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Projection-operator calculations for molecular shape resonances:
The X+ resonance in electron-hydrogen scattering
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A coxnplete scattering-theoretic description of the X+„shape resonance in fixed-nuclei electron-H2
scattering is given within the framework of the projection-operator formalism of Feshbach. Polari-
zation and correlation effects are included via the many-body optical-potential approach using the
two-particle-hole Tamm-Dancoff approximation. The calculations result in a well-, defined and
physically meaningful separation of the T matrix and the eigenphase sum into a smooth background
term and a resonant term, which varies rapidly with energy and internuclear distance. T matrices,
eigenphase sums, and Feshbach resonance parameters ed, I (E), and 6(E) are obtained for a range
of internuclear distances extending from the equilibrium distance of H2 to 2.75 a.u. These fixed-
nuclei data provide the basis for the ab initio calculation of cross sections for vibrational excitation
and dissociative attachment in H2 beyond the local-complex-potential approximation, to be reported
in a forthcoming paper.

I. INTRODUCTION

The hydrogen molecule is the simplest closed-shell
molecular target and has naturally received much atten-
tion in the development of the theory of electron-molecule
scattering. The theoretical work up to 1980 has been
comprehensively reviewed by Lane. ' Apart from being a
test case for fixed-nuclei electron-molecule scattering cal-
culations, ' the electron-H2 collision system represents
an interesting prototype for vibrational excitation and dis-
sociative attachment. These inelastic and reactive col-
lision processes are enhanced in=-.H2 in the 2—5 eV energy
range by the existence of a shape resonance of X+„sym-

ry 6—8

Early calculations of the X~+ state of H2 were based
on the Rayleigh-Ritz variational principle, disregarding
the fact that this state is embedded in the continuum for
R (3 a.u. Bardsley et al. ' chose a more rigorous ap-
proach by calculating the complex S-matrix pole corre-
sporiding to the X+„shape resonance using Siegert state
techniques. The complex resonance energy obtained in
this way was adopted as the potential energy for the nu-

clear motion to calculate cross sections for vibrational ex-

citation and dissociative attachment. " The stabilization
method' was employed by Eliezer et al. ' to calculate the
potential-energy curve of the X+„stateof H2 as well as
several other core-excited resonance states. Chen and
Peacher'" and Mizuna and Chen' determined the com-
plex potential-energy curve of the X„+state by fitting dis-
sociative attachment and associative detachment data. A
similar strategy was adopted by Bardsley and Wadehra, '

who made an exhaustive study of rovibrational excitation
and dissociative attachment in the local-complex-potential
approximation. A detailed investigation of the associative
detachment reaction in the local-complex-potential ap-
proximation has been performed by Bieniek and Dalgar-
no. ' Recently, the energy and width of the X+„reso-

nance has also been calculated by self-consistent-field
(SCF) and configuration-interaction (CI) techniques based
on the complex-scaling method. ' ' Up to date, the only
true ab initio study of vibrational excitation of H2 is the
calculation of Klonover and Kaldor based on the
adiabatic-nuclei approximation using T-matrix elements
obtained with an 1. -basis-set method. '

The X+„resonance is very broad near the equilibrium
geometry of H2 and therefore difficult to characterize.
This fact has recently been emphasized by Nesbet, who
points out that serious discrepancies exist between the X+„
potential-energy curves of the various studies mentioned
above. These discrepancies are not only a consequence of
the approximations involved in the computations, but are
more fundamentally related to the fact that alternative
definitions of the resonance energy and width may yield
drastically differing results in the case of broad reso-
nances. When this happens, the local complex potential
is necessarily no longer uniquely defined and fitting pro-
cedures based on the local-complex-potential approxima-
tion become meaningless.

One might be tempted to abandon the resonance picture
altogether and adopt a nonresonant formalism such as the
standard rotational-vibrational close-coupling method. '
This would not be wise, however, since for somewhat
larger internuclear distances, near the crossing point of
the H2 and H2 potential-energy curves, the X+„reso-
nance becomes very narrow and has a decisive influence
on the coupling of the electronic and nuclear motions.
What is needed to resolve the problem is a description of
resonances which is essentiaIly complete and does not lose
its meaning and uniqueness for very broad resonances.

