerning what treatments of CI are most reliable.

The theories used in the calculation of R differ signifi-
cantly in sophistication. The calculation of Richards and
Larkins' ' used Hartree-Fock (HF) wave functions in
which the effects of relaxation have been included, but not
CI. The calculation by Chang' also used HF wave func-
tions, but included CI in both the initial state and the con-
tinuum states. Jacobs' and Jacobs and Burke' used a
56-term Hylleraas initial-state wave function, which is a
nearly exact approximation of the He(ls ) ground state,
and a close-coupling calculation for the final state, which
is similar to CSCI. The calculation by Berrington et al. '

is an improvement on the earlier close-coupling calcula-
tions in which care was taken to use the same configura-
tions in the expansions for both the initial and continuum
states. All of the calculations used final-state wave func-
tions that are purely hydrogenic.

Above 90 eV all of the calculations show approximately
the same behavior. Below 90 eV Chang's curve deviates
signficantly from the rest and predicts a predominance of
2s near threshold. The experimental results show clearly
that this is not correct, and we conclude that the 2p final
state is the major component of He+(n =2) at threshold,
being more than twice as likely as the 2s final state. The
calculation of Berrington et al. shows the best overall
agreement with the combined experimental results.

The three close-coupling calculations (Jacobs, Jacobs
and Burke, and Berrington et al. ) and the calculation of
Richards and Larkins, behave similarly at low energy,
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despite the fact that the latter is a much less sophisticated
calculation. Richards and Larkins have concluded that
CI and exchange are unimportant to their calculation ex-
cept near threshold, and they cite this as the reason their
calculation is qualitatively correct. Furthermore, they
suggest that the discrepancy in Chang's calculation may
be the result of the use of CI wave functions that do not
accurately take into account the direct interaction of the
outgoing channels, which the other calculations do. ' ' '
This ultimately may be the result of cancellation between
large terms in the calculation of the transition ampli-
tude. "

This example illustrates that much is still to be learned
about the effects of CI on the calculation of the energy
dependence of satellite cross sections. Except for isolated
calculations on the Ne K shell, the Li K shell, ' ' and
the valence shell of Fe, ' the helium calculations are the
only such theoretical studies completed to date. Helium
thus appears to be a good candidate for further studies of
electron-correlation effects in atomic photoionization.

At the photon energy of 80 eV (see Fig. 2), we were able
to detect photoelectrons from the He+(n =3) final state.
We determine its branching ratio relative to the main line
R3.~ to be 1.8(2)% and its asymmetry parameter to be
—0.2(2). This value for R3~ is in agreement with previ-
ous estimates ' ' at this energy and the data of Bizau
et al. It also can be compared to the Al La result of
1.4(8)%%uo. The negative value for P„3 indicates that the
3s final state is not the major component of this peak. In
fact, the result of —0.2(2) is consistent with the threshold
value of —0.04 calculated by Greene, who found ap-
proximately equal contributions from 3s, 3p, and 3d.

IV. RESONANCE PHOTOIONIZATION

Madden and Codling first observed the Rydberg levels
leading to the n =3 ionization threshold in helium in the
energy range 69.5&hv&73. 0 eV. Of the five possible
Rydberg series in this region, only one has been found to
be significant. It is designated (sp, 3n+)'P', which is a
positive admixture of 3snp 'J" and 3pns 'P'. It has also
been given the configuration-mixed doubly excited
symmetry-basis notation K„=1„,which we shall use here
(except when the 13 resonance is discussed alone, to which
we shall refer as the 3s 3p resonance). The (sp, 3n —)'P'
(or —1„) series, the negative admixture of 3snp 'P' and
3pns 'P', has also been observed, but it is small enough to
be neglected in the present analysis. The other possible
'P' series (with major component 3pnd, 3dnp, or 3dnf)
have not been observed.

The remainder of this section will deal with the analysis
of the cross-section, branching-ratio, and asymmetry-
parameter profiles over the 1„series of resonances. To
lay the groundwork for this analysis we begin (Sec. IV A)
with a summary of several formalisms for describing
autoionization phenomena. How these formalisms are
used to fit the satellite data is discussed in Sec. IVB.
Quantitative results for the cross section and branching
ratio of the n =2 satellite are presented in Sec. IVC.
From these results we have inferred qualitative informa-
tion about the resonance profiles of o.

&, and the total cross

section cr, . Resonance parameters are presented for o&,
and o., with the proviso that the quantitative results are
not very accurate, but are given to illustrate the usefulness
of this type of analysis. To this end we determine several
other parameters, including individual dipole matrix ele-
ments, to illustrate methods for the quantitative interpre-
tation of an autoionization process. In Sec. IV D the P„2
resonance profile is discussed quantitatively and infer-
ences for the ratio R in the resonance region are made.

