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Analytical calculation of logarithmic mean excitation energies for hydrogen and helium
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The four logarithmic mean excitation energies I(v), for v= —1, 0, 1, and 2, have been calculated
analytically for hydrogen and helium. They appear in the expressions of total cross section, stop-
ping power, and straggling effect for fast charged particles, and in the expression of the Lamb shift
of atomic energy levels. The method is based on a generalization of a method by Dalgarno and
Lewis [Proc. R. Soc. London, Ser. A 233, 70 (1956)]. The only input is the wave function of the ini-
tial state of the atom (in the present paper only the ground state is considered). For hydrogen the
method is rigorous. For helium, Hartree-Fock-type wave functions were used, which is the only ap-
proximation of the present method. The accuracy of the method is essentially independent of the
value of v.

I. INTRODUCTION

The object of the present work' is to calculate analyti-
cally four mean excitation energies I(v) which play a fun-
damental role in atomic physics. The mean excitation en-
ergies in question are defined by

lnI(v) =L (v) IS(v), v= —1,0, 1,2

where the logarithmic sums L (v) are defined by

L(v) = g f„(E„—Eo)'in(E„—Eo), (2)

(E„—Eo) being the excitation energies measured from the
energy of the initial state. The sums S(v) are

S(v)= g f„(E„—Eo)" . (2')

The sums are over the complete set of energy eigenstates
of the atom The qu. antities f„are the oscillator strengths

f„=(E„E)
i
Z „i—

where Z is the z component of the total dipole moment
operator of the electrons of the atom. In the present work
the initial state is taken to be the ground state of the
atom. The four mean excitation energies are directly con-
nected with the following physical phenomena.

(i) I( —1) appears in the expression of the total cross
section for particle-atom collisions.

(ii) I(0) appears in the expression of the atomic stop-
ping power.

(iii) I(1) appears in the expression of the mean fluctua-
tion of the stopping power, called the straggling effect.

(iv) I(2) appears in the expression of the Lamb shift of
energy levels.

A number of diverse methods have been developed in

recent years to calculate these sums. Excluding the pre-
cise calculation of L(v) when f„ is known over the entire
spectrum (true for hydrogen only), none of the methods
are completely rigorous. It is thus desirable to have as
many independent approaches as possible. The methods
known up until now include complicated Green's-function
calculations, variational principles, and a simpler tech-
nique, discussed recently, which consists of calculating
L(v) by taking the derivative of S(v) with respect to v.
Obviously, the quality of this approach hinges entirely on
the knowledge of the function S(v), where v is treated as
a continuous variable.

We have developed a method by which these sum rules
can be calculated analytically, the only input being the
tvave function of the initial state. It works equally well for
all four values of v. The method is based on a generaliza-
tion of a method by Dalgarno and Lewis, originally pro-
posed for the calculation of long-range forces between
atoms. In this approach an auxiliary operator I' is intro-
duced, which enables one to perform the summation over
the whole spectrum by closure relation. The operator I is
determined by a certain inhomogeneous differential equa-
tion, which depends functionally on the initial wave func-
tion of the atom. This is explained in detail in Sec. II. In
Sec. III, I' is derived for hydrogen and the four mean ex-
citation energies I(v) are calculated. In Sec. IV we dis-
cuss briefly the case of hydrogenlike ions. It is reduced to
the hydrogen case by a simple scaling procedure. The
treatment of the hydrogen and hydrogenlike cases is com-
pletely rigorous. Thus the numerical results can be made
as accurate as one pleases. Finally, in Sec. V the mean ex-
citation energies for helium are calculated. In the present
paper only Hartree-Fock-type wave functions were taken
into consideration. It is the only approximation of the
present method. This reduces the helium case to the hy-
drogen case, essentially. Three different wave functions
were considered.
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Energies are measured in rydberg units; all other quan-
tities in atomic units.

II. BASIC METHOD

In order to calculate the four sums of Eq. (2) we shall
make use of the integral representation of the logarithmic
function

A—ln(E„Ep)—= lim f dA, —lnA . (3)
A, +E„—Ep

We then get, taking into consideration the definition of
the oscillator strengths,

—L, (v)= hm f"dry I( I '") I'(E„—E,)"+'
A, +E„—E

—( inA) g I
(o

I
z

I
n ) I'(E„—E, )"+'

III. HYDROGEN

For hydrogen, Eq. (6) becomes

zfp —— (V—F)gp 2V—F Vgp+AFgp,

where

(12)

is the ground-state wave function of hydrogen. As
Vgp= —lf/pr the above equation becomes

—V F+2 +XF=z .BF
BX

We now introduce the function g by

F=g(x, A, )z .

(13)

(14)

Then cjF/dx =(g'+g/x)z and V F=(V g)z+2g'z/x.
We thus obtain a separation of variables with a radial
equation for g given by

xg"+ (4—2x )g' —(2+ Ax )g = —x . (15)

where we have put, for simplicity,

(4)
To solve this equation it is advantageous to make the sub-
stitution

z= g=e " ""u(x,A), (16)

Let Fbe an operator which satisfies the equation
where t=&1+A, . The function u is then a solution 'of
the equation

Zgp ——[Hp, F]gp+ XFgp . (6) xu" +(4—2tx)u' —(4t —2)u = —xe" (17)

where S (Z,F) and S(v) are the sums

S„(Z,F)= g (0
I
Z

I
n )(E„—Ep)'+'(n

I
F

I
0), (9)

s(v) = g 1(o I
z

I

n ) I'(E. —Ep)'+' . (10)

Closed expressions for these sums are derived in the Ap-
pendix by making 'use of closure relation. Thus the
analytical evaluation of our sums L(v) has been reduced
to the calculation of the operator F with the help of Eq.
(6) and a simple integration over the parameter A, accord-
ing to Eq. (8). Note that S,(Z,F) in Eq, (8) at A, =o
yields the second-order energy shift of the Stark effect.