Such a complete description of shape resonances has
been developed recently ' based on the projection-
operator formalism of Feshbach. The projection pro-
cedure requires the construction of a suitable discrete elec-
tronic state which approximates the resonance, using, for
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example, the stabilization method. ' ' The formalism de-
fines an exact decomposition of the T matrix and the
eigenphase sum into a resonant and a background contri-
bution, such that the background term becomes a smooth
function of the energy and the internuclear distance, while
rapid variations of the T matrix or the eigenphase sum
are contained in- the resonant term. The resonance is
characterized by the discrete-state energy ed(R), the
level-shift function b,(E,R), and the width function
I (E,R). The method extends the Stieltjes-moment theory
of Hazi ' in that the background scattering T matrix
as well as the angular distribution of the resonant scatter-
ing are explicitly obtained.

In the present work we show that this method provides
an appropriate ab initio description of the X+„shape reso-
nance of Hz over the whole range of internuclear dis-
tances from equilibrium to the crossing point, where the
resonance becomes a bound state. In particular, we pro-
vide the data required for the treatment of the nuclear
dynamics in electron-H2 scattering beyond the local-
complex-potential approximation. A detailed study of vi-
brational excitation and dissociative attachment cross sec-
tions, including isotope effects and dependence on the tar-
get vibrational state, will be given in a later paper.

II. FESHBACH PROJECTION-OPERATOR
FORMALISM FOR SHAPE RESONANCES

As is well known, resonances in electron-atom and
electron-molecule scattering can be divided into shape (or
single-particle) and Feshbach (or core-excited) reso-
nances. The former are associated with the existence of
a barrier of the electron-target interaction potential. The
latter originate from closed-channel states embedded in
open-channel continua. While it is rather straightfor-
ward to isolate the core-excited resonances, which are usu-

ally narrow, it is not as obvious how to achieve a separa-
tion of the scattering amplitude or phase shift into a rap-
idly varying resonant part and a smoothly varying back-
ground part for shape resonances. A detailed discussion
of this point for the simple case of potential scattering has
been given recently.

In electron-atom and electron-molecule scattering we
face the additional problem that the target is a many-body
system. Polarization of the target has an important effect
on the position and width of shape resonances. It is possi-
ble, however, to reduce the electronic many-body scatter-
ing problem to an effective one-body scattering problem
using the many-body optical potential formalism. As first
shown by Bell and Squires, the resulting energy-
dependent, nonlocal, and, in general, complex optical po-
tential is given by the irreducible self-energy part X(E) of
the many-body Cxreen's-function formalism. In what
follows we apply projection-operator techniques ' to
this effective one-body problem to extract rapid variations
of the phase shift due to shape resonances. Since a de-
tailed description of the formalism including an illustra-
tive application has been published recently, only a brief
outline is given here.

Assume that the effective potential X is such that the
scattering amplitude exhibits an isolated single-particle

resonance. Assume that a normalized square-integrable
single-particle wave function pd ( r ) is given, which ap-
proximately describes the resonance. In practice, pd(r)
may be constructed by the stabilization method. We
may then define projectors in the single-particle Hilbert
space according to

&Pd1k' —+') =0.
Here and in the following, the caret indicates orthogonali-

ty to the discrete state 1pd ). The
1

k '+—') can be con-
structed in closed form by orthogonalizing the free con-
tinuum to 1pd ).

Applying now the well-known Feshbach projection-
operator techniques, one obtains for the T matrix the
desired separation into a resonant and a background
term25'33

T(k, k) =T„(k,k)+ T,"„'(k,k),
where (the superscript F stands for Feshbach)

Tbg(k ', k) = & k '1(PEP —K) 1 k
'+')

+ & k '-'1r1 j'+'),
k

T'„,'( k ', k ) = & P '-, '
1
H

1 Pd )[—,
' k —gd

(4)

—F(k)] '&Pd 1H 1P '„+'),

with the abbreviations

H =%+X=——,V'+X,

~d &4d I
H

P«) = &41HG bg
'H 14 & . (8)

The 1P'-+') are the background scattering states defined

as the solutions of the projected Lippmann-Schwinger
equation

1 j~+ ~ )
1

k (+ ) ) +G j+ ~y
1 j(+ ) )

with

G,'+'=P( ,'k' m.P+iq—) 'P—. -
The resolvent operator G bg in Eq. (8) is defined as

G b+'=P( , k —PHP+i g) 'P . —

A central quantity in the projection-operator formalism is
the complex level-shift function E(k) defined in Eq. (8).
It defines the width function I (E) and the real level-shift

a=1&d&«d1, P=i-a.
The extension of the formalism to several discrete states is
straightforward. The P space is spanned by single-

particle continuum states
1

k ' —') constrained to be
orthogonal to 1pd ):
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function b,(E) via

b, (E)=ReF(k),
I'(E)= —21mF(k)

(12)

(13)

for real positive k =&2E. The level shift for E&0 is
given by F(k) with positive imaginary k.

