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Nonlinear coupling of electrostatic waves in magnetized plasmas
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The most general low-frequency electrostatic plasma response to the high-frequency upper-hybrid oscilla-
tions is obtained. Accounting for the relativistic electron mass variation and the ponderomotive force non-
linearities, a pair of coupled nonlinear equations are derived. The latter describe the coupling of the high-
and low-frequency potential oscillations in magnetized plasmas. Localized envelope wave packets are
found in limiting cases. The importance of the relativistic mass variation nonlinearity is examined.

In their classical paper, Kaufman and Stenflo' discovered
super-Alfvenic upper-hybrid solitons. The latter consist of
an envelope of negative group dispersive upper=hybrid wave
packets together with compressional magnetic field perturba-
tions. Porkolab and Goldman2 presented a detailed investi-
gation of upper-hybrid envelope soliton formation. Some
new results for the positive group dispersive waves were
found. Yu and Shukla pointed out the existence of cusped
solitons on the time scale of ion gyroperiod. More works
have later emerged providing an extensive study of non-
linear effects at the upper-hybrid layer.

In a recent paper, Dysthe, Mj@lhus, Pecseli, and Stenflo'o
have derived a set of nonlinear equations which describe the
coupling of the upper-hybrid waves with the electrostatic
fluctuations near the lower-hybrid frequency. In this Brief
Report, we generalize the results of Ref. 10 by including the
relativistic effect and also present the most general low-
frequency electrostatic plasma response to the upper-hybrid
oscillations. On imposing restrictions on the phase velocity
and the angle of propagation of the low-frequency modula-
tions, we can then obtain various kinds of driven low-
frequency responses which are already known in the litera-
ture. Finally, we investigate the effects of the relativistic
electron mass variation and the ponderomotive nonlineari-
ties on the soliton formation in magnetized plasmas.

Consider the propagation of a finite amplitude upper-
hybrid wave in the form

r
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where the external magnetic field Bo is directed along the z
axis. The frequency cd and the wave number k are related
by
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3 m, pc cu~o/e (pp~p+ Q,o). Here, 5n, and

5B, are the electron density and magnetic field perturbations
associated with the slow plasma motion.

Berezhiani has investigated the magnetohydrodynamic
response of the plasma to the upper-hybrid waves. In this
report, we present the most general low-frequency electro-
static fluctuatons [thus setting 58, = 0 in Eq. (3)] driven by
the upper-hybrid waves. For 8, && O,p, the electron ve-
locities involved in the plasma slow motion are given by
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the slow plasma motion can give rise to an envelope of
wave. The amplitudes of the latter vary on the time and the
space scales of the low-frequency modulations. %ithin the
WKB approximation (8,« cu), the development of the
high-frequency wave envelope is governed by
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where @ is the ambipolar potential, and the perpendicular
(to Sp) and parallel components of the ponderomotive po-
tentials2 are, respectively, given by

where co~~= co~+ 0 2, re~ = 4n ne2/m„Q, = e8/m, c, m,
=m, oy, y=(& —~,/c ) '; m, o is the rest mass of the
electron, ~„ the electron thermal velocity, and v, the quiver
velocity of the electrons in the wave field. The factor y in-
corporates the relativistic nonlinearities due to the electron
mass variation.

The nonlinear interaction of the upper-hybrid wave with
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Substituting Eqs.. (4) and (5) into the electron continuity
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equation, we obtain One finds
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where p, V'q (& 1 and pe is the electron Larmor radius.
Combining the ion continuity and the momentum equa-

tons, one can readily derive a relationship between the ion
number density perturbation 8ni and the ambipolar potential

[g2(g2+ II 2 ~ 2~2) fi 2~2' 2] ' — e (g 2~2+11 2g2)y
no m

(7)
where u„and 0; are the thermal velocity and the gyrofre-
quency of the ions, and '7 ='7q+ 9, . The ponderomotive
force acting on the ions is smaller, and is, therefore,
neglected. Ho~ever, the ions are coupled to the electrons
by the ambipolar potential.

Eliminating @ from Eqs. (6) and (7) and using the
quasineutrality condition (Bn, =An&), we derive our non-
linear low-frequency equation:
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Equations (3) and (8) constitute a pair of coupled non-
linear equations which describe the nonlinear interaction of
the upper-hybrid waves with low-frequency potential fluc-
tuations in magnetized plasmas. This set could also be con-
sidered as the Zakharov equations" for magnetized plasmas.
Clearly, we have generalized the previous work' by includ-
ing the relativistic nonlinearity and arbitrary frequencies
(8, (( O,p) of the slow modulations.