Our next task is to calculate F. This will be done under
the assumption that F depends only on the coordinates r,-

of the electrons but not on the momenta. Thus we have
F=F(r&,r2, . . . , r&, A, ). By Eq. (6) it depends functional-
ly on the ground-state wave function of the atom or ion in
question and therefore has to be calculated separately for
each case. We shall show that the F's of hydrogenlike
ions and helium atoms are related by scaling to the F of
hydrogen.

Here Hp is the Hamiltonian of the atom, and gp is the
ground-state wave function. From Eq. (6) we get

(n
I

Z
I
0) =(A, +E„—Ep)(n

I
F

I
0) .

Thus the denominator in Eq. (4) cancels out, and we
remain with the expression

A
L(v) = lim f—S„(Z,F)dA, S(v)lnA, — (8)

A~m
+Au~+Bu2 . (18)

Here the two functions u~ and u2 are the fundamental
solutions of the homogeneous equation and
8'=u &uz —u ~u2 is the Wronskian. The two constants 3
and B will be determined by conditions of finiteness.
Now the two independent solutions of the homogeneous
equation, which is called the Kummer equation, ' are the
regular solution

u
&
(x)= iFi (2—1/t;4; 2tx ), (19)

where ~F&(a;b;x) is the confluent hypergeometric func-
tion, and the irregular solution

u2(x) = U(2 —1/t;4;2tx ) . (19')

The explicit expressions of these two functions are given
in the literature. ' The Wronskian is calculated by the
Abel identity"

4—2tX t 2tx 48'=a exp dx' =me '"/x
X' (20)

The value of n is determined by u
&

and u2 at the origin.

The solution of this equation is readily achieved by the
well-known method of variation of parameters. We get

x u2(x')
u(x, A)= u& e" ""dx'

8'(u], u2)

x u&(x')—u, f e'- "dx'
W u), u2
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We have' ul(0)=1, ul(0)=t ——,, and

1 1uq(0)~ 4t'I (2—1/t) x'
Hence, for x~O,

3 1W(x)~—
4t I (2 —1/t) x

(22)

which gives

3CX=-
4t'I (2—1/t )

So at this stage our function u(x, A, ) is

(23)

= —&F&(2—1/t;4;2tx) f U(2 —1/t;4;2tx')e "+""(x') dx'
4t'I (2 —1/t )

+ U(2 —1/t;4;2tx) f IFI(2—1/t;4;2tx')e ~'+'~ (x')"dx'

+A,F, (2—1/t;4;2tx )+BU(2 1/t;4;2t—x ) . (24)

—f U(2 —1/t;4;2tx')e "+" (x') dx'+A, (25)

vanishes at infinity. Hence we get

U(2 —1/t;4;2tx')e "+""(x') dx' .
0

(26)

To complete the derivation of u(x, A, ) the two coefficients
A and 8 have to be determined. We do this by imposing
the conditions that g(x, A, ) would be finite in the physical
regions of x and that at infinity it would 'not diverge ex-
ponentially. These conditions follow from the fact that
the operator I is closely connected with perturbation
theory, and if these conditions are not met, nonphysical
solutions will be obtained. At x =0 we have according to
Eqs. (21) and (19'), U —+x . Now the integral which
multiplies U in Eq. (24) behaves like x, thus this term
vanishes when x ~0. Therefore, if B&0, we have

g —+x . It follows that we must have A=0. The coeffi-
cient 2 is determined by the behavior of g at x~ ao. The
function IF& behaves like exp(2tx) at infinity the in-
tegral which multiplies ~FI assumes some finite value.
Thus g~exp[(t+1)x] which is untenable because of the
above-mentioned conditions. In the context of the present
paper it would mean that the expressions of the four sums
I.(v) diverge. To solve this problem we must demand
that the function which multiples IF& in Eq. (24),

u at x=O,

u (O, A, ) = , t I (—2—1/t ) f U(2 —1/t;4;2tx')

Xe "+""(x') dx' . (28)

2F, (5,2;4—1/t; —,(1—1/t ) )

(2t —1)(3t—1)
(29)

where 2FI (a,b; c;x ) is the hypergeometric function.
From Eq. (27) it is obvious that u can be represented by

a power series with an infinite radius of copvergence

u(x, k)= g aI(A, )x
I=O

(30)

It is of course possible to calculate the expansion coeffi-
cients a~ directly from Eq. (27). However, it is easier to
derive a recursion formula by making use of the differen-
tial equation of u, Eq. (17). It is a straightforward matter
to show that the coefficients aI are determined by the
two-term recursion formula

This Laplace transform is given in the literature. ' We
get

It is then easily verified that g does not diverge exponen-
tially at infinity. This follows from Eq. (16) and the fact
that U decreases at infinity. Consequently, our function
u (x, A, ) is given by