A. Theoretical background

The effect of an isolated resonance, such as a Rydberg
level, on the total photoabsorption or total photoioniza-
tion cross section was derived originally by Fano. The
presence of a discrete level embedded in one or more con-
tinua causes an interference in the photon absorption pro-
cess because of the indistinguishability of the two path-
ways, direct ionization and autoionization, leading to the
final state. Fano derived the following expression for the
total cross section o., for the case of a single discrete state
interacting with one or more continuum states:

T

2 (e+~)'
ot =0 p '2 +1—p (5a)1+6

E0
I /2

(5b)

where the Fano parameters q and p are assumed constant
over the resonance, oo is the cross section far from the
resonance, I and E0 are the full width at half maximum
(FWHM) and the position of the resonance, respectively,
and e is a reduced energy.

The quantities q, p, o.0, and I can be expressed in
terms of the dipole matrix elements for transitions from
the ground state g to the discrete state P, and to the con-
tinua p, together with the Coulomb-interaction matrix
elements coupling the discrete state to the continua. The
q parameter, which governs the shape of the total cross
section, is given by

~X&(t
I
v I~&&v lr Ig&

'

and the correlation coefficient p, which is a measure of
the strength of the resonance, is given by

Q I &4
I
I'ls &&v lrlg & I'

2

X I &0 I

I'
I s & I

'2
I &v I

r
I g & I

' (7)

I =2~2
I &0 I

I'
I v & I

'

where r and V represent the dipole and Coulomb opera-
tors, respectively, and 4 is the discrete state modified by
an admixture of the continuum states. The degree to
which 4 is different from P is dependent upon the energy
variations of the continuum wave functions in the vicinity
of the x'esonance. The linewidth of the resonance is given
by
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and the nonresonance, background cross section is given
by

ao=g I (v Ir I&) I
'. (9)

+k +~kek
cr, =C~

k 1+ek
(10)

where C is the background cross section for the series of
resonances, the summation is over the k resonances, E'k ls
as defined in Eq. (5b) for each resonance, and Ak and Bk
are the shape parameters for the kth resonance, which we
shall refer to as the "Shore parameters. " The value C is
understood to be a slowly varying function of the photon
energy. As with the Fano parameters q and p, the Shore
parameters A and B are assumed constant in the reso-
nance region.

It is clear that for the case of a single isolated reso-
nance, the Pano and Shore parametrizations can be ex-
pressed in the same mathematical form as follows:

C) +C2E+ E
Ot =Oo (11)

1+@

h r'e Ci a d C2 can be expressed in terms of either q
and p or 3 and B. %'e note that although the Shore for-
malism is to be preferred for multiple resonances, the pa-
rameters A and B are not dirnensionless quantities as are
q and p . Because of this, the Fano formalism is more
descriptive in the isolated-resonance case.

The formalisms presented so far were derived for the
total cross section. In a photoemission experiment, how-
ever, partia1 cross sections commonly are measured.

While the matrix elements in Eqs. (6) and (7) a«n«
strictly energy independent, they are slowly varying func-
tions of energy, and q and p therefore are assumed to be
constant in the vicinity of the resonance.

The Fano parametrization [Eqs. (5)—(9)] can explain
the many different shapes measured for autoionization
resonances. For example, the sign of the q parameter
determines whether the resonance profile of the total cross
section reaches its minimum on the low-energy side
(q &0) or the high-energy side (q &0) of the resonance.
This property will be referred to as the "phase" of the res-
onance profile. Other shapes can also be obtained from
these expressions, such as a window resonance (q =0) or a
noninterfering Lorentzian peak added to the background
cross section (

I q I
»0).

The parametrization shown above is most applicable to
the effect of an isolated resonance on the total photoab-
sorption cross section. In general, however, atomic Ryd-
berg levds form a series whose members are not well-
separated in energy and thus cannot be considered isolat-
ed. Equation (5a) is not easily adaptable to such a series
of noninteracting, closely spaced resonances because the
background cross section appears as a multiplicative fac-
tor for each resonance, making a simple summation unsa-
tisfactory. Shore has derived an equivalent expression
that is better suited for a series of closely spaced reso-
nances. because it is mathematically' simpler to work with.
His expression is

—2q Im(a„) —2 Re(a„)

+(q'+1)
I a, I

'] (12)

where oo(p) is the off-resonance partial cross section for
the pth observable final state and e and q are defined in
Eqs. (5b) and (6), respectively The. complex parameter a&
is given by

T

g r p,
(13)

I

with I given by Eq. (8). The term in large parentheses is
common to all channels. The a& parameters can be
thought of as replacing p as the correlation coefficient
for each channel when partial cross sections are measured.
It is important to note that each p represents an observ-
able photoionization channel [e.g., He+( lsep~~2)]. This
restriction was not necessary in the Fano and Shore
derivations of the resonance behavior of the total cross
section because the individual photoemission channels
only appeared in summations over p. It is clear that Eq.
(12) has the same form as. Eq. (11)because it describes the
characteristic behavior of a cross section in the vicinity of
an autoionization resonance. We will refer to C~(p) and
C2(p) as the "Starace parameters. "

Because all of the preceding formalisms, whether for
total or partial cross sections, have the same mathematical
form, it is possible to equate the parameters of the various
formalisms, keeping in mind that expression of the pa-
rameters in terms of the appropriate matrix elements is
only possible if the proper formalism for any given experi-
ment is used. For example, although effective Pano pa-
rameters can be derived for the autoionization profile of a
partial cross section, it may be misleading to report them
as the appropriate resonance parameters because the ex-
pressions given by Fano for q and p are not directly appl-
icable to a partial cross section. They can be used in a
descriptive context, however. This point will be discussed
further in Sec. IV B.

