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Laser-assisted charge-transfer collisions: K+ + Na
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A theory has been formulated to characterize charge-transfer collisions in the presence of an
external laser field. The molecular-state-expansion method is used to describe the scattering process
within the impact-parameter formalism. Electron translation factors are included in the molecular-
state expansion so that the scattering wave function satisfies the correct boundary conditions. The
theory is applied to the process K++ Na~K+ Na+. In addition, we have made a detailed
analysis of laser-assisted charge transfer for low-energy collisions. In this case, a Landau-Zener for-
mula can be derived which shows that the cross section increases with decreasing incident energy.
In general the laser coupling is dominant in the low-energy region, while the dynamical coupling be-
comes important as the collision energy increases.

I. INTRODUCTION

Ion-atom charge-transfer processes have important ap-
plications in the areas of laser physics and fusion research.
These processes are well studied. ' However, in the low-
energy collision regime, the energy defect of the donor
(atom) and the acceptor (ion) severely suppresses the
charge-transfer cross section. There is interest in using a
laser to overcome the energy defect factor and thereby ob-
tain a large charge-transfer cross section. With the ex-
ception of Ref. 6, most authors did not use accurate
values for the molecular-state energies and coupling ma-
trix elements when they were calculating the laser-assisted
charge-transfer cross sections. We propose to do a de-
tailed analysis of the laser-assisted charge-transfer col-
lision of K++Na in this paper, and, unlike in previous
works, we have included the collisional-induced coupling
term in our calculation.

Our calculations indicate that the laser-assisted charge
transfer is important mainly in the low-collision-velocity
region where collision-induced transitions are negligible.
At higher velocities, collision-induced processes dominate.
In the small crossover region where both mechanisms are
important, the charge-transfer cross section shows an in-
terference effect between these two mechanisms. Another
important feature of the laser-assisted charge-transfer col-
lision is that except at very low-collision velocities, the
charge-transfer transition takes place in a much wider re-
gion than just around the "resonance point. " The reason
for this is that although the laser beam has been directed
at the collision region for a long while, the interaction be-
tween the laser and the active electron is switched off as
soon as the charge-transfer participants depart from each
other. The finiteness of the reaction time would diffuse
the transition region. At very low velocity the transition
does take place only around the resonance point. A
Landau-Zener type of formula can then be derived which
shows that a cross section increases as the collision veloci-
ty is decreased.

In Secs. II and III we derive the coupled equations
needed to study the charge-transfer process of K++Na

under the influence of a laser beam. An experimental set-
up is suggested for concrete computation. The
molecular-state-expansion method is used to describe the
scattering processes within the impact-parameter formal-
ism. Electron translation factors (ETF's) are incorporated
in the expansion so that the scattering wave function sat-
isfies the correct boundary conditions. The coupling be-
tween laser and electron is treated semiclassically. The di-
pole approximation is used throughout the paper.

In Sec. IV, the formulas presented in Secs. II and III
are applied to the test. case of K++Na charge-transfer
collisions. Several of the approximations made in the pre-
vious sections are justified in this section. The inter-
nuclear-distance dependence of the laser coupling matrix
element is explained and the cross sections for charge
transfer are computed with and without the laser for vari-
ous incident velocities. A comparison of these cross sec-
tions reveals the relative importance of laser-induced
versus collisional-induced charge transfer at different col-
lision velocities. We also have calculated the cross sec-
tions using different laser frequencies to probe the validity
of "resonance condition. " Finally, the coupled equations
are integrated to check the validity of the Landau-Zener
formula for the cross section at very low velocity.

II. THEORETICAL FORMULATION

In this section we will derive the coupled equations
needed for the calculations of laser-assisted charge
transfer in an ion-atom collision system. The one-
electron problem will be treated here. Generalization to
many-electron systems should present no further concep-
tual problem. The specific example of Na+K+ charge
transfer will be used to illustrate the points discussed here.

