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We derive general expressions for the efficiency of cw phase conjugation by degenerate four-wave mix-
ing and for the threshold power Pcr for cw self-trapping of coherent electromagnetic beams in fluids and

glasses in which these effects arise predominantly from driven nuclear motions (molecular vibrations,
molecular reorientation, elastic deformations, etc.). Apart from their dependence on beam frequency co,

medium temperature T, and refractive index n, these expressions are functions only of the integrated (po-
larized and depolarized) light scattering strengths versus scattering angle in the medium and the attenua-

I

tion coefficient n. There is no other dependence on the scattering mechanism. When attenuation is en-
tirely due to scattering, the expressions simplify and suggest that unprecedented low powers (in the rni-

crowatt regime for microwaves) can produce self-focusing and strong phase conjugation, as well as other
beam mixing effects, when beam geometries are optimized in the scattering medium. In this case we find,
for example, P« —nk~Tcv /coI. (k& is Boltzmann's constant and c is the velocity of light) provided that
there is significant beam diffraction in length o. '. Our results also apply to some other media such as
electron plasma.

I. INTRODUCTION

The connection between spontaneous inelastic scattering
of electromagnetic waves and coherent nonlinear propaga-
tion effects has long been exploited in nonlinear optics. Re-
cently, Smith, Ashkin, and Tomlinson' demonstrated that a
liquid suspension of 234-nm latex spheres in ~ater,
designed for high scattering (a —15 cm '), had a remark-
ably high nonlinear index ( —105 times that of CS2) at the
515-nm argon laser wavelength. They observed cw phase-
conjugation efficiency of order 0.5% using degenerate four-
wave mixing with two 50-m% pump beams in the "artificial
Kerr medium. " Ashkin, Dziedzic, and Smith demonstrat-
ed cw self-focusing of 515-nm beams in less than the at-
tenuation length o. ( —2 mm) in similar suspensions, ob-
serving a threshold power of order 1 %, independent of
beam diameter as is expected if the refractive index change
equals a nonlinear index n2 times the optica1 intensity I.
They noted importantly that n2 was proportional to the at-
tenuation o. cm ' due to scattering. Smith, Maloney, and
Ashkin estimated the constant of proportionality in terms
of the difference between the refractive indices of a
suspended particle and the liquid, finding satisfactory agree-
ment with experiment. We generalize their expression in
the course of this paper, in which we study the question:
what limits, if any, are placed on the phase-conjugation effi-
ciency and self-focusing thresholds of a fluid or glass that
scatters light with arbitrary angular asymmetry and depolari-
zation function, by virtue of the competition between the
nonlinear coupling (proportional to the scattering strength)
and the negative effects of the beam attenuation from the
same scattering. We obtain a general expression for all
components of the third-order nonlinear optical susceptibili-
ty tensor in terms of integrated (over frequency) scattering
cross sections alone, independent of the scattering mecha-
nism. Using this expression in standard treatments, we
conclude that the same cw nonlinear effects will be found in

any fluid or glass, having the same depolarized and polar-
ized scattering coefficients o.q(8) and o.

~~ (tl) cm, regard-
less of the scattering mechanism, be it orientational or vi-
brational fluctuations, opalescence, concentration fluctua-
tions in mixtures, aerosols, etc. For example, efficient
phase conjugation of 1-cm radiation is predicted with pump
beam intensities less than a picowatt per square centimeter.

Here, we show that any transparent medium in thermal
equilibrium at temperature T which attenuates an elec-
tromagnetic beam more by scattering than by absorption will
phase conjugate a beam by degenerate four-wave mixing, '
achieving power reflectivity R of order unity with relatively
small pump powers. Specifically, we will show that, in such
scattering with the usual beam configuration of Fig. 1, and
with pump intensities Il and I2 low enough so that R does
not exceed —0.5,

R ='gtq2I)12/I02

where gt is a dimensionless function of the degree of depo-
larization and anisotropy of scattering only, which we will
show is of order unity when light scattering is isotropic (but
possibly orders-of-magnitude larger for anisotropic scatter-

3M-

FIG. 1. Schematic of beam geometry for phase conjugation by
degenerate four-wave mixing.
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ing);

10= n ktt Tco /c

is given by 5.14 c /(i0 nnz), then

1.24nks Toi g2

where n is the refractive index, k~ Boltzmann's constant, co

the electromagnetic beam (angular) frequency, c the veloci-
ty of light in vacuum, and

—= 33i2e ~zt2(I —e ~z)/2 (3)

achieves its maximum value of unity when the interaction
length L in the scattering medium is equal to n (i.e., one
attenuation length), where a is the intensity attenuation
coefficient for beams of frequency ~. This may be ex-
pressed as the sum of the parts o.q arising from absorption
and cr arising from scattering:

(4)

Note that o-, sometimes called the total scattering cross
section per unit volume, equals the fraction of photons scat-
tered per unit length to photons which are generally of
slightly different frequency. When the scattered photons
have frequencies differing from ~ by shifts of order + 5,
the response time of the phase-conjugating mirror, or of the
self-focusing, will be of order 5

From (1) we expect to achieve efficient phase conjugation
in scattering media with lower intensities at longer wave-

lengths. For example, (1) predicts pump intensities of or-
der 10 " W/cm for strong conjugation of 10-p,m radiation,
and predicts intensities of order 10 ' W/cm for conjugat-
ing 1-cm micro~ave radiation. Realization of media with

convenient scattering lengths cr ', and having o.d & o-,

should be possible. For example, liquid chloroform has an
absorption length —6 mm at the carbon dioxide laser
wavelength of 10.6 p, m, and, being a polar liquid, should be
capable of suspending enough micron-size rods (e.g. , gold)
to attenuate such a beam in less than 6 mm by scattering
from orientational fluctuations. A convenient interaction
length L of several millimeters or less in such a suspension
should achieve phase conjugation with efficiencies approach-
ing those in (1), at heating rates 2ciqr~ much less than are
met in dye lasers. The response time of such a medium will

be the orientational relaxation time of the scattering rods,
which should be, for example, of the order-of-magnitude of
milliseconds for micron-size rods. 7

We also show that, assuming the critical power P„ for
self-focusing of monochromatic linearly polarized radiation

where (2 is a dimensionless function of scattering anisotropy
and depolarization only, which equals unity for isotropic po-
larized scattering (the case studied in Refs. 1—3). From (5)
we would expect for example, to produce self-focusing of X
band (3 cm) microwaves from a 2-m-diam antenna, in such
a medium having o-= 5 km ', with 14 p, W of power.

II. THEORY

We will consider only fluids and glasses. These have the
simplest, though nontrivial symmetry. To establish (1) for
such media we first write the usual formula for the complex
phase-conjugate-amplitude reflectivity r, which is propor-
tional to qxt l/4t. 5 We then relate the appropriate third-
order nonlinear susceptibility X to the real scalar response
functions a (t, x) and b(t, x) which describe nuclear motion
in the Born-Oppenheimer regime in which g ' is negligibly
affected by electronic excitations. (Purely electronic non-
linearities contribute negligibly to X in the regime of in-
terest here. ) It is weil known that the a and b functions can
be determined from the exponential "Raman" gain at fre-
quency cv that is stimulated by a "pump" beam at frequency
u, if specified at all ru and for all relative beam directions
and polarizations. It is also well known that this Raman
gain is linearly related to ordinary Raman scattering cross
sections. 'o We will show that the nonlinear X"~ that
governs cw phase conjugation is proportional to a weighted
average o-, depending on beam polarization, of ordinary ine-
lastic scattering cross sections at angles 0 and m —H. The
"isotropic scattering" limit, where these cross sections
depend only on beam polarization, and not otherwise on the
scattering wave vector k, has been treated previously.
Here, we will sometimes be interested in media caused to be
highly scattering by particles having size of the order of a
wavelength, for which we must extend the theory to aniso-
tropic scattering. Since o is also proportional to a- in the
media of interest here, the maximum magnitude of the re-
flectivity r ~ X /n does not depend on the scattering
mechanism, and we find the sir@pie limit of (1).

We consider the plane-wave description of phase conjuga-
tion by degenerate four-wave mixing depicted in Fig. 1 and
assume the angle between beams 1 and 3 to be much less
than one radian. The optical field g; (i =x,y, z) in, the
medium can be represented by

I';(xt) = ReIe~ E~ exp(i kt x —nz/2) +e2 E2exp[i k2 x —Oi(L —z)/2]+ e3 E3 exp(i k3 x —az/2)

+ e4;E4exp(i k4. x + nz/2)]

The complex polarization vectors (which must be proper
vectors of the linear dielectric tensor) are normalized so that
e lie I ' = I, etc. (Repeated space indices are assumed to be
summed throughout. ) Using the usual convention, the
component of the nonlinear polarization density %4N"(x, t)
along vector e4;, that generates the phase conjugate wave E4
has complex amplitude

J'4=6X"'EtEzE3 exp[i(k)+ k, —k3) x —n(L+z)/2]
(7)

where, in terms of the usual nonlinear susceptibility ten-
sor cttkt (Ref. 11)