An additional complication, discussed in Ref. 44,
occurs because every peak m in a photoemission spectrum
contains more than one of the channels p such as the
He+( ls) peak, which has contributions from two outgoing
channels, 1sep~~2 and 1sep3/2 Thus, the partial cross
section for each photoelectron peak o(m) is the sum of
several cr(p) The expr. essiori for o(m) is of the same
form as Eq. (12) but with oo(p) replaced by the off-
resonance partial cross section for the unresolved channels
cro(m ), and Re(a&), Im(a&), and

I a& I
replaced byRe(a), Im(a)~, and ( Ia I ), which are averaged

Starace has addressed the problem of several outgoing
channels in the vicinity of an autoionization resonance.
Davis and Feldkamp and Combet Farnoux have de-
rived equivalent expressions. We shall use the notation of
Starace. His expression for the partial cross section of
each of the obseruable photoemission channels p is

cro(p )o(p)= [e +2[qRe(a ) —Im(a )]@+11+ ' P P
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quantities weighted by the oo(p). The Schwartz inequali-
ty requires that

(Re(a) ) +(Im(a) ) ((
I
a

I
) (14)

so that the modified Eq. (12) contains three unknown
quantities. Because a fit to the form of Eq. (11) only pro-
vides two parameters, it is, in general, impossible to solve
for all three unknowns.

The angular-distribution asymmetry parameter p also
can show effects of autoionization. Kabachnik and Sazhi-
na have shown that, for photoionixation in the region of
an isolated resonance, p is given by

X'g + F'e+Z'
A E +86+C (15)

where A ', B', and C' are defined in terms of the parame-
ters for the cross section over the resonance, and X', F',
and Z' are new parameters that depend on the same ma-
trix elements presented earlier, as well as their relative
phases. Equation (15) was obtained by the division of two
functions of the form of Eq. (11).

The parameters in Eq. (15) have been expressed in
terms of the same dipole and Coulomb matrix elements
used in the description of the resonance behavior of total
and partial cross sections. The expressions derived by Ka-
bachnik and Sazhina describe the resonance effect upon
the asymmetry parameter p, for the-total photoelectron
flux from a given sample. Except possibly for the special
case of no interchannel coupling in the continuum, these
expressions cannot describe' the resonance behavior of the
asymmetry parameter p„ for an individual photoemission
channel in terms of these matrix elements. This is espe-
cially true for helium because, as we have seen from the
discussion in Sec. III, continuum interactions are impor-
tant. While the form of Eq. (15) correctly describes these
"partial p's, " no detailed interpretation of the resulting
parameters is yet possible.

B. Data analysis

In the present experiment the resonance behavior of the
He+(n =2) partial cross section, branching ratio, and
asymmetry parameter in the region below the n =3
threshold was measured. The data for the n =2 satellite
are shown in Figs. 6—8. The cross-section data were
scaled to the absorption values given by Marr and %'est'
at the off-resonance energy of 68.9 eV. The remainder of
this section is devoted to a discussion of the fitting tech-
niques and assumptions used to describe analytically the
cross-section and asymmetry-parameter data in the reso-
nance region.

The o.„2 data, shown in Fig. 6, were fitted to the
Shore formula, Eq. (10), convoluted with a truncated tri-
angular function of full width equal to 0.17 eV (0.43 A) to
account for monochromator broadening. The off-
resonance cross section C was taken to be a linear func-
tion of energy. The positions Eo and widths I of the four
resonances were obtained from Woodruff and Samson. '
The Shore parameters derived in this way are presented in
Table I. Note that the values for the fourth resonance
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FIG. 6. Partial cross section of the He+(n =2) satellite in the
resonance region below the n =3 threshold scaled to Marr and
West (Ref. I) at 68.9 eV. The solid curve is a fit to the data us-
ing the form of Eq. (10). The dashed curve is the same fit with

0
the monochromator broadening of 0.17 eV (0.43 A) removed.
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FICi. 7. Branching ratio R21 ——o.„2/o.l, for the He (n =2}
satellite relative to the Is main line in the resonance region
below the n =3 threshold. The solid and dashed curves are fits
to the data with and without monochromator broadening,
respectively, as described in the text.

were held fixed. The solid curve in Fig. 6 shows this fit,
whereas the dashed curve is the same fit but with the
monochromator broadening removed.

