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We show that the motion of a particle of mass m in a high-frequency time-dependent potential
V(X)=v(X)cos(Qt) is governed by a Schrodinger equation with time-independent effective potential
Vel X)=Vo(X) Vo(X)/4m Q2. The validity of this approximation and an exact formal solution
based on the Wigner function are discussed for the case in which v (X) is quadratic.

An early treatment of particle motion in a rapidly oscil-
lating field was given by Kapitsa within the framework of
classical mechanics.! This was followed by the more de-
tailed classical treatments of Gaponov and Miller,> of
Landau and Lifschitz,> and of Weibel and Clark.* The
central result of this work is that a particle of mass m
subject to a high-frequency force

F(%,t)=f(X )cos(Qt) (1)

moves as if acted upon by the time-independent effective
potential

Verr(X )= %’l ; (2)
it being assumed here that f is derivable from a potential.
As ‘a result, a charged particle can be trapped at a
minimum of the effective potential in a radio-frequency
field (Paul trap),”’ whereas there is no point of stable
equilibrium in an electrostatic field.

In recent years this effect has been used to trap a few or
even single ions for the ultimate purpose of high-
resolution spectroscopy and its application to the mea-
surement of time.> The ions in the rf trap are cooled by
means of laser radiation to eliminate first- and second-
order Doppler shifts and to ensure stable trapping. In the
theoretical analysis of the cooling process, the ion motion
must be treated quantum mechanically.” It seems to have
been taken for granted that this may be done by using the
effective potential (2) in the Schrodinger equation for ion
motion, even though this potential was derived classically.
To our knowledge this plausible surmise has not been jus-
tified. In view of the potential importance of this technol-
ogy for spectroscopy and time keeping, we felt that a fully
quantum-mechanical derivation of the effective potential
would be worthwhile. The derivation, which turns out to
be surprisingly simple, is given below.

In the applied potential

V(X,t)=v(X )cos(Qt) , (3)

the motion of a particle is governed by Schrddinger’s
equation
d #
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If Q is a high frequency, the potential has little effect on

V2 +0(X )cos(Qt)p . 4)
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the particle motion because it averages to zero over the
short time interval 27 /€). Nevertheless, the potential
does have a small secular effect which we calculate as fol-
lows.

Suppose that only the potential-energy term were
present on the right-hand side of (4). Then the solution of
this equation would be

PY(X,t)=¢(X,0)exp[ —iv(X )sin(Qt) /#Q] . &)

This shows that the dominant effect of the potential is to
add an oscillating phase factor to the wave function . It
is natural, therefore, to look for a solution to Eq. (4) of
the form

PY(X, ) =¢(X,t)exp[ —iv (X )sin(Q2) /#Q] . (6)

The important point for a subsequent approximation is
that, because the dominant effect of the oscillating poten-
tial is already contained in the phase factor, ¢(X,¢) may be
treated as a slowly varying function of time. Note also
that in the position probability density

P(%,0)=|(X,0) | %= |$(X,0)|?, @)

¢(X,1) plays the role of a wave function in position space.
On substituting (6) into (4) we obtain the equation of
motion for ¢:

., 0 _ ﬁz 2 VU‘VU )
zﬁ——atqﬁ— ~om \Y ¢+——2m92 Psin“(Qr)
+——iﬁ (Vo-Vé+1V2é)sin(Qr) (8)
mQ 2 )

In this equation the coefficients of sin(Q¢) and sin*(Qr)
are slowly varying functions of time, and so an average of
these terms over the short time interval 27 /Q replaces
sin(Q¢) and sin*(Q¢) by their average values of 0 and +,
respectively. Alternatively, one may write
+[1—cos(2Q¢)] for sin%(Q¢) in (8) and simply discard
terms that oscillate rapidly with average value zero
(rotating-wave approximation). In either case there results
an ordinary Schrodinger equation for d)(i{,t),

ﬁZ
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with an effective time-independent potential energy
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Vo(xX)-Vu(X)
4mQ? '
This is equivalent to the classical result (3), since the force
(1) is the negative gradient of the potential (3), and hence
f=—Vo.
To better understand the conditions under which the

effective-potential approximation is valid, we look more
closely at a case of one-dimensional motion with