3u(x, i, ) = iFI (2—1/t; 4;2tx )FI (x)4t'I (2 —1/t)

aI+ i &tat =Pt—
where

Qg =2 (l+2)t 1—
(&+1)(&+4) '

(t 1)—
(I+ 1)(&+4)(&—1)t

(31)

(31')

(31")

where

+ U(2 —1/t;4;2tx)F, (x), (27)

F~(x) = f U(2 —1/t;4;2tx')e "+""(x') dx', (27')

X
F2(x) = IFI(2—1/t;4;2tx')e "+""(x') dx' . (27")

From this expression we obtain immediately the value of

with Po-——0. Thus all the at's are expressible in terms of
ao which is given by Eq. (29). That Eq. (17) gives rise to
a two-term recursion formula follows from a theorem by
Sommerfeld. '" The equation of g, Eq. (15), on the other
hand, yields a three-term recursion formula which, of
course, is much more difficult to handle.

The above recursion formula has been solved by
mathematical induction and simple algebra. We get
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a, = 2F, (5,2;4 —1/t; ,
'

—(1—1/t))
(5)I, (2)k

2F)(5,2;4—1/t; ,'(—1—1/t)}= g
0 (4—1/t)i, k!

( 5) (2)k [—'(1 —I«)]"
o (4—1/t)k k!

(2t )'(2 —1/t )t
X

(2t —1)(3t—1)(4)il!
(t 1)l—2

l(1+3)(l—2)! '

X [—,(1—1/t)]"

and some simple algebraic manipulations, the above ex-
pression reduces to

g [—,
' (1—1/t)]J(l+j )

(2t )1!

(32)
X

I (1+j+4)I (1+2—1/t)
I (1+j +3 1/t)—l (1+4)

(32') .
where Pochhammer's symbols (b)t ——I (b+1)ll (b). By
making use of the Gauss series

Finally, this can be expressed in terms of two hyper-
geometric functions,

(t 1)—
at —— 1 zF) (1,1+4;1+3 —1/t; —,

'
( 1 —1/t ) )

2t 1+2 —1/t 1!

+ pF((2, 1+5;1+4—1/t; , (1—1/—t) )
(t 1)(1+4—)

2t 1+3—1/t
(32")

It is possible to sum the infinite series of u, Eq. (30). To accomplish this use is made of the integral representation' of
2+1

1

I bI'c bo— (33)

which is valid for c &b &0. The hypergeometric functions in Eq. (32") do not satisfy these conditions. We therefore
change these functions into functions which satisfy these conditions by applying the linear transformation'

2F((a,b;c;z) =(1—z) zFI(b, c —a;c;z/(z —1)}. (34)

We then get for a)
I —1

(2t) + 1
' ' (t+, )), t —1

(t+1)' 1! o t+1

. —(1+4)

r

+ (1+4) I x"+" '(1 —x) 1+ xt —1 t —1

t+1 o t+1

—(l+ 5)

(32"')

&& f(y)+4(1 —y) e ~(~)dy
t —1

with
(35)

It is now evident that the series of Eq. (30) can indeed be
summed. We find

(2t)'
u(x, t)= I(t+1)5

(i) x =0, by Eqs. (33) and (34), we get back for u(0, t)
the expression of Eq. (29).

(ii) t=1, we get u(x, l)=(1+x/2)/2, which is a solu-
tion of Eq. (17) as can be shown by substitution. It corre-
sponds to the Stark effect and is given in the literature.

Finally, we derive the behavior of g for x —+ oo. This is
easily carried out by starting from the above expression
for u [one gets the same result by starting from Eq. (27),
but the calculation is much more involved] and making a
change of variable from y to z =f(y). The required result
is then obtained by repeated integration by parts. Keeping
only the first trvo terms, ave get

2t(t 1)y-
t+ 1+(t —1)y

(35') u(x, A, ) =—1 — +O((l(x) 2) e" (36)

It is easily verified that this expression yields the correct
results for the following special cases. or
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g(x, A, ) =—1 — +O((ix ) ) (36')

A. Tota1 cross section (v= —1)

According to Eqs. (8) and (9), the relevant expectation
value is given by

Changing from F to g by Eq. (14) and introducing the
ground-state wave function of hydrogen, Eq. (12), this be-
comes

S I(z,F)= —, g(x, A, )e "x dx .
0

(37')

There are a number of ways to calculate this expectation
value. One possibility, which we expected to be the most
promising, was to use the method of Pade approximants.
In this approach one approximates the function g by suc-
cessive ratios of two polynomials of order n. In first or-

I

Now that we have completely explored the function g, we
are ready to calculate the sums L(v).

der one puts

po+plx
1+/

(38)

The A, dependence of p0,pI is uniquely determined by the
first two terms in the expansion of g, and we have the ad-
ditional requirement p~/q, = I/A, , according to Eq. (36').
The analytical evaluation of S ] is immediate, and the in-
tegration over A, of Eq. (8) was done numerically. We ob-
tained [L(—1)]~——0.0487. Next, we applied the second
order. In this case g is approximated by the ratio of two
second-degree polynomials. We found [L ( —1)]2
= —0.091. Although the numerical results seemed to ap-
proach the exact value quite rapidly, we decided to aban-
don the Pade approach simply because the evaluation of
the p; and q; as a function of A, for the third- and higher-
order approximants became forbiddingly complicated.