The notation and coordinate system will be defined
first. We will follow closely the convention and notation
used by Delos. ' Shown in Fig. 1 are electron position vec-
tors relative to nucleus 2, the center of mass of the nuclei
(CMN) and nucleus B, respectively. In the (space-fixed)
CMN frame, the relative nuclear velocity V =dR/dt is as
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FIG. 1. Electron position relative to nucleus A, nucleus 8,
and center of mass of the nuclei (CMN) is represented by r&, r&,
and r' vectors, respectively. The internuclear distance is
represented by R. V is the relative velocity. In this space-fixed
CMN frame all position vectors are superscripted by a prime.

(ion)
z

usual defined to be in the Z direction. We will also need
the (rotating) molecular frame because the Born-
Oppenheimer electronic states are usually solved in this
coordinate frame. Following this convention, the internu-
clear axis R is defined as the Z axis in the molecular
frame (see Fig. 2). If the angle between R and V is 8,
then the electronic coordinates in the CMN frame,
r'=(x', y', z'), and in the molecular frame, r=(x,y, z), are
related by

x'=x cosO+z sinO,
I

3' =3' ~

and

z'= —x sin8+z cos8 .

An experimental setup we have in mind is depicted in
Fig. 3. An atomic beam travels in the laboratory z direc-
tion and an ionic beam crosses it at a right angle, heading
in the laboratory x direction. A laser beam is oriented in
the laboratory y direction, such that the polarization
points in the z direction in the CMN frame. There is no
particular reason why the laser beam should be perpendic-
ular to the collision plane or why the polarization should
be parallel to the relative nuclear velocity. However, this

)4 X

FIG. 3. Cross-beam experiment setup. The atomic and ionic
beams which participate in the charge-transfer collision cross
each other at right angle. A laser beam pointing in a direction
perpendicular to the collision plane has been directed at the in-
teraction region. If the polarization, e, of the laser beam makes
and angle 0 =cos '(v~/v) with the atomic beam, the polariza-
tion will be in the z direction in the CMN frame. V~ and V~
are, respectively, the velocity vectors of the atomic and ionic
beams in the laboratory frame, and v is the relative nuclear
velocity vector.

setup does provide a concrete example when we discuss
the theory and perform definite calculations.

Let us briefly review the theoretical formulation for the
case when the laser beam is turned off. Assuming that
the nuclear motion is described classically by R(t), we
solve the resulting time-dependent Schrodinger equation
for the electron. The state vector is expanded in an ETF-
modified molecular-state basis,

P( r; t) =g a„(t)P„(r;R(t) )

X exp v.rf„(r;R)lPl

2A

where

Mg —Mgf. +1 as R~ao,
Mg +My

e,
and P„(r;R)is an atomic state centered on nucleus A (8)
as R ~ oo. Note that the P„'s are the usual Born-
Oppenheimer states which satisfy

ez H, (r;R)P„(r;R)=e„(R)P„(r;R). (4)

V

FIG. 2. (Rotating) molecular frame makes an angle of 8 with
respect to the (space-fixed) CMN frame. The two frames share
a common reference point, the position of CMN. The electron
position vector r in the molecular frame is related to the same
vector in the CMN frame r' by formula (1).

Substituting (2) into the time-dependenl: Schrodinger
equation, we obtain the following coupled equation which
is correct up to first order in V

i%a; =e;a;+V.g(P+A );~a~+0(V ),
J

where
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and

PJ=&4 I( —i&VR) IP, & (6) H' will be treated as a small perturbation compared to H,
of Eq. (8). The coupled equation (5), when the laser-
interacting terms are included, becomes

When the laser beam is turned on, the Hamiltonian

(7)
ilia'; = E;a;+V g(P+ A);laj

J

+g&p; I

H'
I QJ &aj+O(V, A, V A) .

J
(13)

H, = P +V(r)
2m

will change to
2

Hr P —A +V(r) .
1 e

2m c

In the Coulomb gauge, V-A=O, so that

.H,~=H, +H',
where

2
H'= — A.P+

mc 2mc

(9)

In Eq. (13) we have neglected terms of order V, A,
V.A, or higher.