V(x,t)=+Kx2cos(Qt) . (11)

Veee(X )= (10)

This is the form of potential along each of the principle
axes of a quadrupole trap, with the constant k being posi-
tive for two of the axes and negative for the third. Ac-
cording to (10), the effective potential is that of an har-
monic oscillator, Veff=mco(2)x2/2, with natural frequency
wo=K/vV2mQ. The general solution of the oscillator
equation '

2
A —d=— A
ot 2m dx
is, of course, easy to write down in terms of the oscillator
eigenstates u,(x) and eigenvalues E, =#iwq(n + —;—):

2
2¢+ Fmwi x> (12)

—iE, t/f—i6,

d(x,0= S cpuy(x)e A0 (13)
n=0

With the coefficients ¢, and phases 6, constant, (13) is a
solution of (12). But with time-dependent coefficients
c,(t) and 0,(t)=E,sin(Qt)/4#Q, (13) is a solution of the
exact equation for ¢(x,?), namely,

3 ﬁZ 2
ﬁ—a?p:_ o o 2¢+ L mwdx2p+ +mawdx’cos(2Qt)p
+2‘/2ihwoxsin(ﬂt)§x—¢ , (14)

provide the coefficients c,, satisfy

én= oV (n +1)(n +2)g(t)c, ;e ="

—woVn(n —1)g*(t)c, _,e'*? | » (15)

in which
a(t)=2wo[t —sin(Q2)/4Q] , (16)
g (1)=2"2sin(Qt)+ +i cos(2Qt) . (17

The arbitrary phases 6,(¢) were chosen so there would be
no “diagonal terms,” i.e., terms containing c,, on the
right-hand side of (15). Clearly equation (15) describe
transitions between the eigenstates of the effective poten-
tial, and the strength of these transitions measures the
failure of the effective-potential approximation, for there
would be no transitions if the effective potential were ex-
act. Notice that Eq. (15) couples alternate levels, i.e., the
selection rule is n—n+2. This means that the popula-
tions in even- and odd-numbered levels do not mix, and if
the particle starts out in the ground state (n =0), the
odd-numbered levels remain unoccupied for all time.
Because the perturbing terms in (14) have frequencies ()
and 2(), one expects strong transitions to occur when one
of these frequencies equals the allowed transition frequen-
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cy Zmo(—Zl/zK/mQ) i.e., when Q=Q, or Q=Q°/v2
where

Qo=022K /m)\/% . (18)

Although these two resonances do indeed occur, they are
by no means the only ones. Starting with the particle in
the ground state, Eq. (15) yields, in the first order of
time-dependent perturbation theory, the expression

cy(t)= —(uof dt'[sin(Qt’)—2737% cos(201')]

2iwg[t' —sin(Qt') /4]

Xe (19)

for the amplitude to be in state 2. Upon expanding the
exponential of the trigonometric function in terms of
Bessel functions,
—iwpsi Q &, .
e iwgsin(Q1) /2. — 2 Jk(wo/zﬂ)e-zknt , (20)

k=—ow
and performing the integration over time, one finds reso-

nances corresponding to all multi-quantum excitations of
the transition 0—2. That is to say, for any positive in-

teger r, there is a resonance at rQ=2wo=2'"2K/mQ.
Thus the resonant frequencies are
Q,=Q0/Vr . 1)

These resonances are clearly visible in Fig. 1 where the
time-averaged probability P, = | c,(2)|? is plotted against
Q/Q,. Generally speaking, the resonances must be avoid-
ed if stable trapping is desired. So when we speak of a
“high-frequency” field we mean one whose frequency Q is
much larger than Q,. It is interesting that the same reso-
nances occur in the classical treatment of this problem.
The classical equation of motion is the Mathieu equation

d

d —S5X+K cos(Qt)X =0, (22)
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FIG. 1. Time average of first-order excitation probability to
state n=2. Resonances occur at applied-field frequencies

Q=r=12Q,, where r=1,2,3,... and Qq=2"4K/m)”2. The
location of some of the resonances is indicated by arrows.
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and the frequencies (21) are the parametric resonances of
this equation.® Actually, the above results of the first-
order perturbation theory are accurate only if P, <<1.
This occurs where Q >> Qy, in which case

Qg
o f . (23)

P20C

Thus the excitation probability decreases quite rapidly
with increasing frequency, and the accuracy of the
effective-potential approximation improves accordingly.