In what follows, we consider some limiting cases. First,
we consider the driven lower-hybrid modulations. Here,
8, ))0;, @~28, , and '7$ ))8, . For 6, (( (cu /cozp)
x Q,p2t)~2%/, Eq. (8) reduces to2
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where p, = e, /0; and T= T, + T;. On the other hand, for
the fast ion-acoustic modulations, one finds
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where M=ug/c, is the Mach number.
Inserting Eqs. (12)—(15) into Eq. (3), one gets in the

moving frame
In this case, the slow ions follow a straight-line orbit and
the slow electrons are highly magnetized. Here,
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Finally, in the adiabatic limit (9, 0), Eq. (7) simplifies
to2p 7
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We now look for the stationary solutions of our coupled
system [Eqs. (3) and (9)—(12)]. Introducing g = x —ugt,
one finds the stationary density perturbations for the lower-
hybrid (ug =u, ) and ion-cyclotron (u~ = c, ) modulations,

Here, the slow electrons establish the Boltzmann-type
equilibrium along Bpz. We have defined c,2 = ( T,
+@~A)/m;. Note that Eq. (10) describes the driven fast
ion-acoustic wave. Third, we let 9t —0;, but impose other
frequency and wave number restrictions similar to the fast
ion-acoustic waves described above. In this case, Eq. (7)
gives the driven ion-cyclotron waves3
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is the contribution of relativistic nonlinearity.
On the other hand, for the lower-hybrid and the ion-

cyclotron modulations, one finds

QLHrcM = ~pp(+ tL ps ~P

where p, = 1(ru m, p/m;co~~p) for the ion-cyclotron (lower-
hybrid) modulations.

Stationary solutions of Eq. (16) are well known in the
literature. 5 For completeness, we briefly summarize
our results. For the adiabatic modulations, the relativistic
nonlinearity is added to the ponderomotive force nonlineari-
ty. The combined effects then lead to the standing bright
(dark) solitons7 for positive (negative) group dispersive
upper-hybrid waves. Inclusion of the ion inertia gives rise

2icop6(E+ ntE+ EQ~IEI2=0

where the electric field E is normalized by (82rnpT)'t2. The
coefficient Q, of the nonlinear term of the static and fast
ion-acoustic modulations are, respectively, given by
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Note that for n(X —M 2) ) 0 ( & 0) bright (dark) solitons
are encountered.

If one combines Eqs. (16) and (19), one can then obtain
the nonlinear Schrodinger equation with nonlocal nonlinear-
ity

2i root), E + ar)) E + r0 zoE (X—iz p 2r)g ) ~
E

~

z = 0 (21)

Equation (21) has been extensively studied by Litvak and
Sergeev. 5 According to these authors, spiky solitons may
appear in a magnetized plasma. It also seems likely-that the
combined effects of the relativistic and the nonlocal non-
linearities may lead to collapse of the upper-hybrid wave
packets even in one space dimension.

In summary, we have generalized the work of Ref. 10 in
two respects. Firstly, we have incorporated the nonlineari-

to the moving perturbations. For M ( 1, the properties of
the solitons are similar to those of the standing solitons.
However, for M ) 1„Eq. (18) becomes

ties associated with the relativistic electron mass variation. 9

Secondly, the low-frequency electrostatic response to the
upper-hybrid wave is considered to be fairly general. It is
shown that the previously derived low-frequency responses
are the special cases of our general formulation. Thus, our
results are well suited for numerical investigation of strong
turbulence in magnetoplasmas.

Finally, we should like to point out that our investigation
can be useful to the understanding of nonlinear upper-
hybrid wave phenomena. The latter might appear during
the radio-frequency heating o'f fusion plasmas as well as the
beat-wave-particle accelerators. ' In particular, Katsouleas
and Dawson'2 have proposed that a large amplitude upper-
hybrid electrostatic wave propagating perpendicular to Boz
can accelerate the electrons to very high energies. Howev-
er, if the present nonlinear mechanism is operative it can
have important consequences to the idea of electron ac-
celeration by the beating of laser beams.

This work was performed under the auspices of the
Sonderforschungsbereich Plasmaphysik Bochum/ Julich.
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