The direct approach is much more effective. Starting
from the integral representation of u(x, A, ), Eq. (35), the
integral of Eq. (37 ) is immediate, which leaves us with an
integral over the variable y. This turns out to be the in-
tegral representation of two hypergeometric functions.
We thus obtain

r

S I(z,F)= 128 (2t)' 5t,F~(6, 3 —1/t;4 1/t; [(t—1)/(t+1)]—)2

3 —1/t (t+1)'2

,F, (5,2 —1/t;4 1/t; [(t 1)/(t—+ 1)]')—(t+1)'
2 —1/t

(39)

L( —1) is then obtained by Eq. (8) from the expression

L( —1)=2 J S— , t dt+2 J~ S

(40)

oo

g(x, X)=e -"-" g a,x'——e"—"" +—,
where we purposely separated the behavior of g at infini-
ty. Expanding the exponential function in the parenthesis
and integrating over x according to Eq. (37'), we get

because S( —1)=1 for hydrogen. We have not pursued
this approach because for the other three cases, v=0, 1,2,
the matrix elements S turn out to be more complicated
than Eq. (39), and the approach below is more suitable for
computational purposes. For v= —1 we got the very
good result lnI( —1)= —0.073 238.

A closely related approach to the above, which we
adopted in the end, is as follows. Start with the function

S,(z,F)=-', g WII4'+ —,
1=0

where we have introduced the quantity

W( „=(l+a.)! a(— (t —1) 1

1[(t2 1 ) (t + 1 )1+le+ 1

We also introduce the related quantity

(42)

(43)

TABLE I. 1nI(v) for hydrogen, taking into account only the first term of the asymptotic expansion
of g.

—1

0
1

2

26
26
26
26

[lnI(v)],
—0.079 45

0.091 86
0.5681
2.9870

0.0046
0.0038
0.0022

—0.0020

lnI(v)

—0.074 85
0.09566
0.5703
2.9850

Direct
numerical
calculation

—0.073 253
0.0970
0.5709
2.9850

10 6
1.597
1.34
0.6(—0.1
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TABLE II. lnI{v) for hydrogen, taking also into account the second term of the asymptotic expan-
sion of g.

26

20

20

20

lnI{v)
{present work)

—0.073 17

0.097 10

0.570 94

2.9841

lnI{v)
{Ref. 5)

& —0.073 05
) —0.073 41

&0.0981
)0.0956
& 0.5910)0.5490
)2.409 38

Direct
numerical
calculation

—0.073 253

0.0970

0.5709

2.9850

10 6

—0.83

—1.0

—0.40

9.0

!—1

WI „'=WI'„'+2[(l+tt,—1)!] t, . (43')
l!(t' 1)(t+—1)'+'+'

All the expectation values S (z,F) and sums L(v) can be
written in terms of these two expressions. In the integra-
tion over t of Eq. (42) the divergence at infinity cancels in
the 1=0 term. We find

B. Stopping power (v=0)

The relevant expectation value in this case is

So(z F)= y & 0
~

z
~

tt &(& —&0) & n
~

F
~

0 &

which according to Eq. (A7) is given by

(47)

S()——&0
i
(Vz VF)

i
0& . (47')

[ L( —1)]—o ——64 J 5
t dt+ '6o —ln4,(t+1)' (44)

In terms of the function g, this becomes

So=78 g(x, A, )e "x dx .
0

and for l ) 1, (47")
[ L( —1)—]!———', J W(!'4'tdt . (44')

The numerical result is given in Table I. We see that for
less than 30 terms one gets an error of about 2%%uo. It is
possible to improve the convergence of the series by add-
ing the second term of the asymptotic expansion of g, Eq.
(36'). We thus write, instead of Eq. (41),

Also, in this case we tried first the Fade approximants. In
first order we obtained [L(0)]1——0.2054 and for the
second order we got [L(0)]2——0.0850. In spite of these
encouraging results, here, too, for the same reasons as in
the total cross-section case, ere abandoned the Pade ap-
proach because of the complication in calculating the po-
lynomial functions of A, for the higher-order approxi-
m ants.

In order to calculate the value of L(0) we used the
direct approach, in complete analogy to the case of the to-
tal cross section. Starting from the expression Eq. (41) for
g, the above expectation value So becomes

1 2

A,
2 (45)

g(x g) e (t 1)x—g—& x! (t 1)x—1 2

0 ~ XA,

We then find that the sum of the first two terms of
L( —1) is given by

S,(z,F)= ,'g W,",)+ —'-. (48)

The contribution of the l =0 term to L(0) turns out to be

[—L ( —1)]()+[ L( —1)]1—
[—L(0)]o=32 I tdt+ —,", —ln4,(t+1)' (49)

ao (&), +W, 4 tdt+ „—ln4, (46)—21

(t+1)'

and for l & 2, we get the

[ L( —1)]!= —,
' J —W'! 4t dt . (46')

The numerical result which follows from these expres-
sions is given in Table II. We- see that for the same num-
ber of terms the computational error has been reduced
from about 2% to about 0.1%. It is obvious that the pre-
cision can be further improved by several orders of mag-
nitude simply by increasing the number of terms to be
summed.