The validity of using the Shore parametrization is
dependent upon the assumption that the resonances are
not coupled in any way, or equivalently, that the series of
discrete levels It; do not perturb each other via Coulomb
interactions. Shore has indicated that this is a good ap-
proximation provided that the radiative widths of the res-
onance states are small compared to their overall widths.
Typical radiative lifetimes for allowed dipole transitions
are in the range 10 —10 sec, so the radiative widths
are several orders-of-magnitude smaller than the reso-
nance widths.

The equivalent Starace parameters for cr„2 are also
presented in Table I because they are the most interpret-
able parameters for a partial cross section. From the ap-
proximation in the previous paragraph we know that the
Shore parameters derived from the fit to the o.„2data
represent isolated-resonance parameters and can be equat-
ed to the Starace parameters. Use of Eq. (10) in the
present analysis is simply a mathematical construct to
derive the appropriate Starace parameters.

The n =2 satellite branching ratio relative to the 1s
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FIG. 8. Asymmetry parameter of the He+{n =2}satellite in
the resonance region below the n =3 threshold. The solid curve
is a fit to the data using the form of Eq. (16). The dashed curve
is the same fit with the monochromator broadening removed by
the method described in the text.

main line (Fig. 7) also shows strong resonance effects,
mainly due to the changes in o.„2. The branching-ratio
data were fitted to a ratio of the two cross sections o „
and o~„each written as in Eq. (10). The parameters for
the function in the numerator were taken directly from
the fit to o„q. For the denominator o.~, the background
cross section was taken as a polynomial of first order in
energy and the resonance parameters were varied to get
the best fit. The numerator and denominator were convo-
luted separately with the same monochromator bandpass
function used for the fit to the cr„2 data. The parame-
ters for o.

&, for the 3s3@ resonance from this fit can be
found in Table II. The uncertainties in the o &, parameters
for the higher-lying resonances derived from the
branching-ratio fit are too large for these parameters to be
reported with any confidence.

The asymmetry parameter for the n =2 satellite is af-
fected strongly by autoionization because the peak in-
cludes contributions from two satellites with very dif-

ferent off-resonance asymmetry parameters. Our results
are shown in Fig. 8. We have also measured p~, in the
resonance region and found it to be 2.00(5). The P„
data were fitted in a manner identical to the fit to the
branching-ratio data, except the parameters in the denom-
inator were taken from the fit to o„2 (Table I). The
function used was

~k ++k~k
2 +Z

1+uk
&k+~k&k

+C
k 1+&k

The background value Z was assumed to be a second-
order polynomial in energy. The resonance parameters
Xk and F~ are presented in Table III, where they have
been used to determine Xk, Y'k, and Zk as in Eq. (15).
The parameters Ak, Bk, and Ck are not shown but can
easily be derived from the values in Table I and Eqs. (15)
and (16). We present these "Kabachnik-Sazhina parame-
ters" for p„z, with the caveat that the definitions given
in Ref. 46 do not allow easy interpretation for an indivi-
dual photoemission line.

The fit to the p„2 data, including monochromator
broadening, is shown in Fig. 8. The problem of deconvo-
lution of instrumental broadening from the measured
asymmetry parameters is not straightforward, especially if
the monochromator bandpass is on the order of, or larger
than, the resonance linewidth. The method used was the
same as that described for the fit to R2~, but using Eq.
(16). The method was chosen because the form of Eq.
(16) is more amenable to fitting a series of closely spaced
resonances and because the measured asymmetry parame-
ters were derived from the ratio of peak intensities in two
analyzers. The deconvoluted curve is shown in Fig. 8.

TABLE I. Parameters for the He+(n =2) partial cross section for the first four members of the 1„
Rydberg series. The background cross section o.o was taken to be 0.216—0.0017E (eV) Mb, where E is
the photon energy in eV. Numbers in parentheses represent statistical errors only.

Resonance
Shore parameters (Mb)

This work WS'
Starace parameters

This work %'S'

13

Eo =69.917 eV'
I =0.178 eV'

0.120(2)
—0.044(2)

0.097(1)

0.081(14)
—0.065(8)

0.086(7)

Cl
C2
o.p (Mb)

0.55(2)
1.24(2)
0.097(1)

0.24(11)
0.94(18)
0.086(7)

14

Eo ——71.601 eV'
I =0.096 eV'

0.086(5)
—0.061{5)

0.094(1)

0.079(17)
—0.066(10)

0.086(7)

Ci
C2
p (Mb)

o.35(5)
0.92(5)
0.094(1)

0.23(13)
0.92(21)
0.086(7)

15

Eo ——72. 181 eV'
I =0.067 eV'

0.080(7)
—0.051(7)

0.093(1)

0.088(21)
—0.044(12)

0.086(7)

Cl
C2
o.

p {Mb)

0.45(8)
0.86(8)
0.093(1)

0.49(15)
1.02(26)
0.086(7)

16

Ep ——72.453 eV'
I =0.038 eV'

0.080 (fix)
—0.051(fix)

0.093(1)

0.085(28)
—0.066(16)

o.o86(7)

Ci
C2
op (Mb)

0.45(fix)
0.86(fix)
0.093(l)

0.23(20)
0.99(34)
0.086(7)

'Woodruff and Samson, Ref. 10.
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TABLE II. Parameters for the He+(1s) partial cross section
for the 3s3p resonance. The background cross section o.p was

taken to be 2.87—0.0283E (eV) Mb, where E is the photon ener-

gy in eV. Numbers in parentheses represent statistical errors
only.