= c;~k~q
—~, eo, cv, —eo ge4;e~~e2ke3J

In the absence of X, E], E2, E3, and E4 are constants.
With x't ~, transient and steady-state (cw) solutions for these
amplitudes have been found in a variety of approximations,
with and without nonlinear components other than (7)
which may be pertinent. ' For our purposes it will suffice to
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r = —Sn tcoXt3 EtEqvl/(3't2nca) (9)

A useful expression of the part of the third-order polari-
I

assume the conjugate wave E4 disturbs the others negligibly,
nor do they disturb each other. This approximation has
been found to be accurate for power reflectivities R = ir i2

= iE4/E3i up to —0.5. We also consider only the
steady-state solution quantitatively, for which Maxwell's
equations give directly'

zation density P;"" arising from nuclear motions in fluids
and glasses is obtained by noting that it is the quantum
average ( X;, ( x, t ) g, ( x, t ) ) calculated to third order in g;
using the time-dependent interaction potential

——,
' Jtd'x'8';(x', t)x„"(x',t) g, (x', t)

(in esu). Clearly W;" (x, t) will have only terms parallel to
I';(x, t) and 8'(x', t')(t'( t), the only vectors available.
This average results in a W;"L of the form

~;""(x,t) = Jt dt' Jtd'x'[ 8';(x, t) g j(x', t') a(t —t', x —x')+ g';(x', t') 8'i(x, t) g', (x', t')b(t —t', x —x')]

The functions a and b may be calculated directly from the
quantum average, or its hydrodynamic or classical limits, in
the tradition of Brillouin, Born, and Plazcek. For our pur-
poses it is more useful to use (10) to obtain both an expres-
sion for x"' and for the stimulated gain function, thereby
linking g to the spontaneous scattering functions. Insert-
ing (6) in (10) and identifying P4, one has, by comparing
with (7), that

24X"' = (42, 13)[2A p(13) +Bp(23) ]

+ (41, 23) [2A o(23) +Bo(13)]

+ (43. 12) [Bo(13)+Bo(23) ]

where (42, 13)—= e4', e2;ei, e3i, etc. , and A o(13) represents
the Fourier transform

Aq(k)= 'l dt JI d xexp(iht —i k x)a(t, x) (12)

evaluated at 6 =0 and k = kt —k3. Similarly Bp(23)
—= Bp(k2 —k3), etc.

In the regime of interest here, where the light scattering
is predominantly to frequency shifts much smaller than both
kttT/tt and the laser frequency cp itself, the coefficients in
(11) are related to the total polarized and depolarized dif-
ferential light scattering cross sections per unit volume
cr)) (8) and cri(8) at scattering angle 8 (and its complement
8—= m —8) by the relation (AS) derived in the Appendix.
Substituting (A8) in (ll) gives

24X =c cr/(cp AT)
where

cr=- (42, 13)[cr))(H) —2cri(8) + cry(8)l

+ (41, 23)[cr))(e) —2~i(8) + cry(e)]

+ (43, 21)[crg(e) + cri(e)]

(13)

(14)

Using this result in (9) for the amplitude reflection r, and
taking the absolute square to obtain the phase-conjugate
power reflectivity R, gives the result (1) with

gt = (Sm'cr/n)'/27 (15)

r
cr = J d 0 [cr g (8 ) ( I + cos ct ) + cr )) (8)sin ct) ] (16)

Note, from the angle dependence (A3) of the scattering
cross section, we have that the total scattering cross section
per unit volume cr (the scattering attenuation coefficient) is
related to the differential cross sections by the integral over
solid angle 0:

where @ is the angle between one possible incident (linear)
polarization vector and the direction of scattering.

When the scattering particles are much smaller than a
wavelength, the polarized and depolarized scattering cross
sections (per unit volume per unit solid angle) cr)) and cri
are constants independent of scattering angle 8, and (16)
gives the familiar expression 87r(cr)) +2cri)/3. When all
beam polarizations are linear and parallel in this "isotropic"
scattering limit, (15) gives ()o= cri /cr)) )

3[6m/(9+ 18p) ]2 (17)

nearly two for the interesting ease of scattering from orien-
tational fluctuations in fluids, for which p = ~.

The change in refractive index for a linearly polarized
plane wave is easily seen from (10) to be n2I where

n2= 87r'[Ap(0) +Bp(0) ]/n'c

With the relations (AS) this may be expressed as

3@c
fl2 =

8$2nktt Tco

(18)

(19)

where the parameter

)c2= 3cr/[Sacr)) (0) ] (20)

which is a function of scattering depolarization and anisotro-
py only, becomes unity for isotropic polarized scattering, the
case studied in Refs. 1-3. The exact expressions (19) and
(20) reduce to the approximate expression (4) of Ref. 3 for
a suspension of small spherical particles, in the limit where
)):2 approaches unity and the refractive index of the particles
is close to that of the suspending liquid. It is (19) and (20)
that give directly our result (5) for the threshold power for
self-focusing or self-trapping of a Gaussian beam when the
attenuation length o. ' is much larger than the distance in
which normal diffraction becomes significant.