[ —L (o)]o+ [—«0)]1

t dt + „—ln4, (50)—(t+1)'

and the contributions of the l ) 1 terms are

[ —L(0)l!= 3 I (49')

In the derivation of Eq. (49) use was made of the fact that
S(0)=1. This follows from its definition, Eq. (10) in con-
junction with Eqs. (9) and (47'). Adding the second term
of the asymptotic expansion of g, the value of L (0) is
determined by
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for the l =0, 1 term's, and for the l & 2 terms we get

[ L(—0)]t = —", f W'I 3't dt .

C. Straggling effect (v=1)

In this case the expectation value

SI(z,F)= g (0
~

z [n )(E„—Eo) (n
~

F
~

0)

(50')

(51)

In the derivation of the contribution of S2 to the l=O
term of L(2), one has to take into consideration two re-
sults. (i) g(O, A, ) =ao behaves like 1/A, when A, ~Do. This
can be derived either from Eq. (32) together with the rela-
tion 2F, (2,5;4; —,

'
) =6, or, from the integral representation

of u(x, A, ), Eq. (35) with x=0. (ii) $(2)= —, obtained
from Eq. (54") by putting g = 1, which is a direct conse-
quence of the definitions, Eq. (10) and (9) of S2 and S(2).

We then obtain

is, according to Eq. (AS), given by

Si ———2(0i V Vz)(.V F 2VF—V
i
0),

which in terms of g becomes

Si ———", f g(x, A. )e "xdx .
0

Making use of Eqs. (41) and (43), we obtain

(51')

(51")

00

[—L(2)]o——32 f aotdt+32 f ao—

f t dt+ —", (1+ln4),t+1
and for the l ) 1 terms we get

[—L(2)]t= —",' f W'I'otdt .

(55)

(55')

0 3k

Integration over t yields for the l =0 term

(51'") Adding the second term of the asymptotic expansion of g,
we get, for the sum of the first two terms,

[—L(2)lo+ [—L(2)]I

[—L(1)],= —", f,tdt+ ', ——', ln4, —
(t+1)'

and for I ) 1 terms

(52) vz 00=32 f aotdt+32 f~ ao—
1

tdt

[ L(1)]I———, f—W't')'t dt . (52')

In the derivation of Eq. (52) use was made of the fact that
S(1)=—', . This is most easily obtained from Eq. (51") by
putting g=—1 [see Eqs. (10) and (9)]. Adding the second
term of the asymptotic expansion of g, we get for the sum
of the first two terms

[—L(1)]o+[—L(1)](

f +WI'I t dt ——,
' ——, ln4,(t+1)

and for the l )2 terms we get

[—L(1)]t———", f ~,",'tdt .

(53)

(53')

S2(z,F)= y (0
~

z
~

n )(E„—Eo) (n
~

F
~
0) (54)

is, according to Eq. (A9),

Sp ———4(0
i

dV/'dz(V F+2VF V)
i 0), (54')

V= —1/r being the electron-nucleus interaction. S2 be-
comes in terms of g

Sz ——16g(O, A, ) ——, f g(x, A, )e "dx .

By Eqs. (41) and (43) we obtain

(54")

S2 ——16ao ——, g Wt o—64 (I)

l=O
(54"')

D. Lamb shift (v=2)

For the I.arnb shift of the ground state the expectation
value

128 f t dt+ "
, ( , +ln4), ——

(56)

and for the I & 2 terms we get

[—L (2)]t = —",' f W'I o't dt . (56')

A11 the results of this section are summarized in Tables I
and II. In Table I are listed our results for lnI(v), taking
into account only the first term I/A, of the asymptotic ex-
pansion of g. They are based on the four expressions,
Eqs. (44) and (44'), (49) and (49'), (52) and (52'), (55) and
(55') for v= —1, 0, 1, and 2, respectively. l is the number
of terms taken. In the fourth column are listed our values
of the remainder R, which are easy to estimate because
for larger values of I the series become more and more
geometrical in nature. In the next to the last column are
given the exact values of lnI(v), which were obtained by
direct numerical calculation; this, of course, is possible
only for hydrogen. In the last column are given the
differences 6 between the exact and the calculated values.
Taking into account also the second term, ( —2/xA, ), of
the asymptotic expansion of g, one gets the results listed
in Table II. They are based on the expressions, Eqs. (46)
and (46'), (50) and (50'), (53) and (53'), (56) and (56'), for
v= —1, 0, 1, and 2, respectively. There is an improve-
ment of between 1 and 2 orders of magnitude. In the
same table are also listed the results of Shimamura and
Inokuti who have calculated upper and lower bounds.
We should point out that the results of the present paper
also are actually upper and lower bounds. In Table I our
values for v= —1, 0, and 1 are lower bounds, and for
v=2, it is an upper bound; in Table II the reverse is true.
This is not fortuitous. It follows directly from the struc-
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ture of the above-mentioned mathematical expressions.
Our results could be further improved by taking into con-
sideration the next term of the asymptotic expansion of g,
or simply by increasing the number of terms, or both.
Our present results in Table II are much better than the
results of Ref. 5. In particular, for the Lamb shift, the
difference between the exact value and our value is
b,2

——0.0009, whereas the corresponding value of Ref. 5 is
b,2 ——0.5756. Furthermore, our upper bound for the Lamb
shift is off by less than 10 (see Table I), whereas there is
no way to evaluate it by the method of Ref. 5. An alter-
native way to weigh the two methods against each other is
to compare the upper-lower bounds differences. By this
measure, the results for total cross section of Ref. 5 is su-
perior to the present one, whereas for the v=O and 1 cases
the results of the present work are more. accurate. For the
Lamb shift this comparison becomes meaningless because,
as previously mentioned, there exists no upper bound in
the method of Ref. 5.