Effective
Fano parameters'

q =1.1(3)
p =0.046(30)
op=0. 892(20) Mb

Starace parameters'

Cl ——1.01(3)
Cp ——0. 10(7)
op ——0.892(20) Mb

'Ep ——69.917(12)eV and I =0.178(12) eV from Ref. 10.

C. Results —cross sections and branching ratios

The parameters for o-„2 for the first four members of
the Rydberg series leading to the n =3 threshold are list-
ed in Table I, along with the results of Woodruff and
Samson, ' which agree with our results except for the
3s 3p resonance. We attribute this small difference to the
fact that the fit by Woodruff and Samson does not agree
with their data for the first resonance quite as well as the
fit presented here. The parameters for each member of
the Rydberg series are fairly similar, as originally predict-
ed by Fano and Cooper. ' Results of several calcula-
tions ' ' of these positions and widths are summa-
rized in Ref. 10. Differences in the background cross sec-
tions (C and oo in Table I) are due to differences in the
scaling of the present data and the data in Ref. 10.

From the satellite branching ratio in Fig. 7 we have
determined rough values of the o.

&, resonance parameters.
Qualitatively we find that o &, has the same phase as o„2
for the 3s 3p resonance. Our qualitative, as well as quan-
titative (Table II), results are in complete agreement with
recently published data for o.

&, . ' Similarly, because o, is
just the sum of ot, and o„2, the total cross section also
must have the same phase for this resonance. Quantita-
tively the situation for o, is summarized in Table IV.
This qualitative interpretation for the phases of o.

&, and
o, is in conflict with the phase of o.t, over the 3s 3p reso-
nance required by the shape of o, as measured by Dhez
and Ederer together with the shape of o„2 from the
present results (the latter being in agreement with the
fluorescence measurements of Woodruff and Samson'
over the same region). The results from Dhez and Ederer

would require o.j, and o.„z to have opposite phases for
this resonance because the effect on o-, measured by them
is small enough that the two partial cross sections must
cancel when summed to yield the total cross section. This
would require o.

&, to reach a maximum below the reso-
nance energy and a minimum above that energy, a con-
clusion first reached by Woodruff and Samson' who
based their conclusion on the result for o.j, obtained by
subtracting their o.„q data from the cr, data of Ref. 20.
However, this conclusion is inconsistent with our results,
as well as the direct measurement of cr~, . ' Because this
cancellation does not occur, the strength of the effect on
o, (as measured by p ) must be significantly larger than
that reported by Dhez and Ederer. This discrepancy
might be explained by reference to Table I of Ref. 20
which lists the Shore parameters for the total cross section
for a series of five transmission scans at three different
pressures, 50, 90, and 120 Torr. Calculating q and p for
each scan shows a definite pressure dependence of p
(0.009 at 120 Torr, 0.013 at 90 Torr, and 0.018 at 50
Torr). Exactly what can cause such a pressure effect on

p is unclear.
Our value of q also disagrees with the previous result.

While this may be due to our experimental uncertainties,
it also could be the result of the normalization procedure
used in the earlier work. By normalizing the data at
177.22 A, which is an energy near the center of the reso-
nance, that point is forced to lie on the background curve,
fixing the shape of the resonance with respect to the back-
ground cross section and thus affecting q.

The present results are also to be compared with previ-
ous estimates of the resonance parameters. Pano and
Cooper ' estimated q and p to be 1.7 and 0.01, respective-
ly. Calculations by Senashenko and Wague using the di-
agonalization approximation yielded q = 1.31 and

p =0.019. Both of these calculations disagree with the
larger value of p inferred here. For the first estimate,
however, it may be possible to trace one reason for this
disagreement. In estimating q, Fano and Cooper assumed
that the matrix elements involving the 1sep continuum
state for the 3s 3p resonance are not significantly different
than similar matrix elements for the 2s2p resonance.
This assumption seems to imply, at least, that o.

&, has the
same phase for both the 2s2p and the 3s3p resonances.
However, o.

&, probably has opposite phases for these two
resonances. The effect on the resulting values of q and p
for the total cross section is not clear. One other calcula-

TABLE III. Parameters for P„2 for the first four members of the 1„Rydberg series. The background value Z was taken to be
2.28+0.0103E (eV) —0.00061[E(eV)] Mb, where E is the photon energy in eV. Numbers in parentheses represent statistical errors
only.