Within the dipole approximation the laser coupling
terms become

&y; I

H'
I yj & = — 2

I
Ap

I
cos(cot)E &y; I

P
I yi &

mc

(E—EJ' )2
I

c4p
' '

I
cos(tet)E

(14)

AP.
mc

(12)

If the power of the laser beam is not high,
I
eA/c

I (&p,
we can drop the nonlinear term in (11), and approximate
H' by

where e is the polarization vector. If we further assume
that the polarization of the laser beam is pointing in the z
direction in the CMN frame (see Fig. 3), then Eq. (14) be-
comes

A'c

te2I Ap
f

cos(cot) ( —&P; I

x
f +1 &sin8+ &P; I

z
I PJ &cos8) .

In the last step, we have used the relationship given in (1). By using a linear trajectory of the form

R (t) =b+vt

(see Fig. 4), we finally have the following form for the laser coupling terms:

i
I
e

I

(e ——ei) 2'
I
~p

I

cos(cot)

(16)

(17)

Formulas (13), (6), (7), and (17) are the basis for our nu-
merical calculations. In the spherical coordinate system
where R=(8,8,/=0), we can decompose the matrix ele-
ments of (6) and (7) into their "radial" and "angular"
parts:

and

I'ii=&0 II' IP, &=ezI' ,+eepij'. (18)

~ J = & 4 I
~

I 4, & =ez &,
& +ee~ij',

where

P;i = (ii; —iii
BR

(19)

(20)

FIR. 4. A linear trajectory is used to describe the relative nu-
clear motion. b is the impact parameter vector, which is per-
pendicular to the relative velocity vector v. The angle between
R, the internuclear distance vector, and v is 0(t).
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(21)

(22)
where

—1 if exp — (e2 e—1 )dt' a 1, (31)

and

&0 I lH. 'f— (23)

t
a;=a;exp ——' f e; dt' (32)

III. EXAMPLE

At low-collision velocity, the rotational wave approxi-
mation (RWA) can be used. The factors inside the outer
parentheses in (30) and (31) can then be simplified to

K++Na(3s)+ y~K(4s)+ Na+ . (24)

In the following we will apply the above formulas to
the charge transfer collision of l t lf exp + — (e2 e, )d—t' =foexp + a

o tv
(33)

The frequency of the laser beam will be chosen to be in
resonance with the energy difference between the 1'X and
2 X molecular states of the NaK+ system. The 1~2 state
is asymptotically connected to the atomic Na(3s) state
while the 2 X state is asymptotically connected to the
atomic K(4s) state. For simplicity we will only consider
the coupling between the 1 X and 2 X states. The in-
clusion of- more molecular states does not change the
physics, especially at low-collision velocities.

For X-X coupling, the angular matrix element of (21) is
zero. Similarly, because the transition dipole moment,
when sandwiched between two X states, does not have ei-
ther x or y components, Eq. (23) is also equal to zero.
Therefore, in (18) and (19) only the radial coupling terms
survive. It is then necessary to solve the following cou-
pled equations:

i~ 1 ela1+v (P12+~ 12)a2+ifa2

and

where

(e2 —E])
I
Ao

I
cofo=—

and

b +u t

R(t) RdAa = (e2 —e, fico)—
b QR2 b2

(34)

(35)

d~I . ~o l
iA =+i exp — e a2

dR v Av
(36)

and

The coupled equations of (30) and (31) in the g.WA ap-
proximation now become

isa'2 e2a2+u (——P12+A12)a1 ifa1, —

where

(26) dQp

dR
l

exp a a I, (37)

I
e

I

(e2 —e1)
I
~o

I
cu

f1 CO C

where

I ~o
I

cu

I @2) . (38)

b +u t
(27)

In this derivation we have used the fact that

Let us now discuss the low-velocity behavior of the
coupled equations, (25) and (26). In the limit of low-
collision velocity, the dynamical couplings are not impor-
tant and they may be safely neglected. We have then

dt
'

dA
'=v+1 (b/R)—

when t&0, and

iiria1 —e1a1+ifa 2 (28) = —v+1 —(b/R)

1 isa 2-e2a 2
—1fa1 .