An important aspect of this formalism is that the
orthogonality scattering3 ' resulting from the constraint
(2) and formally described by the nonlocal potential
PAP —L is treated exactly. Approximations have to be
introduced, of course, when calculating the effective po-
tential X and when solving the scattering problem. The
above formalism guarantees, however, that for any given
approximate X the orthogonality constraint (2) is fulfilled
exactly and that' Tbs and T„'„'of Eqs. (4) and (5) add ex-
actly to the full T matrix obtained by solving the scatter-
ing problem without projection.

In practice, the calculations are performed in the
partial-wave representation defined via

T(k', k)=k ' g T(k;l, l', m) Y( (Qk ) Y(~(Qk), (14)

problem. In the present work the Schwinger variational
principle ' is used to solve the background scattering
problem (see below). Once the background scattering
states

~ P
' —') and the corresponding propagator 6 bs

' are

given, the background scattering T matrix, the complex
level shift, and the resonant T matrix are easily calculat-
ed. The formalism yields an exact separation of the T
matrix into a resonant and a background term, which de-
pends only on the choice of the discrete state

~ Pd ). For
an appropriately chosen discrete state, the background
scattering T matrix is weakly dependent on energy and in-
ternuclear distance and the nuclear dynamics can thus be
treated in the adiabatic-nuclei approximation. The
resonant scattering can be calculated beyond the Born-
Oppenheimer approximation by taking account of the
nonlocality of the effective potential governing the nu-
clear motion in the resonance state. " The possibility
of including non-Born-Oppenheimer effects in resonant
electron-molecule scattering in a unified and consistent
manner is the major advantage of the projection-operator
formalism.

where we have assumed a linear target molecule for sim-
plicity. The resonant T matrix then reads

T'„,'(k;l, l', m) = Vk) ~ [ ,' k —ed——F(k)] '( Vk(~')", (15)

with

III. COMPUTATIONAL ASPECTS

A. Approximation scheme for the optical potential

The energy-dependent optical potential ' can be writ-
ten as

Vkl~m ~ 0 klm I
H

I ( d & X(E)= Vsp+M(E), (20)

As shown in Ref. 26, the decomposition (3) of the T ma-
trix is equivalent to a decomposition of the eigenphase
sum

M(E) = [M( ~ ) —VsE]+M (E)+M (E) .

The first term in Eq. (20) is the well-known static-
exchange (SE) potential

5'" = (2i) 'ln detS,
VsE ——V,„+g(J~ —X;), (22)

gsum+ gsum
bg res (18)

The resonant eigenphase sum is given by the Breit-Wigner
resonance formula with energy-dependent width and level
shift"" "

I (E)/2
E —ed b(E)— (19a)

and the integral resonant cross section in the fixed-nuclei
limit is simply given by

sum0 v sin 5res
k

(19b)

where v counts the spatial degeneracy of the discrete state.
Equation (19b) follows from the fact that only a single
resonant eigenphase is different from zero.

The essence of the method is to solve the projected
Lippmann-Schwinger equation (9) instead of the original
I.ippmann-Schwinger equation. Since the orthogonal con-

+ +tinuum states
~

k ' —') and the associated propagator 6 0
—'

are given in closed form, ' ' this is only slightly more
complicated than the solution of the original scattering

where S is the scattering matrix, into a resonant and a
background term where V«denotes the interaction potential of the projec-

tile with the nuclei, and J; and K; are the usual Coulomb
and exchange operators. M( oo) is the constant (energy-
independent) term of the irreducible self-energy. The
energy-dependent parts of the irreducible self-energy have
the spectral representation

(n)( (n))e

M,',"(E)= ]f (23)E —E'"'+&q

where the indices p, q refer to a complete single-particle
basis and the summation over n includes integration over
the continuous part of the spectrum.