IV. HYDROGENLIKE IONS

It is a straightforward matter to derive the sum rules of
one-electron ions in terms of hydrogen sum rules. The
simplest approach is dictated by the recognition that the
excitation energies are equal to Z times the excitation en-
ergies of hydrogen and the matrix elements (0

~

Z
~

n ) are
equal to those of hydrogen divided by Z. Here Z is the
charge of the nucleus. An alternative, more complicated
approach is to derive the function g, for Z&1. We shall
pursue the second approach because it will be useful later
for the evaluation of the sum rules for helium.

The ground-state wave function is

Z 3/2

0o—— e- ". (57)

A
L—(v) = Z2 lim J [S„(A,')]Hdtv,

'

—[S(v)]H ln(A'Z ) (61)

which becomes

L(v) =Z "][L(v) ]H+ [S(v)]HlnZ J .

Thus the mean excitation energies I(v) are given by

(61')

1nI(v)=ln([I(v)]HZ J . (62)

V. HELIUM

For helium the function F is, according to Eq. (6), the
solution of the equation

(zl +z2WO [Ho F]co+~F00
which explicitly is of the form

(zi+z2)Po= —[(Vi+V2)F]go 2V]F V~go

2V2F V—zgo+AFQo .

(63)

(63')

In the present work we will consider ground-state wave
functions of the Hartree-Fock type only. Thus we put

q'o(1, 2) =q(1)y(2) . (64)

—2V2F [V2$(2)]/p(2)+AF

It follows that if we put

(65)

The above equation then becomes, after dividing by the
wave function,

z&+z2 —— V&F V2F—2V &F—[V~p—(1)]/g(1)
/

With this function Eq. (11) reduces to the radial equation

xg"+ (4—2Zx )g' —(2Z+ Lx )g = —x,
F(1,2) =F(1)+F(2),

then F(1) and F(2) satisfy the one-particle equation

(66)

which, of course, is identical with Eq. (15) when Z= l.
Introducing the variables x' =Zx and A,

' =A./Z, the
above equation assumes the form

x'(Z g")+(4—2x')(Z g') —(2+A, 'x')(Z g) = —x',
(58')

where the derivatives are with respect to x'. It follows
that

V F+2VF. A.F= —z, — (67)

which is identical with the hydrogen equation, Eq. (11).
As g is spherically symmetric, this becomes

r

V' F+2 —— —A,E= —z .BF
dr

Introducing, as before, the function g by F=gz, we get a
radial equation for g of the form

g(x, A,;Z)= g(x', A, ', I) .Z2 (59)
xg"+ 4+2x g — —2 +M g= —x . (68)

s,=z""-"[s.(x )]„,
S(v) =Z [S(v)]H

(60)

(60')

The subscript H stands for hydrogen. With these rela-
tionships in mind, we can immediately derive the expres-
sions of L(v). Starting from Eq. (8) we get

This relationship, together with the remarks at the begin-
ning of this section, lead to the conclusion that the expec-
tation values S„and S(v) of Eqs. (9) and (10) are

Z 3/2
(69)

where Z is the nuclear effective charge Z=Z ——,'6 for

The function g, and therefore the sum rules, depend func-
tionally on the logarithmic derivative of the one-particle
wave function P. We have considered three different
wave functions.

(i) The simplest possible function is given by'



620 S. ROSENDORFF AND A. BIRMAN 31

any two-electron atom. Thus for helium, Z =—'„'.
(ii) Wave functions which consist of two basic func-

tions:

(70)

(12) for g. The function g which appears in the expres-
sions of S„below is g(x, A,;Z), the solution of Eq. (58').

v= —1

By Eq. (9) we have

There are two sets of parameters quoted in the literature S ] ——&0
~
(z]+z2)(F]+F2)

~
0&, (72)

(II) Zi ——1.4558, Z2 ——2.9116, a=0.6,

(III) Zi ——1.41, Z2 ——2.61, a=0.799 .

(70')

(70")

where we have put F~ for F(1) and F2 for F(2). The
cross terms are equal to zero because (0

~

z
~
0) =0.

Hence

is the variational wave function calculated by
Lowdin' and is a fairly good analytical fit to the
Hartree-Pock function. f», is a very accurate fit to the
Hartree-Pock wave function of Roothaan et al. One
possible test to estimate the quality of the above three
functions is to compare their ionization potentials I. We
have found the following values (in Ry): I,=1.695312,
In = l. .7&9050 Ilier = I 767636. There is also a more ela-
borate wave function, consisting of five basic functions,
known in the literature. ' The corresponding ionization
potential is I, =1.723360. It thus seems that, from the
energy point of view, P&» is the "best" wave function in
the framework of the Hartree-Pock-type approximation.