The equations can be rewritten as

I t
a1 ———f exp —— (e2 e1)dt' a2—

arid

(29)

(30)

when t (0.
It is apparent that when v increases, (b,o/v) becomes

small, and the laser coupling term is not as important as
the dynamical coupling term. In fact both coupling terms
operate in different velocity regions. For higher velocities
the'dynamical coupling term dominates, while at low ve-
locities the laser coupling term dominates.

A Landau-Zener formula can be derived from the cou-
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pled equations (36) and (37) at specified limits. If the rel-
ative velocity is low but still large enough such that
50/U «1 a.u. , then the first-order perturbation theory
can be applied. This condition can be satisfied even at

I

very low velocities, either because the transition dipole
moment is small or because the intensity of laser beam is
not large. Using the first-order perturbation theory, we
have

lq (b;t

ap(b 't~ —oo ) — dt'f p(b 't')exp a(b;t') a ~(b;t~ —oo )
Av

'2

oo l
dt 'foexp a

Au
(39)

In the last step we have used the fact that
I
a

& (b,t~ —oo )
I

= 1 and
I
az(b, t ~—oo )

I
=0.

Let us compute the t & 0 part of the integral first. In terms of the R integration, the integral is
T

~o l—f dt'foexp a =f exp a(b;R) dR .
0 Qv 0 gu Au

(40)

However, since U is small, the contribution to the integral comes only from the neighborhood of R =R„where

da(R)
dR R=R

C

(41)

e2(R, ) —e, (R, ) =Ace .

Application of the stationary phase method is now in order. We have

E IAolcf exp a(R) dR =—
Au Au C

exp a(R, )+
Ru

This condition, Eq. (41), implies that R, is the "resonance" point where

(42)

X
d a(R)

dR

ig2 &(ti l~
I 42& I R=R, ~ (43)

and therefore

2

I
a2(b;taboo)

I

= 2
$2v 2

2
IAO lco

(e2 —e~)
R=R

C

1/2

I &Pi l&142& IR=R,
C

(44)

In formula (44) we have incoherently added the two
equal contributions from the t &0 and the t &0 integrals.
Since U is small, the interference between these two contri-
butions oscillates very rapidly with respect to b. %'hen we
integrate out

I
a2(b:taboo) I, with respect to b, the in-

terference term just drops out. So we have

f db 2rtb
I
a2(b;taboo)

I

=f db2rrb Ia2I

the resonance point where

e2(R, ) =e&(R, )+Pm . (46)

d
dR

Formula (45) tells us that the cross section is inversely
proportional to the collision velocity. It is the same as
formula (13) of Errea et al. except that instead of using

8~'e'R' l&, I'~' 1&k~I~ I4'2& IR=R,

3' (45)
in the denominator, they have used

ES
(e2 —e& )

g

This formula is valid only for very low velocity where the
stationary phase approximation is valid. Note that R, is

which can be shown to be dimensionally incorrect.
At higher velocities, the dipole coupling term becomes
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smaller, as can be seen from Eqs. (36) and (37). The phys-
ics thereafter is the usual charge-transfer physics without
the assistance of the laser field.

IV. NUMERICAL CALCULATIONS AND DISCUSSION
0—

In this section we will study the laser-assisted charge-
transfer process of (24). The coupled equations we need
to solve are (25) and (26), which are appropriate for a
two-state approximation. In order to prepare the coupling
matrix elements needed in the equations, we have used the
Born-Oppenheimer (BO) molecular states of (NaK)+.