In many-body perturbation theory, X is defined via a
diagrammatic perturbation expansion. When the
Hartree-Pock (HF) Hamiltonian is chosen as the unper-
turbed Hamiltonian, the perturbation expansion of M '

starts in second order. The perturbation expansion of the
constant term M(oo) —VsE starts in third order in the
residual electron-electron interaction. The second-order
optical potential has been employed by Klonover and Kal-
dor in their comprehensive study of low-energy
electron-H2 scattering. More recently, it has been shown
by Berman et al. for the example of the Hg shape reso-
nance in electron-Nz scattering that the two-particle-hole
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1 I
p(E) =—

~ E2+I2

glv1ng

(25)

(Mpq(E)) Mpq(E+iI) (26)

To avoid having a non-Hermitian self-energy operator for

Tamm-Dancoff approximation (2ph-TDA) (Refs. 49 and
51) leads to a significantly improved description of the
resonance position and width. The 2ph-TDA scheme
represents an infinite partial summation of diagrams exact
up to second order and can be derived in various
ways. " ' ' It has been extensively used in the calcula-
tion of ionization potentials. This approximation is also
employed in the present study of e-H2 scattering.

In the 2ph-TDA the poles E'"' of M'(E) and M"(E) in
Eq. (23) are obtained separately by diagonalizing the
Hamiltonian in the two-particle —one-hole (2p 1h) and
two-hole —one-particle (2h 1p) configuration spaces. The
amplitudes m&"' are obtained by multiplying the corre-
sponding eigenvector elements with appropriate Coulomb

matrix elements. ' It can be shown ' ' that the term
M'(E) accounts for the relaxation of the target electrons
and the associated change in the pair-correlation energies
in the target state. The term M"(E) accounts for the in-
crease of the pair-correlation energies due to the (tem-
porary) attachment of an additional electron. Neglecting
M' (E) is equivalent to neglecting target-state correlation
and performing a CI calculation on the negative ion in-
cluding all 2plh configurations. The inclusion of both
M'(E) and M '(E) guarantees a balanced treatment of
target correlation and polarization.

In principle, the 2ph-TDA optical potential, like the
second-order optical potential, has the correct analytic
structure as defined in Eq. (23), i.e., it has simple poles in-
finitesimally above or below the real axis and cuts extend-
ing from the excitation and double-ionization thresholds
to + oo. The exact optical potential becomes complex for
scattering energies above the first excitation threshold,
thus accounting for the -flux which is lost into inelastic
channels. In practice, however, a discrete single-particle
basis is used in the construction of M'"(E) and the cuts
are replaced by sets of discrete poles on the real axis. In
the present context this deficiency becomes relevant when
we consider scattering energies above the lowest excitation
threshold of the target molecule. Since the excitation en-
ergy of H2 decreases rapidly with increasing internuclear
distance, we are already faced with this problem of un-
physical poles of M(E) for rather low scattering energies.
For R=2.75 a.u. , for example, which is the largest inter-
'nuclear distance considered in the present work, the
lowest pole of M'(E) is found at 2.55 eV.

To eliminate the unphysical poles of M(E) in the ener-

gy region of interest, we resort to the usual recipe of
averaging the rapidly fluctuating self-energy over a suit-
able inverval

(M„(E)) = f dE'p(E E')M„(E'). — (24)

The simplest choice for the averaging function p(E) is a
Lorentzian

scattering energies below the excitation threshold, we
adopt

Mpq(E) =Re[Mpq(E +iI)] (27)

We use the Schwinger variational principle to solve
the background scattering problem (9) and to construct
the corresponding resolvent operator (11). This is
equivalent to representing the optical potential in the
separable form

with

(29)

The functions ( r
~
X; ) are square-integrable energy-

independent basis functions. With X replaced by X", the
background scattering T matrix of Eq. (4) becomes

Tb's'(k', k)=(k '~ (PKP —K)
~

k'+')
X

+ g ( k '-'
~

X
~
x, )(X-')J.(x,

~

X
~

k '+'),
/, J =1

(30)

with

x,J ——(x;
~

(x—xG,'+'r)
~ x, ) .

The orthogonalized plane-wave states
~

k' +—') and the
Green's function Go+' can be eliminated from Eqs. (30)
and (31) using the closed-form expressions for these quan-
tities, leaving us with standard matrix elements of X and
XGo+'X with plane-wave states

~

k ) and basis states
~X;). The background scattering states

~

P'-„+')and the

Green's function 6b+' are obtained from the operator
(s)

bg

Tbg according to

~

j'+'&=
~
k&+G,'+'T,",

~
k&,

6 (+) 6(+)+G(+)T(s)G(+)
bg 0 0 bg 0

(32)

(33)

The complex level shift is then directly obtained from
Eqs. (5) and (8). For more details, the reader is referred to
Ref. 26.