Now, the function ( —P'/P) =Z(x) is a smooth, slowly
varying function of x, and for the wave function f& it is
exactly equal to the nuclear effective charge. Thus Z(x)
may be considered to be the nuclear effective charge due
to screening of one electron as a function of the distance
of the other electron from the nucleus. For ft the effec-
tive charge Z is constant, therefore the equation for g, Eq.
(68), reduces to Eq. (58), the solution of which is given by
Eq. (59). The equation for g, Eq. (68), cannot be solved
analytically for the other two functions g» and
However, as Z(x) is slowly varying, we have adopted the
following parametrization procedure: First we solve Eq.
(68) assuming a definite value for Z, and then we take the
average of the sum rules 1.(v), weighted according to the
probability of finding the electron at a distance x from
the nucleus. In short, the mean excitation energies I(v)
were calculated with the help of the expression

1»I(v) = I P(x)lnI(v, Z(x))dx, (71)

where

P(x)=4vrx g (x) . (71')

In connection with this procedure it is worthwhile
pointing out that one obtains essentially the same results
if one calculates 1»I(v) at the expectation value of Z(x),
given by (g ~

Z(x)
~
g).

Finally, we discuss the expectation values S, and S(v)
for helium. We will show that for wave functions which
are products of one-electron functions, the expectation
values factorize into sums of one-particle expectation
values. Therefore the calculation of the sum rules follows
along the same lines as for the hydrogen case. The expec-
tation values S(v) are obtained from S by putting g = 1.
All the expectation values S and S(v) obtained below
reduce to twice the corresponding expectation values of
Sec. III for hydrogen if one substitutes the function of Eq.

S,=2(OizF iO),
which becomes, after integrating over the angles,

(72')

S )
—— I ggx dx. (72")

2. v=o

Vz VF =(xg )' cos 8+g sin 8 .

Therefore

I [(xg)'+2gjg'x'dx,

which becomes, after one integration by parts,

(73')

gX (73")

Putting g—= 1, we get S(0)=2, true for any normalized
wave function g. This is in accordance with the famous
Thomas-Reiche-Kuhn sum rule.

By the result of the Appendix we have

Sl (0
I l(zl +z2) (P 1 +J 2))lV i +p2) (F1 +F2)l I o&

2t (0
I (pl~+p—2z)( V,Ft +2V,F) V )+V2F2

+2V2F2 V2)
I
o& . (74)

For the same reason as above, the cross terms vanish and
we remain with the expression

S& —— 4i(0
~ p, (—V F+2VF V)

~
0) .

As

VF VP = (xg )'g' cos0

By the results of the Appendix we have

S,=(Ol Pz, +z, ),(P', +p2)l(FR+F2) I
o&

=2& &o
I (plz+p2 )(F1+F2)

~

o& ('73)

The cross terms are zero because (0
~ p, ~

0) =0. Hence

s, =4i(o
~ p,F ~

o),
which becomes

S,=2(Oi Vz VF iO.) .

Now the scalar product is



31 ANALYTICAL CALCULATION OF LOGARITHMIC MEAN. . . 621

and

V F=(4g'+xg")cos8,
above, this becomes

S,= — Z f P[4g'g+xg"/+2(xg)'P']dx . (76")
we get

S~ —— f P'[4g'f+xg "/+2(xg)'f']x dx . (74')
It is a simple matter to show by repeated integration by
parts that this expression reduces to

This expression, after two integrations by parts and some
algebraic manipulations, assumes the form

S2 —— Z 2 f (f )'gdx+3g(0, 2(,;Z)[p(0)]

(76"')

S~ —— f [, (P )—'+2xg+x P']gx dx,

where P=g (f'/g)'. Putting g:—1, we obtain

(74")
Putting g= 1, we obtain

S(2)= Z[g(0)]
3

(77)

S(1)= f (g') x dx, (75)

as follows immediately from Eq. (74'), or from Eq. (74")
after some algebraic rearrangements. For wave functions
given by Eq. (70), the function P is of the form

+2

S(2)=4&0
l [(Pi.+P2z)r I'](P 12+P22) (78)

The commutator is equal to —i(B/Bz&+8/Bz2) V, thus

It is interesting to derive the general expression of S(2)
for any kind of wave function. Starting with Eq. (76) and

putting F& ——z& and I'2, ——z2, we get

Of course, for hydrogenic wave functions, /=0.
S(2)= -4(0 a a+

az az z& BZ2
0),

4. v=2

By the results of the Appendix we h'ave

S.= &0
I [[(p i+p2), (z, +z,)],~]

X[(p)+p2) (F~+F~)] I»
= 2~&o I([pi. I']+[p2 I']).

&&([pi,Fi]+[p2 F2]) IO&

where

(76)

which becomes

S(2)=2(0 8 +
Bz] BZ2

v o).

As the electron-electron interaction does not co@.tribute,
we get

S(2)=2(0 r V&+ r Vr 0),
Bz ) Bz2

or, due to spherical symmetry of
~

'Il ),

Sr= —2(Zer)(0
Z] Z2 2

3 + 3 ( V)F)+2V)F) V(+V2F2
r] r2

420rVr Ve) 0), -

Ze being the charge of the nucleus. For the same reason
as before the cross terms vanish. We thus end up with the
expression

S2 ———8Z&0
i
(z/r )(V F+2VF V)

~

0) . (76')

Substituting for V F and VF Vg the expressions given

V= V&+ V2+ V

V] and Vz being the electron-nucleus interactions of the
two electrons and V&2 the electron-electron interaction.
Now for any function V~2 of r &2, we have

[pa+p2z I'iz]=0

because (p~, +p2, )r~2 ——0, which reflects the action-
reaction principle. It follows that the electron-electron in-
teraction does not contribute directly to Sz (only indirect-

ly through the wave function). Equation (76) thus be-

comes

S(2)= Z&0
~

[&(r])+&(rp)] ~0) .
3

(78')