To obtain the BO molecular states, we have solved the
following one-electron Schrodinger equation:

——,7,+ V~(r~ )+ VN, (rz)+ —P„(r;R)=e„P„(r;R),

-0 I—6
LLI

K(4s) + Na'

Na(5s) + K

(47)

where rz and rz are the position vectors of the valence
electron relative to the K+ and Na+ ion cores, respective-
ly. The potential Vx(r„),which represents the interac-
tion between the valence electron and potassium's ion
core, is replaced by the pseudopotential. The pseudopo-
tentials we used for both the sodium and potassium ion
cores are an 1-dependent Gaussian type of the form

Vx(r)=+VI(~)
I Yi )( Yi (48)

with

P„(r;R) =gc;„X; (rz )+gdJ„XJ (r~ ) .
J

(49)

For the X+ molecular states, 18 STO's (nine on each
center) have been employed. Each individual basis set in-
cludes p and d orbitals to account for polarization effects.
The basis sets and the exponents used are tabulated ih
Table I. These orbital exponents are from Stevens et al.
and Kimura et al. ' Note that in Table I, n represents
the principle quantum number of the ground-state valence
electron. The molecular potentials for the 1 X and 2 X

2 &d CXq

VI(r) =Aiexp( giv )——
2(p2+d2)& 2(p +d )3

where
i

Yl ) are the spherical harmonics. The parame-
ters Ai, g'i, ad, az, and d are chosen to fit spectroscopic
data and have been tabulated by Bardsley.

The BO wave function P„(r;R)is constructed using a
two-centered expansion in terms of a linear combination
of atomic orbitals —molecular orbitals (LCAO-MO)
method. Fixed orbital exponents in a Slater-type-orbital
(STO) basis are used with the BO wave function given by

I

l0
I

20
I

50

R (o. U. )

FIG. 5. Calculated potential energies for the 1 X and 2 X BO
molecular states of (NaK)+.

states are shown in Fig. 5. Asymptotically the 2 X state is
connected to the potassium 4s atomic state, while the 1 X
state is connected to the sodium 3s atomic state. As can
be seen from the graph, the two states do not change their
isolated atomic characters until R (20 a.u. and start to
repel each other around R = 12 a.u.

The radial coupling matrix elements, (1 X
i
P

+A
i
2 X) and (2 X

i
P +A

~

1 X) are shown in Fig.
6. Note that in the calculation of radial matrix elements
we have used the simple form of (3) for the switching
functions, f„,at all R. This type of atomic switching
function is appropriate here since the radial matrix ele-
ments have maxima at R 12 a u. The dy-
namical-coupling-induced transitions will take place at
large internuclear separations.

Also shown in the graph is the z component (along the
molecular axis) of the transition dipole moment
(2 X iz

~

1 X). As the graph indicates the transition di-
pole moment is small when R )20 a.u. and begins to in-
crease as R decreases and reaches a maximum value of
3.25 a.u. at R =11 a.u. After that it stays finite. Note
that the R dependence of the transition dipole moment is
similar to that of radial coupling matrix element, except
that it is 20 times larger. The behavior of the transition
dipole moment versus R can be explained as follows: At

TABLE I. Slater-orbital basis-set exponents.

Na

(n —1)s

0.790

1.135

2.487

1.134

ns

0.694

0.689

0.372

0.394

(n +1)s
. 0.290

0.352

0.721 0.558

0.556

1.484

1.770

3d

0.337

0.394
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0.2—

((X l e z I z g)/ Ro

~ ~ ~
~

& +(IZ ({P+A)i 2Z)

R (a.u. )

l5
I

20 25

FIG. 6. Radial'and laser coupling matrix elements computed between 1~2 and 2 X states of (NaK)+. The broken line is for the
(1 X