The main technical difficulty in the implementation of
the Schwinger principle for electron-molecule scattering is
the calculation of the matrix elements (X;

~

X
~

k) and

as our averaged self-energy. The averaging interval I is
chosen to be just large enough to smooth out the unphysi-
cal poles of M(E). When large basis sets are used in the
construction of the 2ph-TDA self-energy, the unphysical
poles are rather dense and a moderate averaging interval
(typically 1 eV) is sufficient to make M(E) a smooth
function of energy in the energy region of interest. For
scattering energies E which are far from the poles of the
self-energy part, the averaged self-energy Mzq(E) differs
very little from Mzq(E).

9. Solution of the scattering prob&em
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N

~x;)o;, (x,
~

. (35)

The comparison of the results obtained with the approxi-
mate potentials (28) and (35) provides a certain check of
the errors introduced by approximating the scattering po-
tential in a basis.

For the calculation of fixed-nuclei eigenphases and
cross sections only positive scattering energies E are of in-
terest. For the treatment of nuclear dynamics in the
projection-operator approach, on the other hand, we need
in general also the real level-shift function h(E) for nega-
tive energies, since bound electronic states are given by the
negative-energy solutions of

E —eg —h(E) =0 . (36)

The bound-state potential-energy curves are needed for
the treatment of the dynamics of processes such as disso-

(X;
~

XGo+'X ~XJ ). Here we simplify the problem by in-
serting a large "quadrature basis" between the operators X
and G'+', with the result that only matrix elements of X
and Go+' are needed. The convergence of such insertions
has been studied by Watson et al. In the same way the
"bound-continuum" matrix elements (X;

~

X
~

k) are re-
duced t'o "bound-bound" matrix elements of X and
"bound-continuum" overlaps (X;

~

k ). The matrix ele-
ments of X are obtained using standard bound-state codes
for Gaussian basis functions. The bound-continuum over-
laps and the matrix elements of the free Green's function

(X;
~
G,'+'(k) ~X, ) =2 f1'q, , ' (34)

(x; q)(q x, )
k2 —q2+l

can be calculated analytically for 'Gaussian basis func-
tions.

In the special case that the quadrature basis is identical
to the "scattering basis" I ( r

~
X; ) I introduced in Eq. (28),

the T matrix of the present method reduces to the separ-
able T matrix introduced by Rescigno et al. ' This corre-
sponds to replacing X"of Eq. (28) by the "truncated" po-
tential

ciative attachment and associative detachment.
The branch of b.(E) which yields bound states accord-

ing to Eq. (36) is obtained by analytically continuing F(k)
of Eq. (8) onto the positive imaginary k axis. ' Within
the approximation scheme described above, the k depen-
dence of F(k) is completely determined by the matrix ele-
ments (34) of the free Green's function. The analytic for-
mulas which express the matrix elements. (34) in terms of
the complex error function ' define the analytic con-
tinuation of these matrix elements into the complex
momentum plane. In fact, all Inatrix elements are entire
analytic functions of k. The existing codes for the com-
putation of the matrix elements of Go need to be modi-
fied only marginally to obtain the analytically continued
matrix elements. More details are given elsewhere.

C. Computational details

Calculations have been performed for seven internu-
clear distances of the H2 molecule, namely R = 1.4014,
1.6, 1.8, 2.0, 2.2., 2.5, and 2.75 a.u. For each internuclear
distance a HF calculation has been performed which de-
fines the static-exchange potential and the single-particle
manifold used in constructing the optical potential. The
atomic basis set is the uncontracted 10s,5p, 1d Gaussian
basis of Schulman and Kaufman and is given in Table I.

After transformation of the one- and two-electron in-
tegrals to the HF single-particle basis, the static-exchange
potential and the 2ph-TDA self-energy are constructed as
briefly indicated in Sec. IIIA. The complete space of
2p1h and 2hlp excitations is exhausted in the 2ph-TDA
calculation. More details concerning the numerical im-
plementation of the 2ph-TDA can be found in Ref. 55.
An important aspect is that the poles and residues of the
energy-dependent self-energy [see Eq. (23)] need to be
evaluated only once for each internuclear distance. From
these data, the matrix elements of M (E) are readily
evaluated for each scattering energy E. To obtain the rep-
resentation of M (E) in the quadrature basis I ( r

~

a ) I,
which is in general larger than the HF single-particle
basis, matrix elements of the type (ai

~

r &z ~
jl ) are need-

TABLE I. Cxaussian basis sets for e-H2 scattering. The exponents of the basis functions on the atoms are listed.

px~ py~ pz
dxx ~ +yy ~ dzz ~ dxy ~ dxz ~ dyz

Hartree-Fock set:
600, 192, 64.224, 9.9142, 2.5988, 1.0676, 0.4384, 0.1569, 0.05, 0.017
4, 2, 0.9, 0.4, 0.2
2

pz
d

Discrete-state set:
600, 192, 64.224, 9.9142, 2.5988, 1.0676, 0.4384
4, 2, 0.9, 0.4, 0.2
2

Scattering set:
The s, p„d functions of the Hartree-Fock set

pz
d

Quadrature set:
The s basis of the scattering set plus 0.006, 0.002
The p, basis of the scattering set plus 0.07, 0.02
The d basis of the scattering set plus 0.7, 0.2
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ed, where the indices i,j,l refer to HF orbitals and a is a
Gaussian orbital of the quadrature basis.