Resonance

13

14

15

16

—0.030(6)
—0.031(9)
—0.031(14)
—0.031(fix)

Fit parameters (Mb)
Y

—0.037(5)
—0.037(9)
—0.040(14)
—0.040(fix)

Z

0.021(1)
0.036(2)
0.041(3)
0.043(3)

0.021(1)
0.036(2)
0.041(3)
0.043(3)

KS parameters (Mb)'
Y'

—0.030(6)
—0.031(9)
—0.031(14)
—0.031(fix)

Z'

—0.016(5)
—0.001(9)

0.001(14)
0.003(fix)

'Kabachnik and Sazhina, Ref. 46.
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TABLE IV. Parameters for the total cross section of helium for the 3s 3p resonance derived from the
results in Tables I and II. The numbers in parentheses represent statistical errors only.

Fano parameters
This work DFa

Shore parameters (Mb)
This work DE'

q
P
op (Mb
I (eV)
Ep (eV)

0.84(30)
0.11(3)
0.989(20)
0.178(12)b

69.917(12)

1.36(20)
0.012(3)
0.957(30)
0.132(14)

69.919(7)

A 0.18(8)
B —0.032(56)
C 0.989(20)

0.032(6)
0.010(5)
0.957(30)

'Dhez and Ederer, Ref. 20.
From Ref. 10.

tion of cr, for the 3s3p resonance has also been per-
formed that reproduces the correct qualitative shape of
the resonance, but no parameters were extracted because
of the small number of points evaluated.

The remainder of this subsection will illustrate some of
the quantitative results that can be derived from the mea-
sured parameters (Table I) and the parameters inferred for
cr» and cr, (Tables II and IV). We wish to stress that cau-
tion should be exercised concerning the actual values
presented below, but the procedures described should
prove to be useful in general for autoionization phenome-
na.

The oscillator strength f for the 3s 3p resonance can be
obtained from the Fano parameters for the total cross sec-
tion. It is given by

f=(0.195 Ry 'Mb ')q p cr, (Mb)I'(Ry), (17)

with I expressed in rydbergs and o., expressed in Mb. -

Using the values in Table IV we find f=2.0)&10
which agrees well with the previous estimate ' of
1.2)&10 ". A similar but possibly more descriptive ex-
pression for f is obtained by replacing q in Eq. (17)
with (q —1). The result for this case is —8. 1&& 10, in-
dicating that o, in the vicinity of the 3s 3p resonance ex-
hibits a net loss in oscillator strength compared to the
background cross section. The latter value of f is more
descriptive of autoionization in the sense that it is a mea-
sure of the spectral repulsion part of the autoionization
profile.

Useful information also may be derived from the par-
tial cross sections. Although, as we have pointed out, it is
generally impossible to determine all three unknowns in
Eq. (14), the simplicity of the helium system allows us to
do so in a manner similar to the method described in an
earlier paper The follow. ing discussion is limited to the
3s3p resonance, but similar results are expected for the
higher-lying resonances. For He+(1s) production there

are only two outgoing channels p, 1sep&/2 and 1sep3/2.
The dipole and Coulomb matrix elements for these two
channels help determine two of the a& parameters, a~„zseal/2
and a»,z . Of course, both of these channels are presentSEP

in the He+(ls) peak (m =1s). In this case, however, be-
cause the spin-orbit interaction in the ep continuum is
small, and because P» is identically 2.0 over the reso-
nance, the Schwartz inequality, Eq. (14), becomes an

equality. Equations (11), (12), and (14) and the Starace
parameters in Table II may then be used to obtain
Re(a)i„ lm(a)i„and (

~

a
~

)i, . The solution involves
a complicated quadratic equation for Re(a) i, . The solu-
tion with (

~

a
~

) i, & 2 is dismissed because it would re-
quire that the total cross section have p ) 1. The parame-
ters for the correct solution are given in Table V. These
results also represent the nonaveraged quantities,
Re(ai„z ), Im(ai„z ), and

~ ai„z ~, where j can have the

values —, or —,, because our earlier assumption that
Eq. (14) is an equality means that the matrix elements of
the dipole and Coulomb interactions for the two outgoing
channels in the 1s peak are identical.

From Eqs. (15) and (16) in Ref. 44 we can determine
the partial linewidths I i, and I „2 for the two final
states. Both of these partial widths are included in Table
V. The large difference in the partial widths illustrates
why the effect of the resonance on cr» is small relative to
the effect on cr„q, even though cro(ls) is an order-of-
magnitude larger than pro(n =2). The partial widths can
be interpreted as an additional measure ((

~
a

~
) is the

other one) of the strength of the resonance effect on an in-
dividual final state. As we did with the a parameters for
the 1s level, we can break down the contributions to I ~,
into partial widths for each outgoing channel, being care-
ful to account for the multiplicities of the two outgoing
channels. The results are I &„& /I' =0.004 andS~~ 1/2

I i„z, ,/I =0.009. The partial widths (in percent) de-

TABLE V. a parameters and partial linewidths for the 3s 3p resonance.