For Hartree-Fock-type wave functions, this reduces to Eq.
(77). This result is easily generalized for n-electron sys-

tems, giving

S(2)= Z(0 g 5(r;) 0) .
3 i=1

(79)

The sums L(v) for helium were evaluated in the same
fashion as the corresponding expressions for hydrogen
after making use of the relation g(x, A.;Z)
=g(x', A, ', I)/Z ~ of Eq. (59). Equation (45) was then ap-
plied for the expression of g(x', A, '; I). The expressions of
L(v) are rather long and cumbersome and therefore have
not been reproduced here. For a=O [see Eq. (70)], or
what amounts to the same, for the simple wave function
Eq. (69), L(v) becomes equal to the expression of Eq. (61')
with Z replaced by Z.

The sums L(v) and S(v) diverge for all v=3, 4, . . . .
This follows from the fact that the oscillator strengths
behave asymptotically like E . In the context of the
technique ogtlined in the present paper this is reflected in
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TABLE III. lnI(v) for helium. gq, Pu, and g»& are the ground-state, one-particle wave functions
given by Eqs. (69), (70), (70'), and (70").

20

20

20

20

lnI(v)
(@r)

0.9732

1.1435

1.6174

4.0321

1nI(v)

0.9058

1.1179

1.6839

3.9288

1nI(v)
(Arr)

0.8988

1.1146

1.6747

3.9375

1nI(v)
{Ref. 5)

& 0.857
& 0.855
& 1.135
& 1.127
& 1.841
& 1.755
& 3.568

the divergence of the corresponding expectation values S .
The source of this divergence are the derivatives of the
potential function V at the origin. To be explicit, for
v=3 it is easy to show that the dominant term at small
distances is given by V'/r, thus for a point-charge nu-
cleus the expectation value S3 diverges [as, of course, does
S(3)]. Therefore, if one takes into account the structure
of the nucleus, the value of S3 is finite, but it depends on
the details of the nuclear charge distribution. Similar re-
sults hold for v& 3. On the other hand, the Lamb shift is
an exception. Here the derivative V' [see Eq. (76)] ap-
pears, and therefore one gets a finite value even for a
point-charge nucleus. For v= —1,0, 1, the potential func-
tion V does not appear explicitly in the expressions of S .

Our results for helium are listed in Table III. %'e have
calculated the mean excitation energies for the three wave
functions of Eqs. (69), (70), (70'), and (70"). The results of
Ref. 5 are given for comparison. We see that there is only
a small difference between the two functions err and ttjr»
of Eq. (70). On the other hand, the results based on the
simple wave function fr of Eq. (69) differ substantially
(up to 7.7%) from the other two functions. The results
due to grrr (and ltrr, as it turns out) are the more reliable
ones as it is the "best" wave function available in the
framework of the Hartree-Fock approximation. Note that
for v= 1, Pr yields a lower value than err and lfjnr, whereas
for the other three cases it yields a higher value. There
seems to be no obvious explanation for this effect. In con-
nection with this, it is interesting to observe that the ma-
trix element St is the only one which depends on (P'),
whereas the other three matrix elements depend on g and
(g )'. As to the discrepancies between our results and
those of Ref. 5 for v= —1,0, 1, the main reason is that
neither result is completely accurate; the causes, however,
are different: The wave function employed in the present
paper are Hartree-Pock-type functions which do not take
into consideration the correlation effect between the two
electrons. The upper and lower bounds of Ref. 5 were cal-
culated from the sum rules S(v—1), S(v), and S(v+1),
which have been studied in the hterature, and oscillator
strengths of some measured discrete spectral lines. It is
impossible to calculate by this method an upper bound for
lnI(2), because S(3) diverges.

To conclude, both methods have their advantages and
disadvantages. The method of Ref. 5 is partly based on
experimental data, whereas the present method is based
entirely on first principles, neglecting correlation effects.
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A closed expression of the sum rule

S.= g (0
I
&

I
n &(E.—Eo) +'(n

l
~

l
0&, (Al)

where 3 and B are any two operators, is derived. It is not
necessary to go into details as the derivation closely fol-
lows the one by Bethe and Jackiw who derived it for
B=A+. Start with

(A2)

where

Ao ——2, A„=[M,A )] . (A2')

Next consider the matrix element

(0lBe" Ae "
l
0) = g (OlBe"

l
n)(n

l
Ae i™l0)

S(it)
(A3)

Gn the other hand, because of Eq. (A2), we have

(olB( "3 " )lo)= g, (olBA lo) . (A4)

Comparing this expression with Eq. (A3) yields

S =(0lBA +t lO) . (A5)
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This can be simplified to give

S„=(—l) &0
i
B A„+i i

0) (A6)

with m & v+1 and B =[H,B,], Bo=B. Let us apply
this result to hydrogen. We thus put B=z and A =F(r).

Therefore,

(ii) S& —— &O
I
z(F

=2t&olp. b 'Fl io)
2—i &0 ip, (V F+2VF.V)

i
0),

(iii) S2 ——&o
I
z2F1

I
o)

(A8)

So= —&0
~
z~F

~
0)

=2i&0(p,F
~

0)
= &O

~

aFyaz
)
O), (A7)

= —2 0 V I'+2VI'. 0
az

because z2 ——2BV/c)z.

(A9)
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