We note that any nonlinear effect in transparent fluids or
glasses that arises mainly from nuclear motions and can be
described with the nonlinear susceptibility tensor cit,t( —co,

co, cd, —co), can be predicted from light scattering data by
using (AS) to evaluate the nonlinear polarization density
(10). To obtain the time dependence of such effects, the
details of the frequency dependence of the light scattering
must also be known. Saturation effects (i.e., Xt") for n & 3)
cannot be obtained from light scattering and must be con-
sidered separately for each material.

There are other classes of scattering media, such as an
electron plasma, or a multicomponent plasma of charged
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particles, for which the nonlinear polarization density is ap-
proximately of the form (10). Since the relation (Al) does
not depend on the type of excitations responsible for the
scattering, the results we have derived here apply to these
other media as we11.

In conclusion, we have derived expressions (I) for the ef-
ficiency of cw phase conjugation by degenerate four-wave
mixing, and (5) for the threshold of cw self-trapping of
beams in a fluid or glass, in which electronic transitions and
nonlinearities have no effect on light propagation (and also
in certain plasma), and by which light is scattered with arbi-
trary function of scattering angle and state of scattered po-
larization. The results suggest that these and other non-
linear effects can be produced with unprecedented low
powers with proper beam geometry in any medium in which
beam attenuation arises more from scattering than from ab-
sorption.
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Here, 6—= co —co~ is the Stokes shift and the argument
(aP) signifies k = k —kp. Substituting (A2) in (Al) gives
for the Born-Oppenheimer regime in fluids and glasses

0~p2

d 0dip
tro top ImDg(ctP)

sr c'[ I —exp( th/k—p T ) ]
(A4)

The usual integrated differential polarized scattering cross
section is defined for scattering angle 8 in optica11y inactive
media by

crp (8) = t drop(4 0 ~~ /a 04rop) (AS)

& a ditto topImBg(ks, )ag 8
7r c~[1—exp( —th/kp T ) ]

(A6)

in which both incident and scattered polarizations are "vr, "
i.e., perpendicular to the scattering plane. The depolarized
cross section a.q(8) is defined similarly, with one polariza-
tion perpendicular to, and the other lying in, the scattering
plane. Note that, for optically active media, one may need
to employ the cross sections for right-to-right and right-to-
left circularly polarized beams; this was one motivation for
writing (Al) to (A4) for arbitrary proper polarizations.

From (A3) we see that, for optically inactive fluids and
glasses,

APPENDIX

2 2
ap gap~oja~p+a&p

4&drop I gsr'c'[I —exp[ —t(to —cop)/kp T]]
(AI)

E

%hen a material in thermal equilibrium is transparent
enough so that there is a we11-defined differential scattering
cross section 4'a p/dOdro [per unit volume per unit solid
angle per (angular) frequency interval] to scatter a photon
from proper polarization state e; and wave vector k to
proper state e&; and wave vector k&, then'

where we have recognized that k is, in general, a function
of the scattered frequency ~ at fixed scattering angle H. We
can neglect this dependence because all shifts 4 of interest
here are less than Hco. Since Bts(k) is a function only of
the magnitude of k we can therefore use Bts(ko) in (A6),
where kp=— Ik —kpIq=p.

Strongly scattering media of interest here also scatter
mainly to shifts 5 much less than both kpT/t and to. Since
the Kramers-Kronig relation between the real and imaginary
parts of Aq (and Bts) gives (Rerlo=Ap)

where g ~ is the stimulated exponential gain per unit length
experienced by the p beam due to the presence of intensity
I in the u beam. I k I

= n to/c, etc. , t = h/2sr.
If one uses Eq. (10) to calculate the stimulated gain g p

in a fluid or glass, one finds'2 (I = n c I E I /8sr )

A p = J ImA gd 5/7rb

and similarly for Bp, we have from (A6) that (to —=cp )

~g(e) =—~4kaTBp(ko)/lc4 .

(A7)

(AS)

g~p = ImrrtopDts(otP) I E 12npc

~here

(A2)

D, ( P)—= 2W, ( P)Iepe, .I'+B, ( P)(I+Ie,,e,.I') . (A3)

The relation (Ag) also holds for o.
p (8) but with Bp(kp) re-

placed by 2[Ap(kp)+Bp(kp)]. These are the desired rela-
tions between the differential scattering cross sections and
the nonlinear coefficients in (11) which we need to write
the important relations (13) and (19).
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