Final state

1sep

2s 6p

2p E'd

Re(a)

0.023(21)

0.99(15)

Im(a)

—0.03(4)

0.2(3)

( f~/')
+0.0020

0 0016' 0 0016

1.1(3)

(I /I ) X100

+17
1 ~ 3

+1.3
98.7
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rived here agree very well with previous calculations.
Because we have already found (

~

a
~

) ~„we can use
Eq (1» in Ref. 43 to ftnd &

l

~
I
'&n 2=Having done this,

C~(n =2) and C2(n =2) for the 3s3p resonance from
Table I can be used with Eqs. (11) and (12) to find
Re(a)„z and Im(a)„z. These values are also present-
ed in Table V. We note that for the a parameters for
o„2, Eq. (14) appears to be a true inequality. Because
the satellite peak containing the 2s and 2p final states in-
cludes seven possible outgoing channels, no further infor-
mation can be obtained.

A check of the a& parameters can be made as described
in Ref. 44. The results in Table V satisfy this check to
well within the statistical errors, suggesting that no major
systematic errors are present in the data analysis.

Some interpretation of the a& parameters can be made,
keeping in mind that the actual values may not be very
accurate. The positive values of Re(a)~ for both the ls
and n =2 levels indicate that these two resonance profiles
should have the same phase over the resonance, as we
have suggested. The values for Im(a)» and Im(a)„2
are zero within the estimated errors, showing that the a&
parameters may be essentially real numbers. If this is
true, the result seems fortuitous because it probably does
not imply, as discussed by Combet Farnoux, that inter-
channel coupling in the continuum is weak. In fact, be-
cause the n =2 peak is a satellite of the ls peak, inter-
channel coupling in this case is important (see Sec. III). It
might prove interesting to measure the a parameters for
the individual final states 2s and 2p. The strong coupling
between 2sep and 2pes may resu'lt in a parameters that
are complex. A detailed fluourescence experiment, similar
to that done by Woodruff and Samson, ' could measure
these parameters.

To this point we have only derived parameters which
depend on several of the dipole and Coulomb matrix ele-
ments. It is possible, however, for the case of the 3s3@
resonance to determine directly the squares of three of the
matrix elements, including all of those describing autoion-
ization into the 1sep continuum. The Coulomb matrix
elements

( (3s 3p
~

V
~

lsepj ) I, with j=—,
' or —', , can be

obtained from Eq. (8) for the partial decay width
I » ——0.0023 eV, by properly accounting for the multipli-
city of the 1sepj states. The dipole matrix elements for
continuum absorption, ( (lsepj

~

r
~

is ) (, can be deter-
mined from o.~, as described in Ref. 21 and again consid-

ering the multiplicities. The dipole matrix elements also
can be expressed as oscillator strengths. The dipole ma-
trix element for the discrete transition 1s —+3s3p can be
determined ' from the oscillator strength f derived above.
All of these results are listed in Table VI along with esti-
mates of two of the matrix elements by Fano and Coop-
er. ' Their results agree with ours to within a factor of 2.
One additional parameter can also be derived. The square
of the term in brackets in Eq. (14) can. be determined by
using (

~

a
~

)„from Table V and the matrix elements in
Table VI. We find this term to have the value 36
Mb/Ry .

Let us summarize the results of this subsection. Quan-
titatively we have presented parameters defining the reso-
nance profiles of o.„z and R2~. From these results we
have inferred the qualitatiue behavior of o ~, and a, for the
3s 3p resonance only, concluding that the phases for o„2,
o.», and o, are the same for this resonance. This result
agrees with recent photoemission data but disagrees with
an earlier photoabsorption measurement. Exercising cau-
tion for the quantitative results we have determined pa-
rameters that quantify the qualitative behavior of o.~, and
o., in order to illustrate methods for extracting informa-
tion from measurements of autoionization phenomena.
The results, such as e parameters and dipole matrix ele-
ments, which are obtained in this way can be useful in
describing the aspects of interchannel coupling in the con-
tinuum and for comparison with theoretical calculations
of resonance behavior. Values for individual matrix ele-
ments may prove particularly helpful as a guide to deter-
mining appropriate wave functions and other parameters
for calculations. As a final point we again wish to stress
that while the results of this experiment are not sufficient-
ly accurate to provide a complete and quantitative inter-
pretation, we have attempted to document fully one of the
first measurements of this kind.

D. Results —asymmetry parameters

The data in Fig. 8 mark the first detailed measurement
of a satellite asymmetry parameter over autoionization
resonances. The accompanying parameters in Table III
vary only slightly over the members of the Rydberg series,
as first predicted by Dill.