~
(p +A)„~2 X ) radial matrix element and the solid line is for the (2 X

~
(p+ A)„~1 X) radial matrix element. Both matrix ele-

ments peak around R = 12 a.u. The dotted-dashed line represents the laser coupling matrix element of (2~X
~

z
~

1 X )
=(1 X

~

z
~

2 X), which peaks around R =11 a.u.

R )20 a.u. , both 1 X and 2 X states are just atomic s
states. Thus, an optical transition between these two
states will not proceed since their transition matrix ele-
ment is zero. As R decreases, polarization effects become
important and the two X states begin to have some p- and
d-wave components. A small nonzero transition dipole
moment at these internuclear separations reflects this fact.
As R decreases further, the overlap between the two X
states increases, and at the same time they become more
molecularlike. Both facts contribute to the increase in the

. transition dipole moment at small R. An examination of
1 X and 2 X molecular states at small R in Fig. 7 shows
why the transition dipole moment is large. From Fig. 7
we see that 1 X state wave function is of the same positive
sign along the z (molecular axis) direction, while 2 X state
wave function is mostly negative for z & 0 and positive for
z~0. The product of the 1 X and 2 X wave functions
therefore changes sign in phase with the z variable. The
contribution from the z&0 part of the product wave
function adds constructively to the z & 0 part of the prod-
uct wave function in computing the transition dipole mo-
ment. As R. approaches zero we arrive at the united atom
limit. The 1 X and 2 X states should approach Zn+ 4s
and 4p states, respectively. The transition dipole moment
should therefore stay finite.

For our first set of calculations, we have used a laser
power of 1 GW/cm . The following formula converts the
power P in watts/cm to the quantity co

~

Ap/c in atomic
units:

ru[30( =2.6692&(10 [P(watts/cm )]' (50)

FKx. 7. A schematic plot of 1~2 and 2 X state's wave func-
tions in the "molecular" region. The upper one is for the 1 X
state while the lower one is for the 2 X state. The Na+ and K+
cores are represented by two small black circles.

We also choose an co equal to the energy defect of Na 3s
level and K 4s level. In atomic units ~=0.029 57." This
is the resonance frequency for the 1 X and 2 X BO states
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at R &20 a.u. But as mentioned in Sec. I, exact resonance
is not important, ' unless the collision velocity is very low.
The results for the charge-transfer cross-section calcula-
tion is shown in Fig. 8. We have run the calculation for a
range of velocities from 0.01 to 0.1 a.u. In order to see
the relative importance of dynamical coupling versus laser
coupling, we have also run the coupled equations (25) and
(26) with each of the two coupling terms turned off. The
results are plotted alongside the full calculations.

As a check on our calculations, we have computed the
cross sections for the dynamical coupling case to v =0.4
a.u. and compare our results with the experimental data of
Daley and Perel. ' For v &0.08 a.u. their results agree
well with ours, while at lower velocities their cross sec-
tions are much larger than ours. A look at their data for
Na++Li and K++Na charge-transfer collisions show
that the K++Na cross section decreases much more
slowly near threshold than in the Na++Li case. This is
contr adictory to the fact that the energy defect of
K++Na is larger than that of Na++Li and are therefore
more vulnerable to a slowing down in collision velocity.
Our calculations do agree with their Na++Li results
down to v=0.03 a.u. , which is the lower end of their
data. We suggest that the experimental data on the

K++Na charge-transfer cross sections at velocities below
0.08 a.u. are possibly too large.

From Fig. 8 one can see that the full calculation results
start to deviate from the pure laser coupling results only
when v & 0.03 a.u. , and for v & 0.07 a.u. the results of the
full calculation merge with the pure dynamical coupling
calculation. This agrees with our discussion in Sec. II
that laser coupling dominates the low-velocity region
while the dynamical coupling dominates the high-velocity
region. The two kinds of couplings are of equal impor-
tance only in the small region around v =0.05 a.u. , where
the interference between these two couplings is evident.