Once the scattering potential is defined, we may
proceed to select a suitable discrete state by the stabiliza-
tion method. ' ' ' In the present work the discrete state
is defined for the static-exchange potential and is thus in-

dependent of the scattering energy .E. In previous work
on the IIg shape resonance of N2 we have preferred to
choose an energy-dependent discrete state, obtained by a
stabilization calculation for the energy-dependent 2ph-
TDA optical potential. In e-H2 scattering both defini-
tions yield very similar results and we prefer the former
definition for the sake of conceptual simplicity. We diag-
onalize the single-particle Hamiltonian H =I@+VsE in
discrete Gaussian basis sets of various sizes, looking for
approximately stable eigenvalues of o.„symmetry. It is
found that after the removal of the three most diffuse s
orbitals with exponents 0.017, 0.05, and 0.1S69 the lowest
o.„orbital energy becomes approximately stable with
respect to further restrictions of the basis. Removal of p-
type functions had no significant effect on the o„orbital
energy. The discrete-state basis set was thus taken to be
the atomic basis set minus the three most diffuse s-type
orbitals. While the selection of the discrete state may ap-
pear somewhat arbitrary to the reader at this stage, we
stress that the justification is provided by the final results
of the calculation. As will be seen below, the discrete
state just selected leads indeed to a clean and physically
sensible separation of the X+„eigenphase sum into a
resonant and a background term for all internuclear dis-
tances considered.

Moreover, we have the important criterion that the
discrete state should be "quasidiabatic", i.e., the associated
molecular orbital coefficients should be weakly dependent
on the internuclear distance. Indeed, the R dependence of
the wave function of the above discrete state consists
mainly in the "floating" of the atomic orbitals with the
nuclei. In contrast to the discrete state, the o.„molecular
orbitals calculated in the full basis including the diffuse
atomic orbitals exhibit strongly varying molecular orbital
coefficients when the internuclear distance changes.

The next computational step is the solution of the back-
ground scattering problem (9) using the Schwinger varia-
tional principle. The scattering basis was chosen to be
identical with the HF atomic basis set described above.
We have checked that the calculated eigenphase sum is in-
sensitive to further extensions of the scattering basis. The
quadrature basis set is obtained by augmenting the
scattering basis with diffuse functions of s, p, and d types
(see Table I). Again, we have checked that the calculated
eigenphase sum is insensitive to further extensions of this
basis. In fact, the results obtained with the Schwi. nger-
type potential X" of Eq. (28) and the truncated potential
X'" of Eq. (35) are nearly identical, indicating that the er-
rors introduced by approximating the scattering potential
in a basis are minor.

The background scattering states
~ P '- ') and the back-

k

ground Green's fu'nction 6 bg are next constructed from(+)
Eqs. (32) and (33) using the representation of Tb(g) in the
quadrature basis. The width and level-shift functions are
then obtained directly from Eqs. (8), (12), and (13) and the

discrete-continuum coupling elements from Eq. (16). The
resonant T matrix T'„,' and the corresponding eigenphase
sum are given by Eqs. (15) and (19a).

IV. RESULTS

Since resonant features in low-energy e-H~ scattering
are observed only in the X+„eigenphase sum, ' the cal-
culations have been restricted to this symmetry. To assess
the importance of polarization and correlation effects,
scattering calculations have been performed for three po-
tentials of increasing sophistication, namely the static-
exchange, the second=order, and the 2ph-TDA optical po-
tentials. The results obtained for the X„+eigenphase sum
at 8=1.4014 a.u. , the equilibrium geometry of H2, us-