Because the angular distributions of all the helium
photoemission peaks (there are only two) were measured
in this experiment, it is possible to determine p, from

TABLE VI. Matrix elements for the 3s 3p resonance.
pi~+R2tp =2

1+R2)
(18)

Matrix element

Amplitude
Fano and Cooper

This work (Ref. 2Ij

( (3s3p )r[1s') (' 1.1X10 ' Mb 6.8&c,'10 4 Mb

i (1sep~
i
r

i

1s2)
f

' 0.10 Mb/Ry

f (3s3p
[

V [1seyj) J
4.SX10 Ry 4.7&&10 Ry'

'The corresponding oscillator strength dj/dE is 0.0014 eV
j =

2 and 2. 'The value given by Pano and Cooper is for the
sum over all the channels contributing to the 1s peak. %'e have
divided their value by 6 for comparison.

with p~, ——2, and R2& and p„2 given by Eqs. (11) and
(16) for the 3s 3p resonance only. The resulting p, has the
same mathematical form as p„q, and the Kabachnik-
Sazhina parameters describing it are given in Table VII.
The off-resonance value of p, is approximately 1.8, with
deviations due to autoionization of only -0.1, as expected
because the dominant ls channel shows no effect in p~, .
It is hoped that these results, as well as those for p„2,
will spur further theoretical development regarding the
detailed behavior of angular distributions of individual
photoemission lines in the vicinity of autoionization reso-
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X' = 1.81(4)
F' =0.15(13)
Z' = 1.79(7)

A ' =0.99(2)
B'=0.18(8)
C =0.96(6)

TABLE VII. Kabachnik-Sazhina parameters for the angular
distribution of the total photoelectron flux from helium for the
3s 3p resonance. The numbers in parentheses represent statisti-
cal errors only.

slightly lower. energy than o.2, . This implies that the
Starace parameters C&(2p) and C2(2p) are slightly larger
than C~ (2s) and Cz(2s), respectively. We expect the
higher members of this series to have similar effects on R
because partial cross sections tend to retain the same
shape over a Rydberg series. '

V. CONCLUSIONS

nances. Complete understanding of this phenomenon
awaits further theoretical and experimental work.

In Sec. III we were able to derive the ratio R =o.zp/o. z,
from the measured off-resonance p„z data and calculat-
ed values of p2&. We are unable to do this in the reso-
nance region because the resonance behavior of P2& is un-
known, but certain qualitative statements can be made
concerning the effects on R of the 3s3p resonance. For
the following discussion the reader is referred to the
deconvoluted curves in Figs. 6 and 8.

Figure 6 shows that the n =2 partial cross section
drops nearly to zero at the minimum of the 3s3p reso-
nance. From Fig. 5 the background value of R at 70 eV is
-2.2. Thus, to account for the minimum in o.„2,both
cTpp and o.2, must be going through a minimum at the en-

ergy of the minimum in o„z. Furthermore, both of
these minima occur on the low-energy side of the 3s3p
resonance. In other words, we can conclude that both o.

2p
and o2, are effected by the resonance and that they have
the same phase. The question then arises of whether or
not these effects manifest themselves in an effect on R. If
R is left unaffected, then the measured change in p„
[see Eq. (3)] must be due solely to changes in Pz~ (assum-
ing that p2, is always 2.0, just like p~, ). However, exam-
ination of the minimum in p„z on the high-energy side
of the resonance shows that even if p2~ is —1 at this ener-

gy, a value of R =2.2 is not large enough to yield [see Eq.
(4)] the deconvoluted value of p„q———0.25 from Fig. 8.
The values of R =2.2 and Pz~

———1 yield P„2———0.06.
The uncertainty in the minimum of the deconvoluted
curve for P„2 is -0.1. Therefore, our value of
p„2———0.25 suggests that R shows a positive deviation
from its background value of 2.2 on the high-energy side
of the 3s 3p resonance. Because R must have the shape of
a branching ratio over an autoionization resonance, it
must reach a minimum on the low-energy side of the
3s 3p resonance as well. No limits can be placed on the
value of this minimum. The conclusion then is that R
drops to a minimum on the low-energy side and rises to a
maximum on the high-energy side of the 3s 3p resonance.
This behavior is most likely caused by o.

qp and o.2, having
similar profiles, but with o.

2~ reaching its minimum at a

The photoionization of helium to the n =2 excited state
of the helium ion has provided several interesting results.
The off-resonance measurements of p„2 have shown ad-
ditional clear evidence that the n =2 satellite is mainly
comprised of the 2p final state near threshold. Further-
more, the strong energy dependence of R has given some
insight into the understanding of electron correlation in
atomic systems, the helium case being especially useful be-
cause of its relative simplicity.

For the He+(n =2) satellite the partial cross-section,
branching-ratio, and asymmetry-parameter behavior have
been measured over the major Rydberg series leading to
the n =3 threshold. These angular-distribution measure-
ments are the first of their kind for a satellite line. Pa-
rameters describing all of these resonance effects have
been presented. From the angular-distribution results the
qualitative behavior of R over the resonances has been in-
ferred.

The qualitative behavior of the total and ls cross sec-
tions has been determined for the 3s 3p resonance. The re-
sults have mixed agreement with previous measurements,
and more work at higher resolution on the total cross sec-
tion of helium above the n & 2 thresholds is recommended
to verify our conclusions. The 1s cross-section results
have been used in an illustrative way to indicate how in-
formation about autoionization behavior in photoemission
can be extracted.
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