It is interesting to examine the region where the effect
of dynamical coupling is of the same magnitude as that of
laser coupling. Shown in Fig. 9 is the graph of Pb versus
b at v=0.05 a.u. , where P is the charge-transfer transi-
tion probability at each impact parameter b. Note that
the charge-transfer cross section is obtained by an integra-
tion over b of 2vrPb. Three curves are plotted in Fig. 9,
one for the case of the pure dynamical coupling case,
another for the case of pure laser coupling, while the other
is for the case of the combined couplings. The graph
shows clearly the constructive interference effect between
the dynamical coupling and the laser coupling in the
impact-parameter region where charge transfer is signifi-
cant.

In order to check the effect of different co's on the
charge-transfer cross section, we have performed another
calculation using a co=0.040 61 a.u. , which is the reso-
nance frequency at R=11 a.u. where the laser coupling
matrix element is near its maximum (see Fig. 6). As can
be seen from Fig. 10, even under this "optimum" condi-

6
CJ

IO
0.3

CO
Cg

R 10

IK
LajI-
LLJ

~0.2
CL

X

V~ 0.05
P~ 10

O.OI

/

I,

O.l

VELOCITY {a.u. }

) O. l

I-

CO

CD
O
lK
CL

I'~ r

/

5 IO

FIG. 8. Cross sections of the charge-transfer collision
K++Na are plotted here. The solid line represents the result
when both laser and collisional couplings are retained in the
coupled equations. The dashed line represents the result when
only laser coupling is considered, and the dotted-dashed line
represents the charge-transfer cross section without the aid of
the laser. The experimental charge-transfer result (without the
employment of laser) of Daley and Perel is also plotted here,
represented by the error bars.

IMPACT PARAMETER (0 )

FIG. 9. (p &b) is plotted here versus the impact parameter
b. Again the solid line represents the case when both laser cou-
pling and collisional coupling are operating in the charge-
transfer process. The dashed line represents the case when only
laser coupling is operating, while the dotted-dashed line
represents the charge-transfer collision with the laser coupling
term turned off.
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I R) 20 a.u. where the laser coupling matrix element is

several orders of magnitude smaller than that at R =11
a.u. Such results argue that the laser-induced charge-
transfer transitions occur. in a more diffuse region than
just around the resonance points' if the collision velocity
is not low. Like the case for co =0.029 57 the cross section
for co=0.04061 also shows the interference effect in the
small region around v=0.05 a.u.

In the very low velocity region, v & 0.01 a.u. , it is neces-
sary to observe the resonance condition just as in the case
of isolated atomic system. Our Landau-Zener formula
(45), which is based on the fact that transition takes place
only in the neighborhood of the resonance points, then is
applicable. Using a laser power of 1 GW/cm and an co

value of 0.04927 a.u. , which corresponds to a resonance
point at R, = 10 a.u. , we can estimate the charge-transfer
cross sections for various incident velocities. At R =10
a.u. , (P&

~

z
~

(()z) =3.11165 a.u. and (d/dR)(e2 E, )—
=0.01007. So we have

0.0180290 a.u.
v

(51)

I

O.OI
I I ) I

O.l
VE LOG I T Y (a.u. }

FIG. 10. Two charge-transfer cross sections using different
laser frequencies are plotted here for various incident velocities.
The dashed line is for co=0.04061 a.u. (11220 A) and the solid
line is for co =0.029 57 a.u. (15409 A).

Formula (51) predicts a cross section of
1.2623&(10 ' cm at U =0.004 a.u. and a cross section of
0.841 51 && 10 ' cm at v =0.006 a.u. Our calculated re-
sults at these velocities, obtained by solving the coupled
equations (25) and (26), are, respectively, 1.4834&&10
cm and 0.9309&10 ' cm . ' Indeed at very low veloci-
ties, the radiative transitions take place only in the neigh-
borhood of the resonance poirits and the cross section is
inversely proportional to the collision velocity as indicated
by the Landau-Zener formula (45).

tion for radiative transitions, the calculated cross section
is no more than a factor of 3 different from the cross sec-
tion we obtained early using a co=0.02957 a.u. in the
velocity range from 0.01 to 0.1 a.u. In fact it is smaller.
Note that the latter co value is the resonance frequency for
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