ing the Schwinger variational principle are given in Fig. 1

and Table II. (Eigenphase sums are in units of radians
throughout. ) The solid line in Fig. 1 shows the static-
exchange result in comparison with the benchmark
static-exchange calculation of Collins, Robb, and Mor-
rison (stars). The present results are consistently some-
what too low, which we attribute to basis set limitations
in our calculation, but are nevertheless in good overall
agreement with the results of Ref. 2 and t;he R-matrix cal-
culation of Noble, Burke, and Salvini (see also Table II).
This indicates the reliability of the I. representation of
the potential used in our calculations. The short-dashed
and long-dashed curves show the eigenphase sums ob-
tained with the second-order and the 2ph-TDA optical
potentials, respectively. Apart from differences in the
basis sets, the former result should be identical with the
result of Klonover and Kaldor. It is seen that many-
body effects increase the eigenphase sum considerably, the
main part of the correction being obtained already in
second order. As will become clear below, the increase of
the eigenphase sum is mainly a consequence of the lower-
ing of the resonance energy by polarization effects.

Ab initio calculations on e-H2 scattering which include
polarization effects via a Feshbach-type optical potential
or a nonadiabatic polarization potential have been pub-
lished recently. ' In Fig. 2 we compare the X+„crosssec-
tion obtained with the 2ph-TDA optical potential with the
results of Schneider and Collins and Gibson and Mor-
rison. While there is good overall agreement between the

0 I I I

0 1 2 3 4 5 6 7 8 9

ENERGY ( e V )

FICx. 1. The X„eigenphase sum for e-H~ scattering. Solid
line: static-exchange approximation; short-dashed curve:
second-order optical potential; long-dashed curve: 2ph-TDA
optical potential. Stars are the static-exchange results of Ref. 2.
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TABLE II. Eigenphase sum for the X+ symmetry in e-H2 scattering at R=1.4014 a.u. obtained in
the static-exchange (SE) approximation and with the second-order and 2ph-TDA optical potentials.

k (a.u.)

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

'Reference 2.
bReference 65.

Z (eV)

0.136
0.544
1.224
2.177
3.401
4.898
6.666
8.707

SE'

0.0134
0.0493
0.1233
0.2459
0.4084
0.5797
0.7269
0.8361

SE

0.0128
0.0481
0.1204
0.2421
0.4032
0.5694
0.7239
0.8086

SE

0.0065
0.0417
0.1099
0.2329
0.3843
0.5620
0.7096
0.8291

Second order

0.0098
0.0639
0.1711
0.3487
0.5561
0.7507
0.8900
0.9928

2ph-TDA

0.0111
0.0724
0.1933
0.3880
0.6110
0.8099
0.9522
1.0681

latter two and the present calculations, the resonant rise of
the cross section occurs at higher energy in our results.
The difference between the present cross section and that
of Ref. 4 is much larger than the difference fourid in the
static-exchange approximation and thus reflects differ-
ences in the polarization-correlation potential. We attri-
bute the differences to target correlation effects which are
neglected in Refs. 4 and 5, but are included in the 2ph-
TDA.~' Target correlation has the tendency to increase
the energy of shape resonances.

Figure 3 shows the X+ eigenphase sum calculated with
the 2ph-TDA optical potential for seven internuclear dis-
tances ranging from R = 1.4014 to 2.75 a.u. As was men-
tioned earlier, the optical potential has to be energy aver-
aged for larger internuclear distances, since unphysical

I/Io
C

poles of X(E) appear in the energy region considered. No
averaging was necessary for R=1A014, 1.6, and 1.8 a.u.
For the larger distances the averaging interval I [see Eqs.
(24)—(27)] was chosen just large enough to smooth out the
pole structure of X(E) in the energy range of interest.
The appropriate averaging interval was found to be I=2.0
eV for R=2.0, 2.2, and 2.5 a.u. and I=3.0 eV for
R =2.75 a.u.

Figure 3 illustrates how the resonance in X+„symmetry
moves to lower energy and sharpens dramatically when
the internuclear distance increases. While the resonance is
hardly discernable as such at the equilibrium distance of
H2, one observes a very sharp low-energy Breit-Wigner
resonance at R =2.75 a.u. For distances larger than about
2.9 a.u. the X+ state becomes bound and the resonant in-
crease of the phase shift disappears. The strong R depen-
dence of the X+„phase shift illustrated in Fig. 3 is the ori-
gin of the interesting dynamical effects in low-energy e-
H2 collisions, i.e., vibrational excitation and dissociative
attachment.