It is possible to write down an exact quantum-
mechanical solution for the motion of a particle in poten-
tial (11) in terms of the solution to the corresponding clas-
sical problem. This formal solution, which is based on
Wigner’s function, provides considerable insight into the
nature of the quantum-mechanical motion. The Wigner
function f(x,p) is derived from the wave function ¥(x) by
means of the integral formula®
flap=5— [ ds Y(x + 51 (x — 55)e P/A 4)
The integral of f(x,p) over momentum p is the position
probability density |#(x) |2 and the integral over position
x is the correct probability density for momentum. Thus
f(x,p) has the properties of a phase-space distribution
function, except that it is not always positive definite.
Moreover, the Wigner function contains precisely the
same information as the density matrix p(x;,x,)
=(x)¢¥*(x,) from which it is derived by a type of
Fourier transform. Hence f(x,p) provides a complete

description of the state of the particle. From the
Schrodinger equation

., 0. w3

zhg;z/z 2m ax v+ 5 Kx%cos(Qt)y , (25)

the equation of motion for f(x,p) is readily derived. The
result

—f—{--e—if Kxcos(Qt) f, (26)

is identical to the classical Liouv1lle equation for particle
motion in potential (11), and it is this fact that allows the
quantum-mechanical solution to be expressed in terms of
the classical one.

The Liouville equation describes the motion of an en-
semble of points in phase space, each of which moves in
accordance with Hamilton’s equations. In the present
case, the Hamiltonian is

H= L+ Lrx2cos(Q1) , @7

and Hamilton’s equations read

dx _p '
a = m’ (28a)
dp = —Kx cos(0t) . (28b)

dt

These combine to give the Mathieu equation of motion
(22). We shall assume that the classical equations of
motion have been completely solved, and that we know
the position x and momentum p at time ¢ for any initial
conditions (xq,py) at time ¢ =0:

x=x(xq,p0,t) ,
(29)

D =P(xo,Po,t) .

There always exists a unique inverse to these equations,

X0 ZXO(X,PJ) ’
(30)
Po=po(x,p,t),

which expresses the initial position and momentum in
terms of the present values of these variables. We further
assume that this inverse is known. [It may be obtained
directly by solving Hamilton’s equation backward in time
from the “initial” point (x,p) at time ¢ to the “final”
point (xg,pg) at time r=0.] Because the Mathieu equa-
tion (22) is invariant under time reversal, the solution x,
in (30) is a Mathieu function and p, is the negative time
derivative of this function multiplied by the mass. Now
Liouville’s theorem states that the density f(x,p,?) does
not change with time at a point (x,p) that moves in accor-
dance with Hamilton’s equations.” Hence f(x,p,r)
= f(x0,p0,0), where (x,p) and (x,p,) are related by (29)
or (30). Therefore, if fo(x,p) is an arbitrary initial Wigner
function, the solution of Eq. (26) reads

S e,p,t)=folxo(x,p,8),po(x,p,0)) , . (31)

and the quantum-mechanical problem has been reduced to
that of solving the classical Mathieu equation (22). This
result makes it clear why the resonances of the
Schrodinger equation (25) are the same as those of the
Mathieu equation (22). Since this particular form of
Mathieu’s equation has been studied extensively else-
where,” we shall not pursue this topic further, except to
note that, for a high-frequency field (Q >>Q,), the solu-
tions of the Mathieu equation are bounded. In view of the
above relation between the classical and quantum
motions, this means that there is nothing in the
quantum-mechanical formulation of the problem that
spoils the stable trapping which is predicted classically.
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