Let us now turn to the main object of the present calcu-
lations, namely the application of the projection-operator
formalism to the X+„shape resonance. Figure 4 shows
the decomposition of the eigenphase sum (solid line) into a
resonant term (short dashes) and a background term (long
dashes) for the three representative distances R= 1.4014,
2.0, and 2.75 a.u. The decomposition is shown both on
the static-exchange and the 2ph-TDA levels of approxi-
mation. In all cases the lower (upper) curve of a given

3

K
CA

2
U)
CC

0
Z
4J 1(3
LIJ

0.0 2.0 0.0 6.0

Energy (eV)

8.0 10.0

FIG. 2. The 2X+„cross section obtained with the 2ph-TDA
optical potential (stars) in comparison with the static-exchange-
polarization results of Collins and Schneider (Ref. 4) (crosses)
and Gibson and Morrison (Ref. 5) (solid line).

0 1 2 3 4 5 6 7 8

ENERGY (eV:)

FIG. 3. The X+„eigenphase sum for e-H2 scattering obtained
with the 2ph-TDA optical potential as a function of energy and
internuclear distance; The curves correspond, from bottom to
top, to the following internuclear distances (in a.u.): 1.4014, 1.6,
1.8, 2.0, 2.2., 2.5, and 2.75.
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III the eigenphase sums and the resonance parameters for
these particular energies. Our calculations show that the
angular distribution of the X„+symmetry does not change
appreciably with internuclear distance. The dominance of
p-wave scattering exhibited in Table III is found for the
whole range of internuclear distances considered here.

V. DISCUSSION AND CONCLUSIONS

We have obtained a separation of the fixed-nuclei T
matrix and eigenphase sum for e-H2 scattering into a
smooth background term and a resonant term which
varies rapidly with energy and internuclear distance. The
relevance of this separation lies in the treatment of nu-
clear motion in e-molecule scattering. Owing to its weak
dependence on E and R, the background scattering T ma-
trix can be treated in the adiabatic-nuclei approxima-
tion. ' The resonant T matrix, on the other hand, can be
calculated to a higher level of sophistication by properly
treating the nuclear dynamics in the short-lived negative
ion state, which is governed by an energy-dependent, com-
plex, and nonlocal potential. The fixed-nuclei Fesh-
bach resonance parameters ed(R), I (E,R), and A(E,R)
are sufficient to construct the nonlocal potential. The
Feshbach formalism allows us to treat vibrational excita-
tion of H2 beyond the usually employed adiabatic-nuclei
approximation and provides, in particular, the basis for
the ab initio calculation of dissociative attachment in
H2. The dynamics of H-H collisions leading to elec-
tron detachment (collisional detachment and associative
detachment) can also be rigorously treated in this formal-

47, 68—70

The methods we have employed in the calculations on
H2 extend the Stieltjes-moment approach of Hazi and
co-workers ' to the calculation of I (E,R). In par-
ticular, we also obtain information on the background
scattering and on the angular distribution of both
resonant and background scattering. The knowledge of
the background T matrix and eigenphases is important
for broad resonances, such as the X+„resonance in e-H2

scattering, for s-wave scattering phenomena such as virtu-
al states ' and for resonances in polar molecules where
the background phase shift may exhibit rapid variations
at low energy caused by the long-range dipole poten-

l 73,74

Finally, we mention that the present results resolve the
question raised by Nesbet of whether a potential-energy
curve of the X„stateof H2 can be unambiguously de-
fined at all. The difficulty in defining a meaningful
potential-energy curve arises from the large width of the
resonance at near-equilibrium internuclear distances.
However, a potential-energy curve E„,(R), which joins
continuously and with continuous derivative to the bound
state of H2, is given by the pole of the resonant K ma-
trix, defined via '

5',"„(E„,) =m /2 (37)

The authors would like to thank L. S. Cederbaum and
H.-D. Meyer for stimulating discussions and M. Morrison
for providing unpublished material. Financial support by
the Deutsche Forschungsgemeinschaft (DFG) through
Sonderforschungsbereich 91 is gratefully acknowledged.

which leads to the implicit equation (36) for the resonance
position E„,. Since the level shift 6 is large, this
potential-energy curve differs considerably from the
potential-energy curve e~(R) of the discrete state given by
the stabilization calculation. The resonance energy as de-
fined by Eq. (37) depends, of course, on the separation of
the eigenphase sum into a resonant and a background
term [the full eigenphase sum, for example, often never
reaches ~/2 and Eq. (37) would have no solution when ap-
plied to the full eigenphase sumj. Having obtained a
physically meaningful separation of the eigenphase sum,
we have thus also constructed a well-defined potential-
energy curve of the X+„state of H2 . The potential-
energy curve of H2 will be discussed in more detail in a
later paper dealing with the nuclear dynamics in e-H2
scattering.
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